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Problem Set 2 
Suggested Solutions 

 
1. 
Following the notation in Appendix A.2 of D. McFadden �Definite Quadratic Forms 
Subject to Constraints� in M. Fuss and D. McFadden Production Economics, Vol. 1, we 
have for the (n+m)x(n+m) Hessian matrix of the Lagrangean1: 
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1 As you will notice from the proof that follows, there was a typo in the question. pxL ,  was meant to be the 

Hessian of the Lagrangean for which a more appropriate notation is LD 2 . My true apologies for any 
inconvenience and frustration this might have caused you in attempting this question. 



Econ103-Fall03  Prepared by: Theo Diasakos 

 2

Consider that the n m×  matrix 

1

1 1

1

. .

.

.

. .

m

x

m

n n

g g
x x

G

g g
x x

 ∂ ∂
 ∂ ∂ 
 

=  
 
 ∂ ∂ 

∂ ∂  

 does not have maximal rank: 

xrank G m< .  
Then its columns are linearly dependent. Hence, there will be at least one column, say 
column j, that can be expressed as a linear combination of the other 1m −  columns. 
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At the critical point ( )px, , we have:  
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Using the above, substitute for the (n+j)th row and column of the Hessian matrix.   
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But, by its definition, at the critical point ( )px, , we have:  
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Consequently, evaluated at the point ( )px, , the Hessian matrix of the Lagrangean can be 
written as:  
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This matrix has zero determinant because its (n+j)th row (column) is a linear 
combination of the rest (n+m-1) rows (columns).    
 
Note: 
The importance of this result is explained in Question 5/Part (b) below (pp. 12). In the 
Lagrange theorem we require that the Jacobian matrix of the constraints xGDG =  has 
full rank (i.e. full column rank since we always consider the constraints to be less that the 
choice variables nk ≤  in these problems). This requirement is called the Non-
Degeneracy Condition (NDGC) and is needed in the proof of the theorem to ensure the 
matrix 

)(nxm
xG  has an invertible (mxm) sub-matrix so that the vector p of Lagrangean 

multipliers in the first order condition that defines the LCP:  
 

0=+ pGF xx  
indeed exists.  
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2. Consider the Hessian of the given function: 
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For f to be concave, a necessary and sufficient condition is for the Hessian to be negative 
definite.  
The leading principal minors of 2D f  are given: 

1 2M a=  

( )2
2

2 2
2

2 2
a c

M ab c
c b

= = −  

We require  
2 20, 0, 0, 0, ,a ab c d R a b ab c d R< − > ∈ ⇔ < < > ∈    (I) 

 
Note: 
Recall from Problem Set 1/Question 4 that a necessary condition for a square, symmetric 
real matrix to be negative definite is for its diagonal elements to be all negative. This is 
clearly satisfied by (I). 
 
 
3. Consider some [ ]0,1λ ∈  and any , nx y D R∈ ⊆ .  
By D being convex, ( )1x y Dλ λ+ − ∈ . 
The following shows that :f D R→  is indeed convex. 
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Note that the third line uses the fact that each function :if D R→  is bounded on D. 
Therefore, since Dx ∈∀ , ( )xfi  is some real number for each function ( ).if ,  

( )( )sup 1i
i

f x yλ λ+ −  exists. Let it correspond to some :if D R→  for some i I∈ . 

The fourth line uses the fact that all functions : ,if D R i I→ ∈  (and, hence :if D R→  
also) are convex. 
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With respect to the function g, an attempt towards a similar proof breaks down on the 
fifth line as the following shows. This function cannot be convex unless ( )inf ii

f x  gives 

the same function * :
i

f D R→  over all x D∈  - in which case, the sign of the fifth line 
below becomes an equality and the convexity proof holds.  
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Note again that the third line uses the fact that any function :if D R→  is bounded on D. 

Therefore, ( )( )inf 1ii
f x yλ λ+ −  exists and let it correspond to some * :

i
f D R→  for 

some *i I∈ . 
The fourth line uses the fact that all functions : ,if D R i I→ ∈  (and, hence * :
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b. In this problem we have T c-type and T x-type choice variables, T equality 
constraints and 2T non-negativity constraints. Let:  

( ) xxcxcg −+= 1111
1 ,  and ( ) ( )11 ,, −− −+= jjjjjj

j xfxcxxcg     for 2,...,j T= .  

We need to employ 3T Lagrangean multipliers: T
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Set II 
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Note that the sets of equations (1) and (2) above define a 2Tx2T system of equations. 
 
 

c. For the sufficiency conditions see the theorem of the second-order conditions 
described in part (c) of the next question.  

