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THE GENERAL LINEAR PROFIT FUNCTION
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1. Introduction

The classical competitive firm is assumed to face exogenously deter-
mined technological possibilities and choose variable inputs and outputs
to maximize profits at exogenous competitive market prices. This
behavior can be summarized in a restricted profit function specifying
maximum profit as a function of the exogenous variables, market prices
and parameters specifying technological possibilities. By varying the
interpretation of commodities and parameters, one can formulate as
special cases of this general model the problems of cost minimization,
revenue maximization, intertemporal operation of the firm and operation
of the firm under uncertainty. In Chapter LI, the author has given a
detailed discussion of properties and possible applications of the
restricted profit function.

The practical advantage of formulating a model of the competitive
firm in terms of a restricted profit function lies in the computationally
simple relationship between this function and the derived demand and
supply functions which form the basis for comparative analysis or
econometric estimation; namely, the net supply functions can be
computed as partial derivatives of the restricted profit function with
respect to market prices. Judicious choice of a functional form for the

*The concepts of a linear-in-parameters cost function and the second-order ap-
proximation property are due to E. Diewert, and I am indebted to him and to M. Fuss for
many useful discussions. This research was supported by NSF Grant GS-2345.
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restricted profit function can yield net supplyssystems which embody
economic phenomena of interest and which are convenient for statistical
analysis. This chapter introduces a class of general linear profit functions
which should provide useful functional forms from the standpoint of
both these criteria. These functional forms have the properties:

(a) They are linear in the underlying parameters of the production
process, making it possible to estimate the net supply system by
multivariate linear regression techniques and formulate economic
hypotheses as linear restrictions. on this system.

(b) They satisfy globally (i.e., for all positive market prices) the criteria
for a function to be the restricted profit function associated with
some technology.

(c) They can approximate a large class of restricted profit functions
(e.g., those satisfying a gross substitutes property') up to the second
order at any specified argument, thus agreeing on net supply quan-
tities and price elasticities at this argument.

An additional advantage of these functional forms is that aggregation
over firms with common technologies ‘‘carries past” the unknown
parameters, permitting a simple theory of aggregation and estimation
from aggregate data. The general linear profit function is an extension of
the generalized Leontief cost function introduced by Diewert (1971), and
can reduce to his cost function in the case of cost minimization for fixed

output.

2. The Basic Model

Consider a firm facing competitive markets in N commodities, indexed
n =1,.,N, with a commodity price vector p = (p1,...,Pn)- A production
plan for the firm is a vector x = (x,,...,xy) With x, interpreted as the net
supply (or, for compactness, netput) of commodity n, negative if the
commodity is an input and positive if it is an output. The profit
associated with a production plan x is # =p-x=p;x,+ -+ p.X,. The
technological possibilities of the firm can be described by a set T of
possible production plans. This set will in general depend on variables

'A technology has the gross substitutes property if the optimal net supply of each
commodity is non-increasing in the price of every other commodity.
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exogenous to the firm, as for example the state of technical progress,
fixed outputs in the case of cost minimization, and fixed capital inputs in
the case of short-run profit maximization. To simplify notation, we leave
to the reader the task of introducing this dependence explicitly in the
formulae below.

Define the production possibility set T to be regular if it is non-empty -
and closed and satisfies the free disposal property that x€T and x' =x
implies x' €T. Define T to be asymptotically irreversible (or semi-
bounded) if there is a bound on the vectors of production plans
x°x.,...x" €T satisfying ZX,x' = 0. This condition excludes the possi-
bility of a ‘“‘perpetual motion™ production process of unbounded ‘‘am-
plitude”, and will hold if there are some non-producible commodities
which are essential inputs to production.

The restricted profit function of the firm with technology T is

m = II(p) = sup p'x, ¢))
xeT

and gives the least upper bound (possibly +) on the level of profits
attainable at price vector p. Let (dom II) denote the set of price vectors
for which II(p) is finite.

An extended real-valued function Q:E" —[—,+x] is said to be of
type RP if it satisfies

(1) the set (dom Q) on which Q is finite is a convex cone with a
non-empty interior which is contained in the non-negative orthant of
E"; and

(2) Q is a convex conical closed® function on (dom Q).

A basic duality between production possibility sets and restricted profit
functions is established in the following theorem, proved in Chapter I.1,
Lemmas 11, 23.

