Problem Set 4

Suggested Solutions

Problem 1

(A) The market demand function is the solution to the following utility-maximization problem (UMP):

$$
\max _{\left(x_{1}, x_{2}, x_{3}\right)} U\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} x_{2}\right)^{\frac{1}{3}}+x_{3}
$$

s.t.

$$
\begin{aligned}
& p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3} \leq y \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

The Lagrangean:
$L\left(x_{1}, x_{2}, x_{3} ; \lambda, \mu_{1}, \mu_{2}, \mu_{3}\right)=\left(x_{1} x_{2}\right)^{\frac{1}{3}}+x_{3}+\lambda\left[y-p_{1} x_{1}-p_{2} x_{2}-p_{3} x_{3}\right]$
$+\mu_{1}\left(x_{1}-0\right)+\mu_{2}\left(x_{2}-0\right)+\mu_{3}\left(x_{3}-0\right)$
The first-order conditions:
$\underline{\text { Set (I) }}$

$$
\begin{gather*}
\frac{\partial L\left(\underline{x} ; \lambda, \mu_{1}, \mu_{2}, \mu_{3}\right)}{\partial x_{1}}=0 \Leftrightarrow \frac{\partial U(\underline{x})}{\partial x_{1}}=\lambda p_{1}-\mu_{1} \Leftrightarrow \lambda p_{1}-\mu_{1}=\frac{1}{3}\left(x_{1} x_{2}\right)^{-\frac{2}{3}} x_{2} \tag{1.1}\\
\frac{\partial L\left(\underline{x} ; \lambda, \mu_{1}, \mu_{2}, \mu_{3}\right)}{\partial x_{2}}=0 \Leftrightarrow \frac{\partial U(\underline{x})}{\partial x_{2}}=\lambda p_{2}-\mu_{2} \Leftrightarrow \lambda p_{2}-\mu_{2}=\frac{1}{3}\left(x_{1} x_{2}\right)^{-\frac{2}{3}} x_{1} \tag{1.2}\\
\frac{\partial L\left(\underline{x} ; \lambda, \mu_{1}, \mu_{2}, \mu_{3}\right)}{\partial x_{3}}=0 \Leftrightarrow \frac{\partial U(\underline{x})}{\partial x_{3}}=\lambda p_{3}-\mu_{3} \Leftrightarrow \lambda p_{3}-\mu_{3}=1 \tag{1.3}
\end{gather*}
$$

Set (II)

$$
\begin{align*}
& p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3} \leq y \tag{2.1}\\
& \quad \lambda \geq 0 \tag{2.2}\\
& \lambda\left[y-p_{1} x_{1}-p_{2} x_{2}-p_{3} x_{3}\right]=0 \tag{2.3}\\
& x_{1} \geq 0 \quad \mu_{1} \geq 0 \quad \mu_{1} x_{1}=0 \tag{3.1}
\end{align*}
$$

$$
\begin{array}{lll}
x_{2} \geq 0 & \mu_{2} \geq 0 & \mu_{2} x_{2}=0 \\
x_{3} \geq 0 & \mu_{3} \geq 0 & \mu_{3} x_{3}=0 \tag{3.3}
\end{array}
$$

We have the following possible cases:

- (Interior Solution) $x_{1}, x_{2}, x_{3}>0 \stackrel{(3.1)(3.2),(3.3)}{\Rightarrow} \mu_{1}=\mu_{2}=\mu_{3}=0$

By (1.3), since we are given $p_{i}>0 \quad \forall i=1,2,3$, we get $\lambda=\frac{1}{p_{3}}>0$.
Hence, by (2.3): $p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}=y$
$\frac{(1.1)}{(1.2)} \rightarrow \frac{x_{2}}{x_{1}}=\frac{p_{1}}{p_{2}}$
From (1.1):
$\frac{p_{1}}{p_{3}}=\frac{1}{3}\left(\frac{x_{2}}{x_{1}^{2}}\right)^{\frac{1}{3}}=\frac{1}{3}\left(\frac{\frac{x_{1} p_{1}}{p_{2}}}{x_{1}^{2}}\right)^{\frac{1}{3}}=\frac{1}{3}\left(\frac{p_{1}}{x_{1} p_{2}}\right)^{\frac{1}{3}} \Rightarrow$
$x_{1}=\frac{1}{27}\left(\frac{p_{3}^{3}}{p_{1}^{2} p_{2}}\right)$
Thus,
$x_{2}=\frac{1}{27}\left(\frac{p_{3}^{3}}{p_{1} p_{2}^{2}}\right)$
Finally: $p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}=y \Rightarrow x_{3}=\frac{y-2 p_{1} x_{1}}{p_{3}}=\frac{y}{p_{3}}-\frac{2 p_{3}^{2}}{27 p_{1} p_{2}}$

Hence, a candidate solution is: $\quad x^{1}\left(p_{1}, p_{2}, p_{3}, y\right)=\left(\begin{array}{c}\frac{1}{27}\left(\frac{p_{3}^{3}}{p_{1}^{2} p_{2}}\right) \\ \frac{1}{27}\left(\frac{p_{3}^{3}}{p_{1} p_{2}^{2}}\right) \\ \frac{y}{p_{3}}-\frac{2}{27}\left(\frac{p_{3}^{2}}{p_{1} p_{2}}\right)\end{array}\right)$

- $x_{1}=x_{2}=0, x_{3}>0$

Thus, $\mu_{3}=0$ and by (1.3): $\lambda=\frac{1}{p_{3}}>0$

Hence, by (2.3): $p_{3} x_{3}=y \Rightarrow x_{3}=\frac{y}{p_{3}}$
From (1.1): $\mu_{1}=\frac{p_{1}}{p_{3}}>0$ Similarly, from (1.2): $\mu_{2}=\frac{p_{2}}{p_{3}}>0$
Hence, a candidate solution for the UMP is: $x^{2}\left(p_{1}, p_{2}, p_{3}, y\right)=\left(\begin{array}{c}0 \\ 0 \\ \frac{y}{p_{3}}\end{array}\right)$

- $x_{1}, x_{2}>0, x_{3}=0$

Thus, $\mu_{1}=\mu_{2}=0$ and by (1.3) or (1.2): $\lambda>0$
Hence, by (2.3): $p_{1} x_{1}+p_{2} x_{2}=y$
$\frac{(1.1)}{(1.2)} \rightarrow \frac{x_{2}}{x_{1}}=\frac{p_{1}}{p_{2}}$
Hence, $x_{1}=\frac{y}{2 p_{1}}$ and $x_{2}=\frac{y}{2 p_{2}}$
But from (1.1): $\mu_{1}=\frac{p_{1}}{p_{3}}>0$ since the price vector is strictly positive. This result clearly violates our earlier premise that $\mu_{1}=0$.
Therefore, this case cannot yield a candidate solution ${ }^{1}$.