Note, however, that, in this setting, in the case where the function f is linear then, because 
all of the equality constraints are linear in the choice variables TT xxcc ,..,,,.., 11 , it suffices 

for the objective function  ( ) ( )
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b. The Weierstrass Theorem:  
Let nD R⊆  be a compact set and :u D R→  a continuous function on D.  
Then u attains both a maximum and a minimum on D.  
That is,  ( ) ( ) ( ), :q q D u q u q u q∃ ∈ ≤ ≤  for any q D∈  

 
 
 
The consumption set ( ) ( ) ( ){ }IqqpqqpRqqRD ≤+∈∩= + 222111

2
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below by the point ( )0,0  and above by the line defined by the two points 
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Iqpqpqq <⇒>⇒>  and similarly if one starts with 

some ii qq ~< . Which shows that for each pair 2,1: =ipi  the two points ( ) ( )21
~,0,0,~ qq  

given above are unique. 
 

The set D is clearly closed (see Fig. 5.I � for a given pair of functions 2,1: =ipi  the 
budget set D is the triangular area shown which is bounded and, by including its border 
lines, also closed). 

 
 

 

2q  

1q
( )1

I
p q

( )2

I
p q

 

Fig. 5.I 
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The Lagrange Theorem:  

Let : nu R R→  and :i ng R R→  with 1,2,..,i k=  be 1C  functions.  

Suppose that *q  is a local maximum or minimum of u on the set   

( ){ }: 0, 1,..,iD U q g q i k= ∩ = =  where nU R⊂  is open.  
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In this example, we have three constraints:  
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The Lagrangean function is given: 
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The first order conditions 
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Note that the Lagrange theorem gives only necessary conditions for the existence of a 

maximum. In other words, we claim that, if a (possibly local) maximum exists, it must 

satisfy equations (1)-(5).  
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For the required conditions of the Lagrangean theorem to apply: 

(1) The condition ( )( )*rank Dg q k=  is called the constraint qualification 

condition. It plays a central role in the proof of the Lagrange theorem (in 

particular, it ensures that the Jacobian matrix ( )*

k n

Dg q
×

 contains an invertible 

k k×  sub-matrix, which may be used to define the vector of Lagrangean 

multipliers µ ). This is obvious by considering the fist-order condition (L) in 

matrix form:  

( ) ( ) ( ) ( )* * * * * * * *; 0 ;q q q qL q g g L qµ π µ π µ µ+ = ⇔ = −  

For a vector of Lagrange multipliers *µ  to exist such that (L) holds, there must 

exist some k k×  sub-matrix of ( )*
q
n k

g q
×

 which is invertible. 

More importantly, it turns out that if the constraint qualification condition is violated, 

then the conclusion of the theorem (i.e. equation (L)) may also fail. That is, if *q  is a 

local maximum at which ( )( )*rank Dg q k< , then there need not exist a vector kRµ ∈  

such that ( ) ( )* *
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In this example, we have  

( ) ( ) ( )
( ) ( ) 








+′
+′

=



















∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
10
01

22222

11111

2

3

2

2

2

1
1

3

1

2

1

1

qpqqp
qpqqp

q
g

q
g

q
g

q
g

q
g

q
g

qDg   

This is a 2x3 matrix and, therefore, ( )( ) 2≤qDgrank . Moreover, since it contains the 

non-singular sub-matrix 
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01

, we have ( )( ) 2=qDgrank  and the condition is satisfied 

at any point q (including, of course *q ). 
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(2) Both functions 2, :u g R R→  are 1C  

(3) Since we do not allow the agent to consume negative amounts of any of the two 

commodities, 2U R+=  which is an open subset of 2R  

 

c. For sufficiency, we need to consider the second-order conditions for the problems 

of optimization under equality constraints. Recall our notation regarding the 

Langrangean function: 

( ) ( ) ( )∑
=

+=
3

1
212132121 ,,,;

k

k
k qqgqquqqL µµµµ  

We will also assume in this part that both , : 1,..,iu g i k=  are 2C  functions. 

 

Theorem: 

Suppose there exist points * *, kq D Rµ∈ ∈  such that: 

1. ( )( )*rank Dg q k=  and  

2. ( ) ( )* * *

1
0

k
i

i
i

Du q Dg qµ
=

+ =∑  

Define ( ) ( ){ }* *: 0nZ q z R Dg q z= ∈ =  and let ( )2 ;D L q µ  denote the n n×  matrix of the 

second derivative of ( );L µ⋅  with respect to q: ( ) ( ) ( )2 2 2

1
;

k
i

i
i

D L q D u q D g qµ µ
=

= +∑ .  

Denote  by 2 *D L  the n n×  matrix ( ) ( ) ( )2 * * 2 * * 2 *

1
;

k
i

i
i

D L q D u q D g qµ µ
=

= +∑ .  