Theorem 1. If T is a regular asymptotically irreversible production
possibility set, then the restricted profit function IT defined by (1) is
of type RP. Alternatively, if IT is a function of type RP, then the set

T*={x€ENjpx=M(p) for pEE"} )
is a regular asymptotically irreversible convex production possibility

2A function Q is convex if Q(p), Q)<+w, 0<<1 implies Q(bp +(1-0)p)s
0Q(p) + (1 - 8)Q(p’); conical if Q(Ap)=AQ(p) for A >0; and closed if the set (epi Q)=
{(p.q)lg = Q(p)} is closed.



272 Daniel McFadden

set. In particular, if the function IT in (2) is the restricted profit
function of a regular asymptotically irreversible production possi-
bility set T, then T* is the closed convex hull of T. The mappings (1)
and (2) are mutually inverse between the family of regular asymp-
totically irreversible convex production possibility sets and the
family of functions of type RP; e.g., applying the mapping (2) to a
function IT of type RP and then applying the mapping (1) to the
resulting set T* returns the function II.

A second basic property of the restricted profit function is the derivative
property, proved in Chapter 1.1, Lemmas 17-19.

Theorem 2. Consider a function IT of type RP. IT is differentiable
at p’ in the interior of dom IT if and only if in the technology T*
given by (2), there exists a unique vector x' € T* at which p’-x is
maximized on T¥*, in which case II,(p") = x'.

In analyzing the general linear profit function below, we shall use on a
function Q:E" > [—w,+=] of type RP the condition C2 that Q be twice
continuously differentiable with a Hessian of rank n — 1 on the interior
of (dom Q), and the condition FP that (dom Q) contain the positive
orthant. Condition C2 implies the dual technology of Q given by
equation (2) is strictly convex (as viewed from the positive orthant of
E") with a “specific curvature” which is bounded positive. Condition FP
implies that as the scale of production becomes large, the set of possible
activities in the dual technology shrinks to the set of disposal activities,
i.e., the asymptotic cone of the dual technology is the non-positive
orthant. These duality implications are discussed in detail in Chapter 1.1,
Lemma 12, Theorem 26.

3. General Linear Profit Functions

A function I1(p;a) which is linear in a vector of underlying parameters
a = (ay,...,a,) can be written in the form

M
(p;e)= 3, anQ"(®)- (3)

where Q™ is a numerical function. Further, we can always standardize
the parameter specification so that « is restricted to be non-negative
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(i.e., we can first write each bivalent parameter as the difference of its
positive and negative parts, and then re-define the Q function associated
with each negative parameter to absorb its sign). This convention will be
imposed hereafter in discussion of equation (3) unless explicitly assumed
otherwise.

If the function II(p;a) in equation (3) 1s of type RP for all
non-negative a, then clearly each function Q™ is of type RP and
MN¥_,(dom Q™)has a non-empty interior.} Conversely, it is an elementary
property of convex functions that if each function Q™ is of type RP and
if N™_, (dom Q™) has a non-empty interior, then I given by equation (3)
for any non-negative vector a is of type RP.

A function IT in equation (3) which is of type RP for all non-negative
a will be termed a general linear profit form. This form can be speci-
alized for econometric purposes by choosing specific numerical
functions Q™. To aid computation and interpretation it is convenient to
take each function Q™ to depend on a small subset of the commodity
prices. If each Q™ depends on a single price, then it is linear and the
resulting linear profit function in equation (3) is dual to a pure fixed
coefficients Leontief technology. The next case with the Q™ depending
on pairs of commodity prices yields a variety of useful functional forms
corresponding to a fairly broad class of technologies. Rewrite equation
(3) by indexing over pairs of commodity prices as

N N
I(p;a) = 52‘,' 2::. a;piQ (pilpi), 4)

where the a; are non-negative parameters for i# j with a; = a;, the Q"
are closed convex functions of a positive real variable (implying
p:Q¥(pip;) is of type RP and satisfies condition FP), and the diagonal
parameters a; are unrestricted in sign. One case of equation (4) is a
version of Diewert’s (1971) generalized Leontief form,

. N

N
N(pser) = 2 3, i~ (pp)"™); ()

i=1j= .
others can be obtained by substituting for Q7 in equation (4) some
combination of the standard numerical forms for convex functions of
one variable given in the first column of Table 1. When the functions Q"
in (4) are differentiable, Theorem 2 implies the existence of an optimal