Note that we don't need to check the sub-cases of each of the cases (a) $x_{1}=x_{2}=0, x_{3}>0$ and (b) $x_{1}, x_{2}>0, x_{3}=0$ where one of x_{1}, x_{2} is strictly positive while the other being zero because, by the functional form of the given utility function, the zero element drives the entire first term in the utility function to zero irrespective of the fact that the other element is non-zero. Hence, if for example $x_{1}=0$, there is no point is wasting money on x_{2}. In other words, (i) $x_{1}=0, x_{2}>0$ and, similarly, (ii) $x_{2}=0, x_{1}>0$ could never be optimal.

It is easy to verify that, from the two candidate solutions that we found above, the first one yields the highest level of utility. Specifically,
$U\left(x^{1}\left(p_{1}, p_{2}, p_{3}, y\right)\right)=\frac{y}{p_{3}}+\frac{p_{3}^{2}}{27 p_{1} p_{2}}>\frac{y}{p_{3}}=U\left(x^{2}\left(p_{1}, p_{2}, p_{3}, y\right)\right)$

[^0]Finally, the Marshallian demand is given:
$x\left(p_{1}, p_{2}, p_{3}, y\right)=\left(\begin{array}{c}\frac{p_{3}^{3}}{27 p_{1}^{2} p_{2}} \\ \frac{p_{3}^{3}}{27 p_{1} p_{2}^{2}} \\ \frac{y}{p_{3}}-\frac{2 p_{3}^{2}}{27 p_{1} p_{2}}\end{array}\right)$
The indirect utility function was already calculated:

$$
\begin{equation*}
V\left(p_{1}, p_{2}, p_{3}, y\right)=U\left(x\left(p_{1}, p_{2}, p_{3}, y\right)\right)=\frac{y}{p_{3}}+\frac{p_{3}^{2}}{27 p_{1} p_{2}} \tag{V}
\end{equation*}
$$

The Hicksian demand function is the solution to the following expenditure-minimization problem (EMP):

$$
\begin{aligned}
& \min _{\left(x_{1}, x_{2}, x_{3}\right)} p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3} \\
& \text { s.t. } \\
& U\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} x_{2}\right)^{\frac{1}{3}}+x_{3} \geq u \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

which is, of course, equivalent to:

$$
\max _{\left(x_{1}, x_{2}, x_{3}\right)}-\left(p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}\right)
$$

s.t.

$$
\begin{aligned}
& -U\left(x_{1}, x_{2}, x_{3}\right)=-\left(\left(x_{1} x_{2}\right)^{\frac{1}{3}}+x_{3}\right) \leq-u \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

The Lagrangean:

$$
\begin{aligned}
& L\left(x_{1}, x_{2}, x_{3} ; \lambda, \mu_{1}, \mu_{2}, \mu_{3}\right)=-\left(p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}\right)+\lambda\left[-u+\left(\left(x_{1} x_{2}\right)^{\frac{1}{3}}+x_{3}\right)\right] \\
& +\mu_{1}\left(x_{1}-0\right)+\mu_{2}\left(x_{2}-0\right)+\mu_{3}\left(x_{3}-0\right)
\end{aligned}
$$

The first-order conditions:

Set (I)

$$
\begin{align*}
& \frac{\partial L\left(\underline{x} ; \lambda, \mu_{1}, \mu_{2}, \mu_{3}\right)}{\partial x_{1}}=0 \Leftrightarrow \lambda \frac{\partial U(\underline{x})}{\partial x_{1}}=p_{1}-\mu_{1} \Leftrightarrow p_{1}-\mu_{1}=\frac{\lambda}{3}\left(x_{1} x_{2}\right)^{-\frac{2}{3}} x_{2} \tag{1.1}\\
& \frac{\partial L\left(\underline{x} ; \lambda, \mu_{1}, \mu_{2}, \mu_{3}\right)}{\partial x_{2}}=0 \Leftrightarrow \frac{\partial U(\underline{x})}{\partial x_{2}}=p_{2}-\mu_{2} \Leftrightarrow p_{2}-\mu_{2}=\frac{\lambda}{3}\left(x_{1} x_{2}\right)^{-\frac{2}{3}} x_{1} \tag{1.2}\\
& \frac{\partial L\left(\underline{x} ; \lambda, \mu_{1}, \mu_{2}, \mu_{3}\right)}{\partial x_{3}}=0 \Leftrightarrow \frac{\partial U(\underline{x})}{\partial x_{3}}=p_{3}-\mu_{3} \Leftrightarrow p_{3}-\mu_{3}=\lambda \tag{1.3}
\end{align*}
$$

Set (II)

$$
\begin{gather*}
\quad\left(x_{1} x_{2}\right)^{\frac{1}{3}}+x_{3} \geq u \tag{2.1}\\
\lambda \geq 0 \tag{2.2}\\
\lambda\left[u-\left(\left(x_{1} x_{2}\right)^{\frac{1}{3}}+x_{3}\right)\right]=0 \tag{2.3}\\
x_{1} \geq 0 \tag{3.1}\\
x_{2} \geq 0 \tag{3.2}\\
\mu_{1} \geq 0 \tag{3.3}\\
x_{3} \geq 0
\end{gather*} \quad \mu_{2} \geq 0 \quad \mu_{1} x_{1}=0
$$

We have the following possible cases:

- (Interior Solution) $x_{1}, x_{2}, x_{3}>0 \stackrel{(3.1)(3 .),(3 .))}{\Rightarrow} \mu_{1}=\mu_{2}=\mu_{3}=0$

By (1.3), since we are given $p_{i}>0 \quad \forall i=1,2,3$, we get $\lambda=p_{3}>0$
Hence, by (2.3): $u=\left(x_{1} x_{2}\right)^{\frac{1}{3}}+x_{3}$
$\frac{(1.1)}{(1.2)} \rightarrow \frac{x_{2}}{x_{1}}=\frac{p_{1}}{p_{2}}$

From (1.1):
$\frac{p_{1}}{p_{3}}=\frac{1}{3}\left(\frac{x_{2}}{x_{1}^{2}}\right)^{\frac{1}{3}} \Rightarrow x_{1}=\frac{1}{27}\left(\frac{p_{3}^{3}}{p_{1}^{2} p_{2}}\right)$

Thus, $\quad x_{2}=\frac{1}{27}\left(\frac{p_{3}^{3}}{p_{1} p_{2}^{2}}\right)$
Finally: $u=\left(x_{1} x_{2}\right)^{\frac{1}{3}}+x_{3} \Rightarrow x_{3}=u-\frac{p_{3}^{2}}{9 p_{1} p_{2}}$
Hence, a candidate solution is: $\quad h^{1}\left(p_{1}, p_{2}, p_{3}, u\right)=\left(\begin{array}{c}\frac{p_{3}^{3}}{27 p_{1}^{2} p_{2}} \\ \frac{p_{3}^{3}}{27 p_{1} p_{2}^{2}} \\ u-\frac{p_{3}^{2}}{9 p_{1} p_{2}}\end{array}\right)$

- $x_{1}=x_{2}=0, x_{3}>0$

Thus, $\mu_{3}=0$ and by (1.3): $\lambda=p_{3}>0$
Hence, by (2.3): $x_{3}=u$

From (1.1): $\mu_{1}=p_{1}>0$ Similarly, from (1.2): $\mu_{2}=p_{2}>0$
Hence, a candidate solution for the EMP is: $h^{2}\left(p_{1}, p_{2}, p_{3}, u\right)=\left(\begin{array}{l}0 \\ 0 \\ u\end{array}\right)$

- $x_{1}, x_{2}>0, x_{3}=0$

Thus, $\mu_{1}=\mu_{2}=0$ and by (1.3) or (1.2): $\lambda>0$
Hence, by (2.3): $u=\left(x_{1} x_{2}\right)^{\frac{1}{3}}$
$\frac{(1.1)}{(1.2)} \rightarrow \frac{x_{2}}{x_{1}}=\frac{p_{1}}{p_{2}}$
Hence, $x_{1}=\sqrt{\frac{u^{3} p_{2}}{p_{1}}}$ and $x_{2}=\sqrt{\frac{u^{3} p_{1}}{p_{2}}}$
But from (1.1): $\mu_{1}=\frac{3 p_{1}}{p_{3}}\left[\sqrt{\frac{u^{3} p_{2}}{p_{1}}} \sqrt{\frac{u^{3} p_{1}}{p_{2}}}\right]^{-\frac{2}{3}} \sqrt{\frac{u^{3} p_{1}}{p_{2}}}=\sqrt{\frac{u p_{1}}{p_{2}}}>0$. This result clearly violates our earlier premise that $\mu_{1}=0$. Therefore, this case cannot yield a candidate solution ${ }^{2}$.

[^1]Note that we don't need to check the sub-cases of each of the cases (a) $x_{1}=x_{2}=0, x_{3}>0$ and (b) $x_{1}, x_{2}>0, x_{3}=0$ where one of x_{1}, x_{2} is strictly positive while the other being zero for exactly the same reason as in the UMP.

It is easy to verify that, from the two candidate solutions that we found above, the first one yields the lowest level of expenditure. Specifically,

$$
\begin{aligned}
& m\left(h^{1}\left(p_{1}, p_{2}, p_{3}, u\right)\right) \\
& =p_{1} h_{1}^{1}+p_{2} h_{2}^{1}+p_{3} h_{3}^{1} \\
& =p_{3} u-\frac{p_{3}^{2}}{27 p_{1} p_{2}} \\
& <p_{3} u \\
& =p_{1} h_{1}^{2}+p_{2} h_{2}^{2}+p_{3} h_{3}^{2} \\
& =m\left(h^{2}\left(p_{1}, p_{2}, p_{3}, u\right)\right)
\end{aligned}
$$

Finally, the Hicksian demand is given:

$$
h\left(p_{1}, p_{2}, p_{3}, u\right)=\left(\begin{array}{c}
\frac{p_{3}^{3}}{27 p_{1}^{2} p_{2}} \\
\frac{p_{3}^{3}}{27 p_{1} p_{2}^{2}} \\
u-\frac{p_{3}^{2}}{9 p_{1} p_{2}}
\end{array}\right)
$$

The expenditure function was already calculated:

$$
\begin{align*}
& m\left(p_{1}, p_{2}, p_{3}, u\right)=m\left(h\left(p_{1}, p_{2}, p_{3}, u\right)\right) \\
& =p_{1} h_{1}^{1}\left(p_{1}, p_{2}, p_{3}, u\right)+p_{2} h_{2}^{1}\left(p_{1}, p_{2}, p_{3}, u\right)+p_{3} h_{3}^{1}\left(p_{1}, p_{2}, p_{3}, u\right) \tag{E}\\
& =p_{3} u-\frac{p_{3}^{3}}{27 p_{1} p_{2}}
\end{align*}
$$

At the solution points for the UMP and EMP, we can interchange using the following identities:

1. $x(p, y)=h(p, u)=h(p, V(p, y))$

To see this, consider the EMP when the agent is required to achieve at least the utility level corresponding to his indirect utility level from (V) when prices and income are given by (p, y).
We get from (V) for $u=V\left(p_{1}, p_{2}, p_{3}, y\right)$

$$
u=\frac{y}{p_{3}}+\frac{p_{3}^{2}}{27 p_{1} p_{2}}
$$

For this required reservation level of utility, the solution to the EMP will be given:

$$
\begin{aligned}
& h\left(p_{1}, p_{2}, p_{3}, u\right)=\left(\begin{array}{c}
\frac{p_{3}^{3}}{27 p_{1}^{2} p_{2}} \\
\frac{p_{3}^{3}}{27 p_{1} p_{2}^{2}} \\
u-\frac{p_{3}^{3}}{9 p_{1} p_{2}}
\end{array}\right)=\left(\begin{array}{c}
\frac{p_{3}^{2}}{27 p_{1}^{2} p_{2}} \\
\frac{p_{3}^{3}}{27 p_{1} p_{2}^{2}} \\
\left(\frac{y}{p_{3}}+\frac{p_{3}^{2}}{27 p_{1} p_{2}}\right)-\frac{p_{3}^{2}}{9 p_{1} p_{2}}
\end{array}\right) \\
& =\left(\begin{array}{c}
\frac{p_{3}^{3}}{27 p_{1}^{2} p_{2}} \\
\frac{p_{3}^{3}}{27 p_{1} p_{2}^{2}} \\
\frac{y}{p_{3}}-\frac{2 p_{3}^{2}}{27 p_{1} p_{2}}
\end{array}\right)=x\left(p_{1}, p_{2}, p_{3}, y\right)
\end{aligned}
$$

2. $x(p, m(p, u))=h(p, u)$

To see this, consider the UMP when the agent's income is the minimum amount he needs in his EMP in order to achieve at least a utility level u.
We get from (E) that the minimum amount of money required to achieve a reservation level of utility equal to u is given:
$m(p, u)=p_{3} u-\frac{p_{3}^{2}}{27 p_{1} p_{2}}$

When this is the amount of income available for the UMP, the solution to the UMP will be given:

$$
\left.\begin{array}{l}
x\left(p_{1}, p_{2}, p_{3}, m(p, u)\right)=\left(\begin{array}{c}
\frac{p_{3}^{3}}{27 p_{1}^{2} p_{2}} \\
\frac{p_{3}^{3}}{27 p_{1} p_{2}^{2}} \\
\frac{e(p, u)}{p_{3}}-\frac{2 p_{3}^{2}}{27 p_{1} p_{2}}
\end{array}\right)=\left(\begin{array}{c}
\frac{p_{3}^{3}}{27 p_{1}^{2} p_{2}} \\
\frac{p_{3}^{3}}{27 p_{1} p_{2}^{2}} \\
=\binom{\frac{p_{3}^{3}}{27 p_{1}^{2} p_{2}}}{\frac{p_{3}^{3}}{27 p_{1} p_{2}}}-\frac{2 p_{3}^{2}}{27 p_{1} p_{2}}
\end{array}\right)=h\left(p_{1}, p_{2}, p_{3}, u\right) \\
u-\frac{p_{3}^{2}}{9 p_{1} p_{2}}
\end{array}\right) .
$$

3. $m(p, V(p, y))=y$

To see this, consider the EMP when the agent is required to achieve at least the utility level corresponding to his indirect utility level from (V) when prices and income are given by (p, y).
We get from (V) for $u=V\left(p_{1}, p_{2}, p_{3}, y\right): u=\frac{y}{p_{3}}+\frac{p_{3}^{2}}{27 p_{1} p_{2}}$

Now consider the EMP when the agent is required to achieve this as the reservation level of his utility. From (E), the minimum amount of money required to achieve this reservation level of utility is given:
$m(p, u)=p_{3}\left(\frac{y}{p_{3}}+\frac{p_{3}^{2}}{27 p_{1} p_{2}}\right)-\frac{p_{3}^{3}}{27 p_{1} p_{2}}=y$
4. $V(p, m(p, u))=u$

Consider the UMP when the agent's income is the minimum amount he needs in his EMP in order to achieve at least a utility level u.
We get from (E) that the minimum amount of money required to achieve a reservation level of utility equal to u is given:
$m(p, u)=p_{3} u-\frac{p_{3}^{3}}{27 p_{1} p_{2}}$

When this is the amount of income available for the UMP, the solution to the UMP will yield a utility level given by (V):
$V(p, m(p, u))=\frac{m(p, u)}{p_{3}}+\frac{p_{3}^{2}}{27 p_{1} p_{2}}=\frac{1}{p_{3}}\left(p_{3} u-\frac{p_{3}^{3}}{27 p_{1} p_{2}}\right)+\frac{p_{3}^{2}}{27 p_{1} p_{2}}=u$
(B) This involves only algebra and I will leave it to you to verify.
(C) This involves only algebra and I will leave it to you to verify.
(D) Consider the following (unconstrained) minimization problem:

$$
\min _{p_{1}, p_{2}, p_{3}} V\left(p_{1}, p_{2}, p_{3}, \sum_{i=1}^{3} p_{i} x_{i}\right)=\frac{\sum_{i=1}^{3} p_{i} x_{i}}{p_{3}}+\frac{p_{3}^{2}}{27 p_{1} p_{2}}
$$

The first order conditions:
$\frac{\partial V\left(p_{1}, p_{2}, p_{3}, \sum_{i=1}^{3} p_{i} x_{i}\right)}{\partial p_{1}}=0 \Leftrightarrow \frac{x_{1}}{p_{3}}-\frac{p_{3}^{2}}{27 p_{1}^{2} p_{2}}=0 \Leftrightarrow x_{1}=\frac{p_{3}^{3}}{27 p_{1}^{2} p_{2}}$
$\frac{\partial V\left(p_{1}, p_{2}, p_{3}, \sum_{i=1}^{3} p_{i} x_{i}\right)}{\partial p_{2}}=0 \Leftrightarrow \frac{x_{2}}{p_{3}}-\frac{p_{3}^{2}}{27 p_{2}^{2} p_{1}}=0 \Leftrightarrow x_{2}=\frac{p_{3}^{3}}{27 p_{2}^{2} p_{1}}$
$\frac{\partial V\left(p_{1}, p_{2}, p_{3}, \sum_{i=1}^{3} p_{i} x_{i}\right)}{\partial p_{3}}=0 \Leftrightarrow \frac{x_{3} p_{3}-\left(\sum_{i=1}^{3} p_{i} x_{i}\right)}{p_{3}^{2}}-\frac{2 p_{3}}{27 p_{1} p_{2}}=0 \Leftrightarrow p_{1} x_{1}+p_{2} x_{2}=\frac{2 p_{3}^{3}}{27 p_{1} p_{2}}$
(which holds whenever (D.1) and (D.2) do)

