Optimization Theory

Lectures 4-6



Unconstrained Maximization

Problem Veximzeafundionf. R - Rwithinaset A
cR"

Typcdly, Ais R, orthe nonegdive orthant
R peO}



Existence of a maximum:

Theorem If Ais compact (i.e., closed and bounded)
andfis continuous, then a maximum exists.

Proof. For each x € A the set {zcAlf(z)>f(x)} Is a
closed subset of a conmpact set, hence compact, and
the intersection of any finite number of these sets is
non-empty. Therefore, by the finite intersection
property, they have a non-empty intersection, which
IS a maximand.




Uniqueness of a maximum;

Def: A function f is strictly concaveon A (i.e., X,y €
g x 2y, 0 < < 1implies f(&+(I-8y) > &(X) + (I-
f(y))-

Theorem. If Ais convexand fis strictly concave
and a maximumexists, thenit is unique.

Proof: If x #y are both maxima, then (x+y)/2 € Aand
by strict concawvity, f((x+y)/2) gives a higher value, a
contradiction.




A vector y € R" points into A (from x° ¢ A) if xX° + 8y ¢
A for all sufficiently small positive scalars 6.

Assume that f is twice continuously differentiable,
and let f, denote its vector of first derivatives and f,,
denote its array of second derivatives. Assume that

x° achieves a maximum of f on A. Then, a Taylor's
expansion gives

f(x°) = f(xo+8y) = f(x°) + & (x°)y
+ (F12)y T (x°)y + R(62)

for all y that point into A and small scalars 6 > 0,
where R(g) is a remainder satisfying lim._, R(g)/e =
0.



First-Order Condition (FOC): (x°)y < O forally
that point into A (implies fx(X°)'y = 0 when both y and
-y point into A, and fx(X°) = 0 when X’ is interior to A
so that all y point into A). When A is the non-
negative orthant, the FOC is of(x°)/0x; < 0, and
of(x®)/ox=0if x>0fori=1,....n.

Proof: In Taylor's expansion, take &sufficiently
small so quadratic termis negligible.




Second-Order Condition (SOC): vy fu(x°)y < 0 for alll
y pointing into A with f«(x°)y =0 (impliesy  fx(Xx°)y <
0 for all y when Xx°is interiorto A).

The FOC and SOC are necessary at a maximum. |f
FOC holds, and a strict form of the SOC holds,

v f(X°)y < O for all y # 0 pointing into A with f,(x°)-y
= O,

then x° is a unique maximum within some
neighborhood of Xx°.

Proof: In Taylor’'s expansion, take @sufficiently
small so remainder term is negligible.




Inequality-Constrained
Maximization

Suppose g:AxD - R and h:AxD -~ R™ are continuous
functions on a convex set A and define B(y) = {xcA|
h(x,y) > 0} for eachy € D. Typically, Ais the non-
negative orthant o R". Maximization in x of g(x,y)
subject to the constraint h(x,y) > O is called a
nonlinear mathermatical prograrmming problem.



Define rly) = mexcayg(xy) andfly) =
argmaxxgyd(Xxy). If B(y)is bounded, thenitis

compact, guaranteeing that r(y) and f(y) exist.



Define a Lagrangian L(x,p,y) = g(x,y) + p-h(x,y). A
vector (x°,p®y) with X’ € A and p° > 0 is a (global)
Lagrangian Critical Point (LCP) aty € D if

L(x,p%y) < LOC,p%y) < L(X°,p.y)

forallx e Aand p > 0.

Note that a LCP is a saddle-point of the Lagrangian,
which is maximized in x at x° given p°, and
minimized in p at p° given x°. The variables in the

vector p are called Lagrangian multipliers or shadow
prices.




Example: Suppose x is a vector of policy variables
available to a firm, g(x) is the firm’s profit, and
excess inventory of inputs is h(x,y) =y - q(x), where
g(x) specifies the vector of input requirements for x.
The firm must operate under the constraint that
excess inventory is non-negative.

The Lagrangian L(x,p,y) = g(x) + p:(y-g(x)) can then
be interpreted as the overall profit from operating the
firm and selling off excess inventory at prices p. In
this interpretation, a LCP determines the firm’s
implicit reservation prices for the inputs, the
opportunity cost of selling inventory rather than
using it in production.