*Taking am >0, a; =0 for 1# m implies [I(p;a)= Q™(p), so that Q™ is of type RP.
Taking a strictly positive implies dom IT(-;a) = N, (dom Q™).
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production plan x(p) for positive p satisfying

o) =200 = 3 o [ 07 (2) - 20t (B2) + 0 (2)]
== 1 - r + rt1 "} 6
£p) =7 ; S0 % o e 2 Q > (6)
and
% (p) _ [Pr K (Pl) Pk ik (Pk)]
= = rl— )+ ryv ) ] 7
ap; p.ap; Y IT{ Q P« E Q P/l @

for k# 1, where Q¥ and QY denote the first and second derivatives,
respectively, of the function QY. Since the expressions in brackets in
equations (6) and (7) are numerical functions, these formulae allow
application of multivariate regression analysis to estimate the net supply
system.

A technology is said to have the gross substitutes (GS) property if the
optimal net supply of each commodity k is non-increasing in the price of
every other commodity. This property corresponds to the “normal” case
where all outputs are substitutes (e.g., the quantity of one falls when the
price and quantity of a second rises), all inputs are non-regressive in the
production of outputs (e.g., each input quantity rises when the price and
quantity of an output rise), and all inputs are strong substitutes (e.g., an
increase in the price of one input leads to substitution of a second input
which is sufficient to offset the tendency of an input price increase to
reduce output quantity, and thus input quantities®). When the restricted
profit function IT of the technology has the differentiability property C2,
the gross substitutes property can be defined as the condition

- 9*I1/3pidp, = 0 for ks . A profit function of two prices must satisfy GS,
and a sum of functions satisfying GS must again have this property.
Thus, the linear profit form (4) has property GS; this is also clear from
the sign of the cross-price effects in equation (7).

Consider an arbitrary function @(p) of type RP with property C2 at a
price vector p* in the interior of (dom @). A general linear profit form
II(p;e) from equation (3) is said to have the second-order approximation
property to @ at p* if there exists a non-negative parameter vector a*
such that the first and second derivatives of IT and ¢ agree at p* [i.e.,
H(p*;a*) = ®¢(p*), H(p*;a*)= P (p*), and Ily(p*;a*)= Pu(p*)]. The
following result establishes that the general linear profit form (4) is

‘Consider for example a technology T satisfying x,.x;=0 and x =
{(—=x9)'7% 4 (= x;) ' Hepe0-Yo) for ¢>0, o#1, and 0<pu <1 (ie, a CES production
function with an elasticity of substitution o, homogeneous of degree u). Its restricted
profit function is IT = (1 — w)u " #p /0~#)(p}~ + pj~7)~Wwli-uMWi-a JT has the property

GS for o= 1/(1 — ).
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robust in the sense that locally it can mimic the net supply system of any
restricted profit function with the gross substitutes property.

Lemma 1. Consider a general linear profit function I satisfying
equation (4) such that Q¥ has property C2 and Q7 positive. If @(p)
is any function of type RP, p* is a vector in the interior of dom &,
and @ satisfies conditions C2 and GS at p*, then II has the
second-order approximation property to ¢ at p*

Proof: From equation (7), one can choose af; for k# 1 such that
I, (p*,a*) = @,(p*). Then from equation (6), one can choose af; such
that IT.(p*,a*) = @,(p*). Since both ¢ and IT are conical, it follows that
Iy (p*,@*) = ®u(p*) and II(p*,a*) = ¢(p*). Q.E.D.

Note that the general linear profit form (4) has N(N +1)/2 in-
dependent parameters. This equals the number of independent condi-
tions which must be met to obtain the second-order approximation
property. In this sense, (4) is a “‘parameter- -efficient” form among those
with the approximation property.

It is clear that linear profit forms with Q-functions of more than two
prices can be introduced which need not have the GS property; one
possible form for econometric purposes will be introduced later.
However, the following result shows that it is fruitless to seek a linear
profit form which has the second-order approximation property to each
function of type RP and which is itself of type RP over its entire domain

of definition.

Lemma 2. Given any linear profit form II in equation (3) with
specified M and Q™, there exists a function @ of type RP satisfying
C2 at p* in the interior of (dom @) such that II does not have the
second-order approximation property to ¢ at p* for N > 2.