The minimized expenditure (i.e. the value function) of the problem is found by plugging the solution into the objective.

$$
\begin{aligned}
& \min _{p_{1}, p_{2}, p_{3}} V\left(p_{1}, p_{2}, p_{3}, \sum_{i=1}^{3} p_{i} x_{i}\right) \\
& =\frac{\sum_{i=1}^{3} p_{i} x_{i}}{p_{3}}+\frac{p_{3}^{2}}{27 p_{1} p_{2}} \\
& =\frac{p_{1}}{p_{3}} x_{1}+\frac{p_{2}}{p_{3}} x_{2}+x_{3}+\frac{p_{3}^{2}}{27 p_{1} p_{2}} \\
& =x_{3}+\frac{p_{1}}{p_{3}}\left(\frac{p_{3}^{3}}{27 p_{1}^{2} p_{2}}\right)+\frac{p_{2}}{p_{3}}\left(\frac{p_{3}^{3}}{27 p_{1} p_{2}^{2}}\right)+\frac{p_{3}^{2}}{27 p_{1} p_{2}} \\
& =x_{3}+\frac{p_{3}^{2}}{27 p_{1} p_{2}}+\frac{p_{3}^{2}}{27 p_{1} p_{2}}+\frac{p_{3}^{2}}{27 p_{1} p_{2}} \\
& =x_{3}+\frac{p_{3}^{2}}{9 p_{1} p_{2}} \\
& =x_{3}+\left(\frac{p_{3}}{3 \sqrt[3]{p_{1}^{2} p_{2}}}\right)\left(\frac{p_{3}}{3 \sqrt[3]{p_{1} p_{2}^{2}}}\right) \\
& =x_{3}+\left[\left(\frac{p_{3}^{3}}{27 p_{1}^{2} p_{2}}\right)\left(\frac{p_{3}^{3}}{27 p_{1} p_{2}^{2}}\right)\right] \\
& =x_{3}+\left(x_{1} x_{2}\right)^{\frac{1}{3}} \\
& =U\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

Consider now the following (constrained) minimization problem:

$$
\begin{aligned}
& \min _{\left(p_{1}, p_{2}, p_{3}\right)} u \\
& \text { s.t. } \\
& e(p, u)=p_{3} u-\frac{p_{3}^{3}}{27 p_{1} p_{2}} \geq p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3} \\
& p_{1}, p_{2}, p_{3} \geq 0
\end{aligned}
$$

which is, of course, equivalent to:

$$
\max _{\left(p_{1}, p_{2}, p_{3}\right)}-u
$$

s.t.

$$
\begin{aligned}
& -\left(p_{3} u-\frac{p_{3}^{3}}{27 p_{1} p_{2}}\right) \leq-p_{1} x_{1}-p_{2} x_{2}-p_{3} x_{3} \\
& p_{1}, p_{2}, p_{3} \geq 0
\end{aligned}
$$

Note first that we are looking for a solution to this problem, which ought to be valid for all $p_{1}, p_{2}, p_{3} \geq 0$. In this respect, this problem differs substantially from the constrained optimization problems that we have seen thus far in that we are no longer allowed to consider cases for our choice variables p_{1}, p_{2}, p_{3}. In other words, coming up with a candidate solution that requires, for example $p_{1}, p_{2}, p_{3}>0$ but is not valid when $p_{1}, p_{2}>0, p_{3}=0$ will not do here. We need to fnd a solution that will operate as an identity in the sense that will be valid across all interior and corner cases as long as $p_{1}, p_{2}, p_{3} \geq 0$.

The Lagrangean:
$L\left(p_{1}, p_{2}, p_{3} ; \lambda, \mu_{1}, \mu_{2}, \mu_{3}\right)=-u+\lambda\left[-p_{1} x_{1}-p_{2} x_{2}-p_{3} x_{3}+\left(p_{3} u-\frac{p_{3}^{3}}{27 p_{1} p_{2}}\right)\right]$ $+\mu_{1}\left(p_{1}-0\right)+\mu_{2}\left(p_{2}-0\right)+\mu_{3}\left(p_{3}-0\right)$

The first-order conditions:

Set (I)

$$
\begin{align*}
& \frac{\partial L\left(p ; \lambda, \mu_{1}, \mu_{2}, \mu_{3}\right)}{\partial p_{1}}=0 \Leftrightarrow \frac{\lambda p_{3}^{3}}{27 p_{1}^{2} p_{2}}=\lambda x_{1}-\mu_{1} \tag{D.I}\\
& \frac{\partial L\left(p ; \lambda, \mu_{1}, \mu_{2}, \mu_{3}\right)}{\partial p_{2}}=0 \Leftrightarrow \frac{\lambda p_{3}^{3}}{27 p_{1} p_{2}^{2}}=\lambda x_{2}-\mu_{2} \tag{D.II}\\
& \frac{\partial L\left(p ; \lambda, \mu_{1}, \mu_{2}, \mu_{3}\right)}{\partial p_{3}}=0 \Leftrightarrow \lambda u-\frac{3 \lambda p_{3}^{2}}{27 p_{1} p_{2}}=\lambda x_{3}-\mu_{3} \tag{D.III}
\end{align*}
$$

$\underline{\text { Set (II) }}$

$$
\begin{align*}
& \left(p_{3} u-\frac{p_{3}^{3}}{27 p_{1} p_{2}}\right) \geq p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3} \tag{D.2.1}\\
& \lambda \geq 0 \tag{D.2.2}\\
& \lambda\left[p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}-\left(p_{3} u-\frac{p_{3}^{3}}{27 p_{1} p_{2}}\right)_{3}\right]=0 \tag{D.2.3}\\
& p_{1} \geq 0 \tag{D.3.1}\\
& \mu_{1} \geq 0 \tag{D.3.2}
\end{align*} \mu_{1} p_{1}=0 .
$$