The problem of minimizing in p a function t(p,y)
subject to v(p,y) > 0 is the same as that of
maximizing -t(p,y) subject to this constraint, with the
associated Lagrangian -t(p,y) + x-v(p,y) with
shadow prices x. Defining L(x,p,y) = t(p,y) -
x-V(p,y), a LCP for this constrained minimization
problem is then (x°p°y) such that L(x,p%y) <
L(x°p°y) < L(x°,p,y) for all x > 0 and p > 0. Note
that this is the same string of inequalities that
defined a LCP for a constrained maximization
problem. The definition of L(x,p,y) is in general
different in the two cases, but we next consider a
problem where they coincide.



2.16.2. Animportant specialization of the nonlinear
programming problem is linear programming, where
one seeks to maximize g(x,y) = brx subject to the
constraints h(x,y) =y-Sx >0and x > 0, wth S an
mxn matrix. Associated with this problem, called the
primal problem, is asecond linear programming
problem, called its dual, where one seeks to
minimize y-p subjecttoS’p-b>0and p > 0.




The Lagrangian for the primal problem is L(x,p,y) =
g(x,y) + p-h(xy) = bx+py-p'Sx. The Lagrangian
for the dual problemis L(X,p,y) =y:-p- x(S'p-b) =
b-x + py - p'Sx, which is exactly the same as the
expression for the primal Lagrangian. Therefore, if
the primal problem has a LCP, then the dual
problem has exactly the same LCP.



2.16.3. Theorem. If (x°,p°y)is a LCP, then x’is a
maximand in x of g(x,y) subject to h(x,y) > 0 for
eachy € D.

Proof: The inequality L(x%p°y) < L(x°,p,y) gives
(p° - p)h(x%y) < Oforallp > 0. Then p =0 implies
p®-h(x°%y) < 0, while taking p to be p° plus various
unit vectors implies h(x%y) > 0, and hence p®h(x°y)
= 0. These are called the complementary slackness

conditions, and state that if a constraint is not
binding, then its Lagrangian multiplier is zero. The
inequality L(x,p°%y) < L(x°p°y) then gives g(x,y) +
p-h(x,y) < g(x%y). Then, x° satisfies the constraints.
Any other x that also satisfies the constraints has
p-h(x,y) > 0, so that g(x,y) < g(x°,y). Then x° solves
the constrained maximization problem. L[]



2.16.4. Theorem. Suppose g:AxD -~ R and h:AxD -
R™ are continuous concave functions on a convex
set A. Suppose x° maximizes g(x,y) subject to the
constraint h(x,y) > 0. Suppose the constraint
qualification that for each vector p satisfying p > 0
and p # 0, there exists x € A such that p-h(x,y) > 0.
[A sufficient condition for the constraint qualification
is that there exist x € A at which h(x,y) is strictly
positive.] Then, there exists p° > 0 such that
(x%,p°y) is a LCP.




Proof: Define the sets C; = {(\,z)eRxR™|
A<g(x,y) and z < h(x,y) for some x € A} and C, =
{(\,2)eRxR™ A>g(x°y) and z > 0}. Show as an
exercise that C, and C, are convex and disjoint.
Since C, is open, they are strictly separated by a
hyperplane with normal (u,p); i.e., N +pz’ >
UA"+pz” for all (A',z') € C, and (A",z") € C4, This
inequality and the definition of C, imply that (u,p) >
0. Ifuy=0,thenp # 0 and taking z’ - 0 implies 0 >
p-h(x,y) for all x € A, violating the constraint
qualification. Therefore, we must have u > 0.
Define p° = p/u. Then, the separating inequality
implies g(x°)y) > g(x,y) + p>h(x,y) for all x € A.
Since p° > 0 and h(x"y) > 0, taking x = x° implies
p®-h(x°y) = 0. Therefore , L(x,p,y) = g(x,y) +
p-h(x,y) satisfies L(x,p°%y) < L(x%p°y). Also, p > 0
implies p-h(x%y) > 0, so that L(x%p°y) < L(x°,p,y).
Therefore, (x°,p%y)is a LCP. [



2.16.5. Theorem. Suppose maximizing g(x) subject
to the constraint g(x) <y has LCP

(x°,p%y) and (xX°+Ax,p°+Ap,y+Ay). Then (p°+Ap)-Ay
< g(x°+Ax) - g(x°) < p>Ay.