Proof: Let H* denote the N —1 matrix of derivatives @;(p*) for
i.j =2,...,N, and let H" denote the corresponding matrix for Q™. For the
second-order approximation property to hold, H* must lie in the convex
cone spanned by the H”. Now H* can be any positive semidefinite
matrix [e.g., the function

N
P(p) = 2= pip;H
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is of type RP and returns this matrix]. Representing an (N — 1)-square
symmetric matrix as a point in EY® "2 the cone of positive semidefinite

matrices is not polyhedral (e.g., the 2 X 2 submatrix

o &)

is positive semidefinite on the set 8 = a’ bounded by a parabola). Hence,
H* can be chosen to lie in an extreme ray of the cone which does not

contain an H™. Q.E.D.

In view of this result, we must either restrict the class of profit
functions we wish to approximate by a linear profit form, or else relax
the conditions we have imposed on the linear profit form. We next give a
very general result of the first type. Unfortunately, the argument is not
constructive and thus does not provide a way of generating linear forms
for econometric purposes.

If a function @ of type RP has property C2 and the matrix H(p) =
(®;(p)) for i,j = 2,...,N is non-singular, then the dual technology at X(p) is
bounded by a surface which can be described by a twice continuously
differentiable concave function x; = f(x«) of x4 = (x3,...,X,) With a non-
singular Hessian matrix fo(X«(p))=[- pH(p)]™' (Chapter 1.1, Theorem
26). Define an index p(p)= (minimum root of H(p))/(maximum root of
H(p)). Then p(p) is a measure of the ‘“relative definiteness” of the matrix
H, or equivalently of the relative curvature of the surface of the

technology .’

Lemma 3. Given €>0, there exists a linear profit form II in
equation (3) with specified M and Q™ (depending in general on ¢)
such that if @ is any function of type RP satisfying C2 at p* in the
interior of (dom @) and if p(p*) = e for this function, then I7 has the
second-order approximation property to @ at p*.

Proof: As in Lemma 2, denote symmetric (N — 1) matrices H as points
in ENY"U2 Define the set

N
Ay = {H € E”‘”"’”'E H; = 1 and Min (q'Hq)/q'q = e}.
i=2 q=0

SNote that p(p) = (minimum root of — fo(X«(p)))/(maximum root of — f.(X«(p))), where
X4 = (Xa,....Xxn ). Let G be a matrix with G’ = G~ such that G'HG is diagonal. Define a set of
“composite” commodities y4 = G'x4« and corresponding prices g4 = G'p«. Then p is the ratio
of the smallest to the largest own price effects of the composite commodities.
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Then A, is non-empty, closed, bounded, and convex for 0=6<
1/(N — 1), and for 8 >0, A, is contained in the relative interior of A,
Hence, for 8 = (Min (¢,.5))/(N — 1), there exists a convex polytope with
vertices H',....H’ which contains A, and is contained in A,. Define Q™ =
(12pyp,H™p, for m = 1,....J, where p, = (P2--sPN); Q" = pm-; for m=
J+1,..J+N; and Q" =—Pppy-n for m=J+ N +1,...,J+2N, with
M =7J +2N. Given @ and H(p*), one has

N
€ = p(p*) = [Min (@H(p")a/q'®)] / [2:2 Ha(p*)I(N - 1)].

Hence, H(p*) is contained in the convex cone spanned by H',..,H’
Choosing (ay,...,as) to equate the second partials of IT and @, and then
choosing (ayi,...,an) to equate the first partials, yields the desired

conclusion. Q.E.D.

A function @ of type RP with property C2 at a vector p is said to have
a dominant own price effect with numeraire commodity 1 if

N
pi®i(p) = D, pil®Psp)] for i=2,...N.

Tt
From homogeneity, satisfaction of this condition requires that com-
modity 1 be a gross substitute for every other commodity. However,
some patterns of gross complements among the remaining commodities
are possible. If @ has property GS, then it has the dominant own-price
effect property. The next result provides a constructive proof that the
class of profit functions with the dominant own-price effect property can
be approximated to second order by a linear profit form:*

Lemma 4. Suppose good 1 is a specified numeraire commodity
and p* is a specified positive vector, and consider the linear profit

form

N 1 ; N2 .' N2
IH(p;a.B.y) = 21 a;pi +§EZZ 12:2 [Bij (p%;"'fj;) + i (f‘;—ffg) ],
(8)

with B; and vy; non-negative and symmetric in ij,yi = 0, and B;vi =

The restricted profit function given in footnote 4 has the dominant own-price effect
property if o=1/2(1—p), or if o<if2(1-p) and (1-20(1-— w) ' Z(palp)) =
1—=20(1 — u). In particular, this property holds for all positive prices in the limiting case
o=1.
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0. If & is any function of type RP satisfying C2 and the dominant
own price effect property at p* in the interior of (dom @), then (8)
has the second-order approximation property to @ at p*.