Again, we need a solution, which is to work for any $p_{1}, p_{2}, p_{3} \geq 0$. Therefore, it ought to work also when we have an interior solution i.e. $p_{1}, p_{2}, p_{3}>0$
But $p_{1}, p_{2}, p_{3}>0 \stackrel{(D .3 .1),(D .3 .2),(D .3 .3)}{\Rightarrow} \mu_{1}=\mu_{2}=\mu_{3}=0$.
Therefore, in our solution, we require: $\mu_{1}=\mu_{2}=\mu_{3}=0$

Similarly, we must have $\lambda>0$ in our solution.
For if we don't, we leave p_{1}, p_{2}, p_{3} completely free relative to x_{1}, x_{2} and this will create problems in the case where $p_{1}, p_{2}>0 \quad p_{3}=0$.
Given that $\mu_{1}=\mu_{2}=\mu_{3}=0$, observe that $\lambda=0$ has all equations but (D.2.1) satisfied trivially irrespectively of the values of p_{1}, p_{2}, p_{3} and x_{1}, x_{2}, x_{3}. To satisfy all conditions, we only need to worry about (D.2.1).

For $p_{1}, p_{2}>0 \quad p_{3}=0$, this gives: $\quad p_{1} x_{1}+p_{2} x_{2} \leq 0$
which cannot be satisfied for any $p_{1}, p_{2}>0$ unless $x_{1}=x_{2}=0$. But recall that the expenditure function $m(p, u)$ was derived as the value function of the EMP which does admitted only a strictly interior solution where $x_{1}, x_{2}, x_{3}>0$. Hence, we cannot have $x_{1}=x_{2}=0$ and consequently we cannot have $\lambda=0$.

- Take therefore $\mu_{1}=\mu_{2}=\mu_{3}=0$ and $\lambda>0$
$\frac{(D . I)}{(D . I I)} \rightarrow \frac{x_{2}}{x_{1}}=\frac{p_{1}}{p_{2}}$

From (D.2.3) we get:
$p_{3} u-\frac{p_{3}^{3}}{27 p_{1} p_{2}}=p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3} \Rightarrow$
$u=\frac{p_{1}}{p_{3}} x_{1}+\frac{p_{2}}{p_{3}} x_{2}+x_{3}+\frac{p_{3}^{3}}{27 p_{1} p_{2}}$
Proceed now as in the derivation of the result for the previous minimization problem (see $\mathrm{pp} .11)$ to derive the functional form of u :
$u=\left(x_{1} x_{2}\right)^{\frac{1}{3}}+x_{3}$
(D) This involves only algebra (albeit quite tedious in showing concavity of $m(p, u)$ and convexity of $V(p, y)$ since one needs to establish the definiteness of the $4 x 4$ Hessian matrices) and I will leave it to you to verify.
(E) This involves only algebra and I will leave it to you to verify.
(F) This involves only algebra and I will leave it to you to verify. Note, however, that there are some typos in the text of this part of the problem set. The given relations should read:
(pp. 1)
$\frac{\partial x_{i}(p, y)}{\partial p_{j}}=\left.\frac{\partial h_{i}(p, u)}{\partial p_{j}}\right|_{u=V(p, y)}+\left.\frac{\partial h_{i}(p, u)}{\partial u}\right|_{u=V(p, y)} \frac{\partial V(p, y)}{\partial p_{j}}$
$\frac{\partial x_{i}(p, y)}{\partial p_{j}}=\left.\frac{\partial h_{i}(p, u)}{\partial u}\right|_{u=V(p, y)} \frac{\partial V(p, y)}{\partial y}$
(pp.2)

$$
\begin{aligned}
& \frac{\partial x_{i}(p, y)}{\partial p_{j}}=\left.\frac{\partial h_{i}(p, u)}{\partial p_{j}}\right|_{u=V(p, y)}+\frac{\frac{\partial x_{i}(p, y)}{\partial y}}{\frac{\partial V(p, y)}{\partial y}} \frac{\partial V(p, y)}{\partial p_{j}} \\
& \frac{\partial x_{i}(p, y)}{\partial p_{j}}=\left.\frac{\partial h_{i}(p, u)}{\partial p_{j}}\right|_{u=V(p, y)}-x_{i}(p, y) \frac{\partial x_{i}(p, y)}{\partial y} \\
& \frac{\partial x_{i}(p, y)}{\partial p_{j}}=\left.\frac{\partial^{2} m(p, u)}{\partial p_{i} \partial p_{j}}\right|_{u=V(p, y)}-x_{i}(p, y) \frac{\partial x_{i}(p, y)}{\partial y}
\end{aligned}
$$

Problem 2

(A) Consider the profit-maximization problem (PMP) ${ }^{3}$:

$$
\max _{\left(z_{1}, z_{2}, z_{3}\right)} p z=\sum_{i=1}^{3} p_{i} z_{i}
$$

s.t.
$z_{1} \leq\left(z_{2} z_{3}^{3}\right)^{\frac{1}{5}} \quad z_{2}, z_{3} \leq 0$

The Lagrangean:
$L\left(z_{1}, z_{2}, z_{3} ; \lambda, \mu_{2}, \mu_{3}\right)=\sum_{i=1}^{3} p_{i} z_{i}+\lambda\left[\left(z_{2} z_{3}^{3}\right)^{\frac{1}{5}}-z_{1}\right]+\mu_{2}\left(0-z_{2}\right)+\mu_{3}\left(0-z_{3}\right)$
The first-order conditions:
Set (I)

$$
\begin{equation*}
\frac{\partial L\left(z ; \lambda, \mu_{2}, \mu_{3}\right)}{\partial z_{1}}=0 \Leftrightarrow \lambda=p_{1} \tag{1.1}
\end{equation*}
$$