Then: 

• If 2 * 0Tz D L z <  for all ( )*z Z q∈  with 0z ≠ , then *q  is a strict local maximum of 

u on D. 

• If 2 * 0Tz D L z >  for all ( )*z Z q∈  with 0z ≠ , then *q  is a strict local minimum of 

u on D. 
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Note that the sufficient condition for local maximum (minimum) corresponds to the 

quadratic form 2 *Tz D L z  being negative (positive) definite subject to the constraint 

( )*Dg q  and, thus, to the symmetric matrix 2 *D L  (which is the Hessian matrix of the 

Lagrangean function evaluated at the critical point ( )* *;q µ ) being negative (positive) 

definite subject to the constraint ( )*Dg q . In other words, the Lagrangean function must 

be negative (positive) definite subject to the constraint ( )*Dg q , in the neighborhood of 

the critical point ( )* *,q µ . 

 

To be able to make use of this theorem, we need to recall our notation from PS1/Question 

2. In that question we saw that the definiteness of a symmetric n n×  matrix A can be 

completely characterized in terms of its sub-matrices. We will now examine a related 

question: the characterization of the definiteness of A on only the set [ ]0 : 0z Bz≠ =  

where B is a k n×  matrix of rank k.  

Let ( )1 2, ,.., nπ π π π=  a permutation of the integers { }1,2,...,n  and Π  the set of all 

permutations of the integers { }1,2,...,n . Denote by Aπ  the symmetric nxn matrix 
obtained by applying the permutation π  to both the rows and the columns of A: 

1 1 1 2 1

1 2

.

. .

. .
.

n

n n n n

a a a

A

a a a

π π π π π π

π

π π π π π π

 
 
 =  
 
  

 

Let also kBπ  denote the k n×  matrix obtained by applying the permutation π  to only the 

columns of B: 

 

1 2

1 2

1 1 1.

. .

. .
.

n

n

k

k k k

b b b

B

b b b

π π π

π

π π π

 
 
 =  
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In an obvious extension of this notation, lAπ  will be the l l×  sub-matrix obtained from 

Aπ  by retaining only the first l rows and l columns of Aπ . Similarly, klBπ  will denote the 

k l×  sub-matrix obtained from kBπ  by retaining only the first l columns of kBπ .  

 

Denote also by lA  the sub-matrix 

11 12 1

1 2

.
. .
. .

.

l

l

l l ll

a a a

A

a a a

 
 
 =
 
 
 

. Similarly, denote by klB  the 

sub-matrix 

11 12 1

1 2

.
. .
. .

.

l

kl

k k kl

b b b

B

b b b

 
 
 =
 
 
 

.  

Finally, given any { }1,..,l n∈ , let lC  the ( ) ( )k l k l+ × +  matrix obtained by �bordering� 

the sub-matrix lA  by the sub-matrix klB  in the following manner: 

11 1

1

11 1 11 1

1 1

0 . 0 .
.

0 0 . 0

.
.

l

k kl k kl
l T

kl l k l

l kl l ll

b b

B b b
C

B A b b a a

b b a a

 
 
 
  

= =   
   

 
 
  

 

 

 

 

 

 

 

 

 

 



Econ103-Fall03  Prepared by: Theo Diasakos 

 16

Theorem23: 

Let A be a symmetric n n×  matrix and B a k n×  matrix such that 0kB ≠ . Then, 

1. 0Tz Az ≥  for all z such that 0Bz =  if and only if and only if ( )1 0k
rCπ− ≥  for all 

( )1,..,r k n∈ +  and for all π ∈Π . 

2. 0Tz Az ≤  for all z such that 0Bz =  if and only if and only if ( )1 0r
rCπ− ≥  for all 

( )1,..,r k n∈ +  and for all π ∈Π . 

3. 0Tz Az >  for every z such that 0Bz =  if and only if and only if ( )1 0k
rC− >  for 

all ( )1,..,r k n∈ + . 

4. 0Tz Az <  for every z such that 0Bz =  if and only if and only if ( )1 0r
rC− >  for 

all ( )1,..,r k n∈ + . 
 
 
In the Lagrangean applications we need to consider two different cases for applying the 
theorem above: 

1. When all of our constraints in the vector ( )qg  are equality constraints then we 
take: 2 *A D L=  and ( )*B Dg q= . The matrices rC  are called the bordered 
Hessians since they are constructed by bordering an r r×  sub-matrix of the 
Hessian 2 *D L , with the terms obtained from the matrix ( )*Dg q .  

2. When we also have inequality constraints within the vector ( )qg , then for the 
examination of the second order conditions we only consider those constraints 
that are actually binding at the critical point *q  under study. Let ( )*qg B  the set of 
binding constraints at *q . Now take: 2 *A D L=  but ( )*qDgB B=  

 
 
 
By inspection of the objective function of our example, we see that neither of the non-
negativity constraints 0,0 21 ≥≥ qq  can be binding at an optimal point. Hence, 

1=k and r can only take the value 2.  
 