Proof: Differentiating (8), we obtain

IL; = 2(Bu — vu)ipwpipt for k#l, 9)
N

Iy =2Bulppt +2 _22 (B + va)p1p% - (10
=

Condition (9) with IT, = ®,(p*) and By-yw =0 determines Bu,yu for
k+ I. Substituting these values in (10) yields

2 N

N
= p ¥ Dulp*) —22 pHP(p*)| =0,

Bulpip¥ =ptPulp®) -

by the dominant own price effect property. Choose the a; to equate the
first partials of IT and @ (p*). This establishes the desired result. Q.E.D.

By weakening the requirement that a general linear profit form be
finite for all positive prices, one can obtain the second-order ap-
proximation property to a broad class of restricted profit functions, as
shown in the following result. This is in effect an unrestricted local
approximation theorem.

Lemma 5. Consider the linear profit form (4) with specified twice
continuously differentiable Q“ having Q¥ non-zero. Suppose & is of
type RP, has property C2 at p* in the interior of dom &, and has
H(p) = (9;(p)), i,j = 2,....N non-singular at p*. Then there exists a
parameter vector a* in (4), not necessarily non-negative, and a
closed cone P* containing p* in its interior such that the function
IT*(p), defined to equal +c for p & P* and to equal (4) for @* and
pEP*, is of type RP and has the second-order approximation
property to @ at p*.

Proof: From the proof of Lemma 1, a* can be chosen so that II(p;a™)
has the second-order approximation property to & at p*. Since H(p*) is
positive definite, it follows from continuity that II(p;a*) is convex for p
in a convex neighborhood of p*; let P* be the smallest closed convex
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cone containing this neighborhood. It is then immediate that IT*(p) is of
type RP. Q.E.D.

Note that this result does not require the Q-functions to be convex.
Thus for the purposes of this type of approximation, one could take
equation (4) to have a wide variety of functional forms, such as (5) with
unrestricted signs, or the Christensen-Jorgenson-Lau (1973) “translog”
function. The difficulty with using Lemma 5 as a justification for choice
of simple functional forms for econometric analysis without regard for
global properties of the Q-functions is that the domain P* cannot be
determined a priori and may not include all observations. Use of a fitted
equation (4) without restriction of domain may be inconsistent even
locally with competitive profit maximization. An ex post consistency
check for this inclusion is typically highly non-linear and computation-
ally forbidding. However, Appendix A.4 by Lau has established feasible
methods of testing the convexity of a function at each data point.

4. The Dual Technology of the General Linear Profit Function

The lemmas above giving second-order approximation properties of the
general linear profit function to an arbitrary function of type RP can be
interpreted dually as establishing that an arbitrary convex technology
can be mimicked locally by the dual technology of the linear profit form.
Beyond this conclusion, it is useful to establish some of the global
properties of the dual linear technology.

We noted earlier that when the linear profit form is linear in prices, it
is dual to a Leontief fixed coefficients technology. All the forms we
consider yield this technology as a special case. More generally, we can
from Theorem 2 express the dual technology of the general linear profit
form (3) as a sum (see Chapter 1.1, Table 3),

M
T= > a,T", (11)
m=1

where
T™ = {x|p-x = Q" (p) for all p}. (12)

When the Q-functions are simple forms, the sets T™ can often be
characterized explicitly. The last column of Table 1 lists the dual
technologies corresponding to a variety of two-price Q-functions. The
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three-price functional form (8) has the Q-function (pdp* + pilp%)12p,
dual to a technology T¥ with x, =0 for k# ij, and Max[p¥x,pfx]=
V/(~2x,); and the Q-function (p/p* — p/p¥)*/2p, dual to a technology TX
with x, =0 for k# i,j, p*x;+ p*x =0, and Max[p*x,p*x]=V(—2x)).
The structure (11) of the dual technology has a direct economic inter-
pretation of non-jointness of the component technologies T™, implying
that one can ‘decentralize” the optimization decisions in these
components. In Chapter I1.4, several examples are given in which this
structure arises naturally for a multiple production unit firm.