$\frac{\partial L\left(z ; \lambda, \mu_{2}, \mu_{3}\right)}{\partial z_{2}}=0 \Leftrightarrow=p_{2}+\frac{\lambda}{5}\left(z_{2} z_{3}^{3}\right)^{-\frac{4}{5}} z_{3}^{3}=\mu_{2}$
$\frac{\partial L\left(z ; \lambda, \mu_{2}, \mu_{3}\right)}{\partial z_{3}}=0 \Leftrightarrow p_{3}+\frac{3 \lambda}{5}\left(z_{2} z_{3}^{3}\right)^{-\frac{4}{5}} z_{2} z_{3}^{2}=\mu_{3}$

[^2]Set (II)

$$
\begin{gather*}
z_{1} \leq\left(z_{2} z_{3}^{3}\right)^{\frac{1}{5}} \tag{2.1}\\
\lambda\left[z_{1}-\left(z_{2} z_{3}^{3}\right)^{\frac{1}{5}}\right]=0 \tag{2.2}\\
z_{2} \leq 0 \tag{2.3}\\
z_{3} \leq 0 \quad \mu_{2} \geq 0 \quad \mu_{2} z_{2}=0 \tag{3.1}\\
\mu_{3} \geq 0 \quad \mu_{3} z_{3}=0 \tag{3.2}
\end{gather*}
$$

From (1.1), it is clear that $\lambda>0$. Therefore, from (2.3): $z_{1}=\left(z_{2} z_{3}^{3}\right)^{\frac{1}{5}}$
Note that an obvious point that satisfies all of our first order conditions is the point $z=\left(z_{1}, z_{2}, z_{3}\right)=(0,0,0)$ with $\mu_{2}=p_{2}>0, \mu_{3}=p_{3}>0$. However, not producing nothing at all results in zero profit. Consequently, any other vector z that generates a positive amount of profit would be preferred to the zero-point and, thus, this point cannot be optimal.
For exactly the same reason, any vector z involving $z_{i}=0$ for either of $i=2,3$ cannot be optimal as it gives zero output (i.e. zero revenues from sales and non-positive profit).

We have only the following case to consider:

- (Interior Solution) $z_{2}, z_{3}<0 \stackrel{(3.1),(3.2)}{\Rightarrow} \mu_{2}=\mu_{3}=0$
$\frac{(1.2)}{(1.3)} \rightarrow \frac{z_{3}}{3 z_{2}}=\frac{p_{2}}{p_{3}}$
From (1.2) and (1.1):
$\frac{5 p_{2}}{p_{1}}=\left(z_{2} z_{3}^{3}\right)^{-\frac{4}{5}} z_{3}^{3}=\left(\frac{p_{3}}{3 p_{2}} z_{3}^{4}\right)^{-\frac{4}{5}} z_{3}^{3} \Rightarrow z_{3}=\left(\frac{p_{3}}{3 p_{2}}\right)^{-4}\left(\frac{p_{1}}{5 p_{2}}\right)^{5}=\frac{3^{4} p_{1}^{5}}{5^{5} p_{3}^{4} p_{2}}$
And
$z_{2}=\frac{3^{3} p_{1}^{5}}{5^{5} p_{3}^{3} p_{2}^{2}} \quad z_{1}=\left[\left(\frac{3^{3} p_{1}^{5}}{5^{5} p_{3}^{3} p_{2}^{2}}\right)\left(\frac{3^{4} p_{1}^{5}}{5^{5} p_{3}^{4} p_{2}}\right)^{3}\right]^{\frac{1}{5}}=\left(\frac{3^{15} p_{1}^{20}}{5^{20} p_{3}^{15} p_{2}^{5}}\right)^{\frac{1}{5}}=\frac{3^{3} p_{1}^{4}}{5^{4} p_{3}^{3} p_{2}}$

Therefore
$z\left(p_{1}, p_{2}, p_{3}\right)=\left(z_{1}(p), z_{2}(p), z_{3}(p)\right)=\left(\frac{3^{3} p_{1}^{4}}{5^{4} p_{3}^{3} p_{2}}, \frac{3^{3} p_{1}^{5}}{5^{5} p_{3}^{3} p_{2}^{2}}, \frac{3^{4} p_{1}^{5}}{5^{5} p_{3}^{4} p_{2}}\right)$
The profit function is given:
$\pi(p)=\sum_{i=1}^{3} p_{i} z_{i}(p)=\frac{3^{3} p_{1}^{5}}{5^{4} p_{3}^{3} p_{2}}-\frac{3^{3} p_{1}^{5}}{5^{4} p_{3}^{3} p_{2}}-\frac{3^{4} p_{1}^{5}}{5^{4} p_{3}^{3} p_{2}}=\frac{3^{4} p_{1}^{5}}{5^{4} p_{3}^{3} p_{2}}$
I will leave to you to verify that $z_{i}(p)=\frac{\partial \pi(p)}{\partial p_{i}} \quad \forall i \in\{1,2,3\}$ as well as that $\pi(p)$ is convex in p (the latter exercise will be rather tedious as you need to determine the definiteness of a $3 x 3$ Hessian matrix).
(B) The free disposal property can be written as follows: $z=\left(z_{1}, z_{2}, z_{3}\right) \in T \Rightarrow\left\{\tilde{z} \in R^{3}: \tilde{z}_{1} \leq z_{1} \wedge \tilde{z}_{2} \leq z_{2} \wedge \tilde{z}_{3} \leq z_{3}\right\} \subseteq T$

We are given that the production possibility set (PPS): $T=\left\{z \in R^{3}: p z \leq \pi(p) \quad \forall p \gg 0\right\}$ is closed.
This means that it ought to include its boundary: $\partial T=\left\{z \in R^{3}: p z=\pi(p) \quad \forall p \gg 0\right\}$
Consider this boundary set. It consists of those points z that satisfy the relation:
$p z=\sum_{i=1}^{3} p_{i} z_{i}=\pi(p) \quad \forall p \gg 0$

Note, however, that since this relation is to hold for all strictly positive price vectors, it is really an identity relation with respect to p. Therefore, if we consider the gradient of each side of (I) with respect to p, the two sides should agree ${ }^{4}$.
i.e.

