PROBLEM SET I

Simon C. and Blume L. (1994) Ex: 13.12, 16.1, 16.2, 16.4 \& Sundaram R. (1996) Ch 7.8:10

1. Write the following quadratic forms in matrix form:
a) $x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}$
b) $5 x_{1}^{2}-10 x_{1} x_{2}-x_{2}^{2}$
c) $x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+4 x_{1} x_{2}-6 x_{1} x_{3}+8 x_{2} x_{3}$
2. Determine the definiteness of the following symmetric matrices:
a) $\left(\begin{array}{cc}-3 & 4 \\ 4 & -6\end{array}\right)$
b) $\left(\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right)$
c) $\left(\begin{array}{lll}1 & 2 & 0 \\ 2 & 4 & 5 \\ 0 & 5 & 6\end{array}\right)$
d) $\left(\begin{array}{llll}1 & 0 & 3 & 0 \\ 0 & 2 & 0 & 5 \\ 3 & 0 & 4 & 0 \\ 0 & 5 & 0 & 6\end{array}\right)$
3. How many k th order principal minors will an $n \times n$ matrix have for each $k \leq n$?
4. Let $Q=x^{T} A x$ be a quadratic form in R^{n}. By evaluating Q on each of the coordinate axes in
R^{n}, prove that a necessary condition for a symmetric matrix to be positive definite (positive semidefinite) is that all the diagonal entries be positive (non-negative). State and prove the corresponding result for negative definite (negative semi-definite) matrices.
Prove, by example, that this necessary condition in not sufficient.
5. Let $f: R^{n} \rightarrow R$ be concave, A an $n \times m$ matrix and $b \in R^{n}$. Consider the function
$h: R^{m} \rightarrow R$ defined by:
$h(x)=f[A x+b] \quad x \in R^{m}$
Is h concave? Why or why not?
