Optimization Theory

Lectures 4-6

Unconstrained Maximization

Problem Meximizeafunctionf: $\mathbb{R}^{n} \rightarrow \mathbb{R}$ withinaset \mathbf{A} $\subseteq \mathbb{R}^{n}$.

Typically, Ais \mathbb{R}^{n}, orthenon-negaiveorthant $\left\{x \in \mathbb{R}^{n} \mid x=0\right\}$

Existence of a maximum:
Theorem If A is compact (i.e., closed and bounded) and f is continuous, then a maximumexists.

Proof: For each $x \in \mathbf{A}$ the set $\{z \in \mathbf{A} \mid f(z) \geq f(x)\}$ is a closed subset of a compact set, hence compact, and the intersection of any finite number of these sets is non-empty. Therefore, by the finite intersection property, they have a non-empty intersection, which is a maximand. \square

Uniqueness of a maximum:

Def: A function f is strictly concave on A (i.e., $x, y \in$ A $x \neq y, 0<\theta<1$ implies $f(\theta x+(l-\theta y)>\theta(x)+(l-$ $\theta f(y))$.

Theorem. If \mathbf{A} is convex and f is strictly concave and a maximumexists, then it is unique.

Proof: If $x \neq y$ are both maxima, then $(x+y) / 2 \in \mathbf{A}$ and by strict concavity, $f((x+y) / 2)$ gives a higher value, a contradiction. \square

A vector $y \in \mathbb{R}^{n}$ points into \mathbf{A} (from $x^{0} \in \mathbf{A}$) if $x^{0}+\theta y \in$ A for all sufficiently small positive scalars θ.

Assume that f is twice continuously differentiable, and let f_{x} denote its vector of first derivatives and $f_{x x}$ denote its array of second derivatives. Assume that x^{0} achieves a maximum of f on \mathbf{A}. Then, a Taylor's expansion gives

$$
\begin{aligned}
f\left(x^{0}\right) \geq f\left(x^{0}+\theta y\right)= & f\left(x^{0}\right)+\theta_{x}\left(x^{0}\right) \cdot y \\
& +\left(\theta^{2} / 2\right) y^{\prime} f_{x x}\left(x^{0}\right) y+R\left(\theta^{2}\right)
\end{aligned}
$$

for all y that point into A and small scalars $\theta>0$, where $R(\varepsilon)$ is a remainder satisfying $\lim _{\varepsilon-0} R(\varepsilon) / \varepsilon=$ 0.

First-Order Condition (FOC): $f_{x}\left(x^{0}\right) \cdot y \leq 0$ for all y that point into \mathbf{A} (implies $f_{x}\left(x^{0}\right) \cdot y=0$ when both y and -y point into A, and $f_{x}\left(x^{0}\right)=0$ when x^{0} is interior to A so that all y point into A). When A is the nonnegative orthant, the FOC is $\partial f\left(x^{0}\right) / \partial x_{i} \leq 0$, and $\partial f\left(x^{0}\right) / \partial x_{i}=0$ if $x_{i}>0$ for $i=1, \ldots, n$.

Proof: In Taylor's expansion, take θ sufficiently small so quadratic term is negligible.

Second-Order Condition (SOC): $y^{\prime} f_{x x}\left(x^{0}\right) y \leq 0$ for all y pointing into A with $f_{x}\left(x^{0}\right) \cdot y=0$ (implies $y^{\prime} f_{x x}\left(x^{0}\right) y \leq$ 0 for all y when x° is interior to \mathbf{A}).

The FOC and SOC are necessary at a maximum. If FOC holds, and a strict form of the SOC holds,
$y^{\prime} f_{x x}\left(x^{0}\right) y<0$ for all $y \neq 0$ pointing into A with $f_{x}\left(x^{0}\right) \cdot y$ $=0$,
then x^{0} is a unique maximum within some neighborhood of x^{0}.

Proof: In Taylor's expansion, take θ sufficiently small so remainder term is negligible. \square

Inequality-Constrained Maximization

Suppose $g: A \times D \rightarrow \mathbb{R}$ and $\mathrm{h}: A \times D \rightarrow \mathbb{R}^{m}$ are continuous functions on a convex set \mathbf{A} and define $B(\mathbf{y})=\{\mathbf{x} \in \mathbf{A} \mid$ $\mathrm{h}(\mathbf{x}, \mathbf{y}) \geq \mathbf{0}$ for each $\mathbf{y} \in \mathbf{D}$. Typically, \mathbf{A} is the nornegative orthant of \mathbb{R}^{n}. Maximization in \mathbf{x} of $g(\mathbf{x}, \mathbf{y})$ subject to the constraint $h(x, y) \geq 0$ is called a nonlinear mathematical programming problem.