$$
\begin{array}{ll}
p z=\sum_{i=1}^{3} p_{i} z_{i}=\pi(p) & \forall p \gg 0 \Rightarrow \\
\nabla_{p} p z=\nabla_{p} \pi(p) & \forall p \gg 0 \Rightarrow \\
\left(\frac{\partial \sum_{i=1}^{3} p_{i} z_{i}}{\partial p_{i}}\right)_{i=1}^{3}=\left(\frac{\partial \pi(p)}{\partial p_{i}}\right)_{i=1}^{3} & \forall p \gg 0 \Rightarrow \\
\frac{\partial \sum_{i=1}^{3} p_{i} z_{i}}{\partial p_{i}}=\frac{\partial \pi(p)}{\partial p_{i}} & \forall i \in\{1,2,3\}
\end{array} \forall p \gg 00
$$

In other words, we get: $\quad z_{i}=\frac{\partial \pi(p)}{\partial p_{i}} \quad \forall i \in\{1,2,3\}$ and this ought to be a necessary condition, if (I) is to hold as an identity for all price vectors $p \gg 0$.

Regarding the given profit function, we have:
$z_{1}=\frac{2 p_{1}}{p_{3}} \quad z_{2}=\frac{4 p_{2}}{p_{3}} \quad z_{3}=-\frac{\left(p_{1}^{2}+2 p_{2}^{2}\right)}{p_{3}^{2}}$
Note that (I.1) is required to hold as a system of equations, for all $p \gg 0$. Therefore, it defines the following inter-relation between the elements of the supply vector z :
$z_{1}, z_{2}>0 \wedge z_{3}=-\left(\frac{z_{1}^{2}}{4}+\frac{z_{2}^{2}}{8}\right) \Leftrightarrow 8 z_{3}=-\left(2 z_{1}^{2}+z_{2}^{2}\right)$

[^3]We are now in a position of being able to write the boundary set for the PPS under examination.

$$
\begin{aligned}
& \partial T=\left\{z \in R^{3}: p z=\pi(p) \forall p \gg 0\right\} \\
& =\left\{z \in R^{3}: z_{1}>0, z_{2}>0,8 z_{3}=-\left(2 z_{1}^{2}+z_{2}^{2}\right)\right\} \\
& =\left\{\left(z_{1}, z_{2},-\left(2 z_{1}^{2}+z_{2}^{2}\right)\right): z_{1}, z_{2} \in R_{+}^{*}\right\}
\end{aligned}
$$

Recall now that the PPS has to satisfy the free disposal property. Hence, it will consist of the boundary set ∂T and all vectors that lie to the south-west of any given point on this boundary. i.e.

$$
\begin{aligned}
& T=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in R^{3}: z_{1}>0, z_{2}>0,8 z_{3} \leq-\left(2 z_{1}^{2}+z_{2}^{2}\right)\right\} \text { or } \\
& T=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in R^{3}: z_{1}>0, z_{2}>0,2 z_{1}^{2}+z_{2}^{2} \leq-8 z_{3}\right\}
\end{aligned}
$$

Notes:

- To complete the derivation of the production possibility set T, you should verify that the set given here is convex. This is quite straight forward as it suffices to show that the boundary set is concave.
- The problem also asks for us to verify that $\pi(p)=\frac{\left(p_{1}^{2}+2 p_{2}^{2}\right)}{p_{3}}$ is indeed the profit function associated with this production possibility set. This calls merely for you to repeat part (A) of the problem using $T=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in R^{3}: z_{1}>0, z_{2}>0,2 z_{1}^{2}+z_{2}^{2} \leq-8 z_{3}\right\}$ as your production possibility set. I will, thus, leave it to you to show that this actually works ${ }^{5}$.
${ }^{5}$ It would be again clear from the FOC's on the Lagrangean that $\lambda>0$. Thus: $2 z_{1}^{2}+z_{2}^{2}=-8 z_{3}$ An obvious point, again, that satisfies all of the FOC's is the point $z=\left(z_{1}, z_{2}, z_{3}\right)=(0,0,0)$ with $\mu_{1}=p_{1}>0, \mu_{2}=p_{2}>0$. It is ruled out, though, for exactly the same reasoning as in part (A). However, here we cannot rule out a priori any vector z involving $z_{i}=0$ for either of $i=1,2$ as long as it is not for both, since such a vector does not necessarily give zero total output (as was the case in part (A)). For $z_{1}=0, z_{2}>0$, the candidate solution is $z^{1}=\left(z_{1}, z_{2}, z_{3}\right)=\left(0, \frac{4 p_{2}}{p_{3}},-\frac{2 p_{2}^{2}}{p_{3}^{2}}\right)$. Similarly, $z_{1}>0, z_{2}=0$ gives $z^{2}=\left(\frac{2 p_{1}}{p_{3}}, 0,-\frac{p_{1}^{2}}{p_{3}^{2}}\right)$. The former gives a profit of $\frac{2 p_{2}^{2}}{p_{3}}$ while the latter gives $\frac{p_{1}^{2}}{p_{3}}$. Neither beats the interior solution's profit $\frac{p_{1}^{2}+2 p_{2}^{2}}{p_{3}}$.

[^0]: ${ }^{1}$ One would reach the same conclusion by noticing instead that from (1.2): $\mu_{2}=\frac{p_{2}}{p_{3}}>0$.

[^1]: ${ }^{2}$ One would reach the same conclusion by solving instead for noticing instead for μ_{2} from (1.2).

[^2]: ${ }^{3}$ Note that only the two input variables z_{2}, z_{3} are constrained (to be non-positive) in this problem.

[^3]: ${ }^{4}$ Essentially, I am using the following argument. Let $f(x)=g(x) \quad \forall x \in \operatorname{domf} \cap \operatorname{domg} \quad$ (I) Then, clearly $\left.\left.f\right|_{\text {domf } \cap \text { domg }} \equiv g\right|_{\text {domf } \cap \text { domg }}$ and, consequently, $\left.\left.f^{\prime}\right|_{\text {domf } \cap \text { domg }} \equiv g^{\prime}\right|_{\text {domf } \cap \text { domg }}$. In other words, (I) implies $f^{\prime}(x)=g^{\prime}(x) \quad \forall x \in \operatorname{domf} \cap \operatorname{domg}$.