Proof: The inequalities L(x°+Ax,p°y) < L(x%p°y)
< L(x° p°+Ap,y) and L(x°,p°+Ap,y+Ay) <
L(X%+Ax,p°+Ap,y+Ay) < L((xX°+Ax,p°,y+Ay) imply
L(XO,pO+Ap,y+Ay) B L(xo,po+Ap,y) <
L(XO+AX,pO+Ap,y+Ay) B L(XO,pO’y) <
L((x°+Ax,p°,y+Ay) - L(x°+Ax,p°y). Then,
cancellation of terms gives the result. [

This result justifies the interpretation of a Lagrangian
multiplier as the rate of increase in the constrained
optimal objective function that results when a
constraint is relaxed, and hence as the shadow or
implicit price of the constrained quantity.



Classical Programming Problem

Consider the problem of maximizing f:R" -~ R subject
to equality constraints

N(X)-¢g=0 forj=1,..., m(in vector notation,
h(x)-c=0)

where m < n.



Lagrangian: L(x,p) = f(x) - p[h(x) - ]

The vector (x°,p°) is said to be alocal (interior)
Lagrangian Critical Point if

(1)  Ldxo,p°) =0, L,(x°,p°) =h(x°) -c =0, and
Z'L(x°,p°)z < Oif zsatisfies h,(x°)z =0,

where p° is unconstrained in sign.



Theorem. If (x°,p°) is alocal LCP and z'L,,(x°p°)z <
0if z # O satisfies h,(x°)z = 0, then x° is a unique
local maximum of f subject to h(x) = 0.

Proof: Note that 0 = L,(x°, p°) = h(
that x° is feasible, and that L(x°,p ) = f(x
expansion of L(x°+8z,p°) yields

X°) - ¢ implies
(x°). A Taylor’s

L(x°+6z,p°) = L(x°,p°) + AL, (x°,p°)Z
+ (2)z'L(x°,p°)z + R(EP),

the R(&) term is a residual.



Theorem. If (x°,p°) is alocal LCP and z'L,(x°p°)z <
Ofor all z # 0 satisfying h,(x°)z= 0, then x° is a
unique local maximum of f subject to h(x) = 0.

Proof: Note that 0 = L,(x°, p°) = h(x°) - ¢ implies
that x° is feasible, and that L(x°,p°) = f(x°). Taylor's
expansions yield
f(xe+6z) = f(x°) + &, (x°)z + (&/2)z'T«(x°)z + R(&),
h(x°+68z) = c + Eh(x°)z + (B/2)2'h(x°)z + R(&),

the R(&) terms are residuals.



Using L, (x°,p°) = 0O,

L(x°+6z,p°) = L(x°,p°) + OL,(x°,p°)z
+ (#12)2'L(x°,p°)z + R(&)

=f(x°) + (2)z'L(x°, p°, °)z + R(EP)

A point x° + Gz satisfying the constraints, with &
small, must satisfy h,(x°)z = 0. Then, the negative

semidefiniteness of L,, subject to these constraints
implies

f(xe +6z) < f(x°) + (6P/2)z'L(Xx°,p°)z +R(EP)
< f(x°) + R(&P).

If L is negative definite subject to these constraints
then the SOC is sufficient for x° to be a local
maximum. [



Theorem. If x° maximizes f(x) subject to h(x) - ¢ =0,
and the constraint qualification holds that the mxn
array B = h,(x°) is of full rank m, then there exist
Lagrange multipliers p° such that (x°,p°) is alocal
LCP.

Proof: The hypothesis of the theorem implies
that

f(x°) > f(x°+62z)
= (x0) + Gh(x°) 2 + (B12)2' ()2 + R(E?)

for all z such that

c = h(x°+6z)
=C + Oh,(x°)z + (E#/2)z'h(x°)z + R(EP).



Taking @ small, these conditions imply
x°)-z = 0 and z'f(x°)z for any z satisfying h,(x°)-z=0
ecall that B = h,(x°) is mxn of rank m, and define the
lempotent) nxn matrix M=1-B'(BB')'B. Since BM
0, each column of M is a vector z meeting the
ndition h,(x°)-z =0, implying that f,(x°)-z=0, or

0 = Mf,(x°) = f,(x°) - h,(x°)'p°,

nere

p® = (BB')'Bf,(x°).



Define L(x,p) =f(X) - p[n(X) - c]. Then

(21) x(X°,p°) Fx°) - hy(x°)'p°
=[I-B'(BB')'Blf(x°) = 0.

The construction guarantees that L,(x°,p°) = 0.
Finally, Taylor's expansion of the Lagrangian
establishes that z'L,(x°,p°)z < O for all z satisfying
h(x°) - z=0. Therefore, the constrained maximum
corresponds to a local LCP.