The technological structure of equations (11) and (i2) can also be
characterized by ‘“transformation” or gauge functions for the tech-
nologies. Let e denote a vector of ones, and for functions Q™ in the
general linear profit form (3), define x*" = Q;'(e) —e, where Qy' is the
vector of partial derivatives of Q™, or more generally any optimal net
supply vector for Q™ at the price vector e. Then x*” 1s an interior point
of T™. Define

F™(x) = Inf{A > Ojp-x = A(Q"(p) — p-x*") for all p}. (13)

Then x €ET” if and only if F™"(x—x*")=1 (Chapter 1.1, Theorem 24).
Assume a strictly positive and define

M
> anx" = x}. (14)
m=1

F(x)= Inf{M’gx Ezl_ Fm™(x™)

Then x € T if and only if F(x—zle a,x*")= 1 (Chapter 1.1, Corollary
29). In the special case where the Q™ functions are separable, depending
on disjoint subsets of commodity prices, the transformation function
(14) has a corresponding separable structure. Linear profit forms chosen
for econometric purposes usually contain this structure as a special case
that can be tested as a linear hypothesis.

For the special two-price linear form (5) with Qi(p)=—(p:p))"”?, an
ingenious argument of Diewert (1971) provides an analytic charac-
terization of the dual technology. Define x7 = max(0,—a;), let A denote
the matrix of parameters a;;, and for a vector x let X denote a diagonal
matrix constructed from the components of x. For x < x*, define f(x) to
be the reciprocal of the Frobenius root of the non-negative matrix

AN\ AN ",

(£* —x)"PEF + A)E*F—X)”

)112
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Then f is a concave function, and x€T if and only if fx)=1’
Unfortunately this type construction does not seem (o carry OVer to
other two-price functional forms.

Finally, in the case of two commodities, the linear profit form (4) has a
simple geometric interpretation: The function Q'(p./p)) is dual to a
“one input-one output” production function or an ‘“‘isoquant” in the
negative quadrant. The technology (11) is defined by shifting this surface
by a scale factor and then shifting the axes. In Diewert’s form (5) the
surface is a translated rectangular hyperbola.

5. Applications of the Linear Profit Function

Our interest in the general linear profit function is based on its linear-in-
parameters form, which allows estimation of the net supply system by
linear regression methods. We now suggest several ways in which this
structure can be exploited. The first comment concerns constant returns
technologies.

(1) Use of the derivative property to obtain the net supply system
under the assumption that the restricted profit function is differentiable
with a Hessian of full rank implies that the dual technology is strictly
convex. This condition is inconsistent with the assumption of a constant
returns technology, and more fundamentally the specification of a
constant returns technology and competitive profit maximization 1is
insufficient to determine a net supply function describing the behavior of
the firm. An obvious and reasonable way to obtain a definite net supply
is to assume that the firm at each point in time treats as fixed some
durable inputs which are essential to production and maximizes profit in
variable goods, and then adjusts durable inputs over time subject to, say,
equity constraints. The “per durable input unit” technology can then be
strictly convex, and the formulae (3) and (6) specify a ‘‘per unit” net

"The argument is based on equation (2), which implies x € T if and only if

fxy'= sup{(E piPp|a;+ p-x*)/z pilx’ - x;)} =1
3] i
Defining g; = p /*(x* — x;)™'%, and % = diag(x;), this formula becomes
£(x)" = suplq G —%)""H&* + A)F ~x)"g/g'qh,

and the result follows from the theory of non-negative matrices.
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supply system, with the value of II interpreted as the implicit rate of
return on the durable input.