 
 

                                                 
2 Note the difference between parts 1 and 3 on the one hand and parts 2 and 4 on the other. In parts 1 and 3, 
the term ( )1−  is raised to the fixed power k, so that the signs of the determinants rCπ  and rC  are 

required to be all the same. In parts 2 and 4, this term is raised to the power r, so that the signs of these 
determinants must alternate.   
3 Note also that this theorem essentially claims that the definiteness of the matrix A subject to the constraint 
B is given by the definiteness of the bordered matrix C.  
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Hence, we have: 

























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

2
2

2

12

2

2

1
21

2

2
1

2

1

1
2

1

1

1

2

0

q
L

qq
L

q
g

qq
L

q
L

q
g

q
g

q
g

C  

 

( ) ( )( )
( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )







′+′′++′+








 ′+′′++′=

+′−

′+′′−−+′−
+′−

′+′′−−+′−

+′−
+′=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂+

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂−=

111112
1

2
22222

222222
2

2
11111

22222

111112
1

11111
22222

222222
2

22222

11111

11111

12

2

2

1

2
1

2

1

1

2

1

2
2

2

2

1
21

2

1

1

1

1

2

21

21

0

21

21
0

qpqqp
q

qpqqp

qpqqp
q

qpqqp

qpqqp

qpqqp
q

qpqqp
qpqqp

qpqqp
q

qpqqp

qpqqp
qpqqp

qq
L

q
g

q
L

q
g

q
g

q
L

q
g

qq
L

q
g

q
gC

 

 
Note that: 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )







′+′′+

+′
+′

−<







′+′′+

⇔>







′+′′++′+









′+′′++′=

222222
2

2
22222

2
11111

111112
1

111112
1

2
22222

222222
2

2
111112

2121

021

21

qpqqp
qqpqqp

qpqqp
qpqqp

q

qpqqp
q

qpqqp

qpqqp
q

qpqqpC
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Since, 1, 2k r= = , if we had 02 >C at the critical point *q , this would be sufficient to 

give 2 * 0Tz D L z <  for every z such that ( )* 0Dg q z = . Consequently, *q  would be a strict 
local maximum. 
Clearly, this condition would be satisfied if we had (evaluated at ( )*

2
*
1 ,qq ):

 ( ) ( ) ( ) ( ) 021021
111112

1
222222

2

>′+′′+∧>′+′′+ qpqqp
q

qpqqp
q

  (SOC) 

 
 
 

d.  

Solving 

0
2

1
2

1
11

1

=+









+− µµ

q
q

q
     (1)  

0
2

1
3

2
21

2

=+









+− µµ

q
q

q
  (2) 

3 3
1 2q q I+ =     (3) 

 

0
0
0

22

2

2

=
≥
≥

µ
µ
q

q
     (4) 

 

0
0
0

33

3

3

=
≥
≥

µ
µ
q

q
     (5) 

From the utility function we see that, at the optimal point, we must have: 0, *
2

*
1 ≠qq  

(4), (5): 0*
3

*
2 == µµ  

Equations (1) and (2) simplify now to: 

0
2

1 1
11

1

=









+−

q
q

q
µ      (1.i)  

0
2

1 2
21

2

=









+−

q
q

q
µ   (2.i) 



Econ103-Fall03  Prepared by: Theo Diasakos 

 19

From either equation, it is obvious that: 0*
1 ≠µ  

Hence: 

21
3
2

3
1

2

1

2
2

1
1

1

2
0

2

2
).2(
).1( 1

qqqq
q
q

q
q

q
q

q
q

i
i =⇔=⇔=

+

+
=⇒

≠µ
 

We have: 
2

3 3
1 12

4
Iq I q= ⇔ =   And 

2
3

2 4
Iq =   

We know that the required conditions of part (b) hold, in this setting, at all values of q. 

For the conditions of part (c), you should verify that (SOC) holds indeed at the (LCP) 

( ) 









= 3

2
3

2
*
2

*
1 4

,
4

, IIqq  

 

 

 

6. The consumer�s optimization problem: 

 
( ) { }

3,2,10

..

,min,,max

332211

32
2
1321,, 321

=≥

≤++

+=

ix

Ixpxpxp
ts

xxxxxxu

i

xxx

 

The Weierstrass theorem cannot apply in this case because the utility (objective) function 

is not continuous on its domain ( ){ }IxpxpxpRxxxRD ≤++∈∩= + 332211
3

321
3 :,, . 

Consequently, the Lagrange theorem does not apply either because the utility function is 
not 1C . 