(2) Our second comment concerns aggregation over firms f=1,... . F
which have a common technology characterized by a parameter vector
a, but face differing price vectors p;, and II(ps;a) denotes the restricted
profit function of firm f. Then aggregate profit equals > =1 1T (pf,a), and
aggregate net supply is given by the corresponding sum of price deriva-
tives. In the linear-in-parameter form (3) for the profit function, this
aggregation ‘‘carries past” the parameters, preserving the linear struc-

ture, N
F M F
S Hppe)=3 an|3, Q@] (15)
= m=1 =

The parameters of this problem could then be estimated from aggregate
net supply data and disaggregated price data. The system has an obvious
application when detailed price data is available but disclosure rules
prevent the release of detailed quantity data. In practice, something less
than completely disaggregate price data may be sufficient to compute the
expressions [Ef 1 Q™(p;)]. For example, with the Diewert specification
(5) of the linear profit form involving terms p;:Q% = —(p.p;)'?, if the mean
u; of p and covariance o; of pspy; across firms are reported, and if one
can make the maintained hypothesis that p,; is multivariate log-normally
distributed and the number of firms in the aggregate is large, then one
has

)ll4

(1 + oyl pips;

1F_ N e (e M2
'F'!ZI:] [ (pflpfl) 1= (nu'nﬂq) (l+0'iill-hz)l/8(1+0'”/p.,)178r (16)

Then a series of observations on aggregate net supply and means and
covariances of prices within each aggregate observation would be
sufficient to estimate the model.

Another interpretation of the system (15) and (16) can be given for a
single firm facing uncertainty, with f denoting the state of nature. The
corresponding net supply system expresses expected net supplies as
linear-in-parameters functions of the means and covariances of prices.

A second class of aggregation problems occurs when firms f =1,....F
face common commodity prices, but have different technologies with
non-measured ““local’” factors. If the restricted profit function of each
firm is of the general linear form, with the parameter vector ay differing
across firms, but the Q-functions common to all firms, then aggregate
net supplies can be interpreted as coming from a ‘‘representative”
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technology of the same form with a parameter vector a = (1/F) Zfil ay.
[See Klein (1952-53).]

(3) Our third comment concerns tests of restrictions on the tech-
nology. In a number of cases, these can be formulated as linear restric-
tions on the parameter vector a, and thus tested using standard linear
statistical theory. For example, suppose goods 1 and 2 are outputs, the
remaining commodities are inputs and we wish to test the non-jointness
of production of the two commodities. This hypothesis implies that the
net supply of good 1 cannot be affected by the price of good 2, ie.,
a»= 0 in the two-price linear profit form (4).

(4) Our fourth comment concerns the introduction of exogenous
variables from the technology into the restricted profit function when it
is assumed to have the linear profit form. Important cases include cost
minimization for fixed output and profit maximization in a subset of
commodities with the remaining commodity levels fixed. These variabies
will typically enter in a non-linear way (except in the case of constant
returns). However, one can introduce a linear-in-parameter form jointly
over the variable commodity prices and exogenous variables, and es-
tablish second-order approximation properties for this form in both sets
of variables. For example, if the profit function has arguments p=
(P1s....pn) and z = (Zna+15...,21), and the underlying technology is convex
in (x,z), then the profit function is concave in z and one might consider a
linear form,

N N L
II(p,z) = E a;(—(pip))™) + Z: =§ Bipizi

Li=1

L
+p D vi(zz)" + i 2 8(~ z1), (17)
1,1-‘7-:?—1 i=N

in L(L+1)/2+ (L — N) parameters with a; and v; non-negative and
symmetric, & non-negative. This form has the second-order ap-
proximation to any function @ (p,z) which is of type RP in p, is concave
in z, is twice continuously differentiable jointly in (p.z), has the property
GS in p, and has a dual GS property in z (i.e., the marginal product
811/ 3z; is non-decreasing in all other z;).

Our last comment concerns the construction of ‘“nested” functional
forms for the restricted profit function which can be interpreted as
arising from a two-stage decision process (ex ante and ex post) of the
firm. Suppose the linear profit form (3) summarizes the result of ex post
optimization, with the a, which are fixed ex post being the ex ante
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decision variables. Suppose these ex ante decision variables are
described parametrically by a second linear profit form,

L
d’(QIa---me).: ’Zt BR'(q1,--1qm)>

with 8 non-negative, R' non-decreasing in q, and
am = Yl 3G . (18)

Then, the optimal ex ante profit maximum is found to equal
P (Q'(p).....Q™(p)) = ®(p), which is of type RP, and the optimal net
supply vector resulting from the two-stage optimization is found to
satisfy

L M
%)= 2 B 2 Rn(Q'®)..Q"@)QT(P), (19)
and
L
Gm(p) = ; BR.(Q'(P),-...QM (p). (20)

This structure is linear in the underlying production parameters ;. A
detailed discussion of ex ante-ex post production structures and their
estimation by nested linear profit forms is given in Chapter I1.4.