Define $r(\mathbf{y})=\max _{x \in(y)} g(\mathbf{x}, \mathbf{y})$ and $f(\mathbf{y})=$ $\operatorname{argmax}_{x} B(y) g(x, y)$. If $B(\mathbf{y})$ is bounded, then it is compact, guaranteeing that $\mathrm{r}(\mathbf{y})$ and $\mathrm{f}(\mathbf{y})$ exist.

Define a Lagrangian $L(\mathbf{x}, \mathbf{p}, \mathbf{y})=g(\mathbf{x}, \mathbf{y})+\mathbf{p} \cdot h(\mathbf{x}, \mathbf{y})$. A vector ($\mathbf{x}^{0}, \mathbf{p}^{0}, \mathbf{y}$) with $\mathbf{x}^{0} \in \mathbf{A}$ and $\mathbf{p}^{0} \geq \mathbf{0}$ is a (global) Lagrangian Critical Point (LCP) at $\mathbf{y} \in \mathbf{D}$ if

$$
\mathrm{L}\left(\mathbf{x}, \mathbf{p}^{0}, \mathbf{y}\right) \leq \mathrm{L}\left(\mathbf{x}^{0}, \mathbf{p}^{0}, \mathbf{y}\right) \leq \mathrm{L}\left(\mathbf{x}^{0}, \mathbf{p}, \mathbf{y}\right)
$$

for all $\mathbf{x} \in \mathbf{A}$ and $\mathbf{p} \geq \mathbf{0}$.
Note that a LCP is a saddle-point of the Lagrangian, which is maximized in \mathbf{x} at \mathbf{x}^{0} given \mathbf{p}^{0}, and minimized in \mathbf{p} at \mathbf{p}^{0} given \mathbf{x}^{0}. The variables in the vector \mathbf{p} are called Lagrangian multipliers or shadow prices.

Example: Suppose \mathbf{x} is a vector of policy variables available to a firm, $g(\mathbf{x})$ is the firm's profit, and excess inventory of inputs is $h(x, y)=\mathbf{y}-q(\mathbf{x})$, where $q(\mathbf{x})$ specifies the vector of input requirements for \mathbf{x}. The firm must operate under the constraint that excess inventory is non-negative.

The Lagrangian $L(\mathbf{x}, \mathbf{p}, \mathbf{y})=g(\mathbf{x})+\mathbf{p} \cdot(\mathbf{y}-\mathrm{q}(\mathbf{x}))$ can then be interpreted as the overall profit from operating the firm and selling off excess inventory at prices \mathbf{p}. In this interpretation, a LCP determines the firm's implicit reservation prices for the inputs, the opportunity cost of selling inventory rather than using it in production.

The problem of minimizing in \mathbf{p} a function $t(\mathbf{p}, \mathbf{y})$ subject to $v(\mathbf{p}, \mathbf{y}) \geq \mathbf{0}$ is the same as that of maximizing $-t(\mathbf{p}, \mathbf{y})$ subject to this constraint, with the associated Lagrangian $-t(\mathbf{p}, \mathbf{y})+\mathbf{x} \cdot v(\mathbf{p}, \mathbf{y})$ with shadow prices \mathbf{x}. Defining $L(\mathbf{x}, \mathbf{p}, \mathbf{y})=t(\mathbf{p}, \mathbf{y})-$ $\mathbf{x} \cdot \mathrm{v}(\mathbf{p}, \mathbf{y})$, a LCP for this constrained minimization problem is then $\left(\mathbf{x}^{0}, \mathbf{p}^{0}, \mathbf{y}\right)$ such that $L\left(\mathbf{x}, \mathbf{p}^{0}, \mathbf{y}\right) \leq$ $\mathrm{L}\left(\mathbf{x}^{0}, \mathbf{p}^{0}, \mathbf{y}\right) \leq \mathrm{L}\left(\mathbf{x}^{0}, \mathbf{p}, \mathbf{y}\right)$ for all $\mathbf{x} \geq \mathbf{0}$ and $\mathbf{p} \geq \mathbf{0}$. Note that this is the same string of inequalities that defined a LCP for a constrained maximization problem. The definition of $L(\mathbf{x}, \mathbf{p}, \mathbf{y})$ is in general different in the two cases, but we next consider a problem where they coincide.
2.16.2. An important specialization of the nonlinear programming problem is linear programming, where one seeks to maximize $g(x, y)=\mathbf{b} \cdot \mathbf{x}$ subject to the constraints $h(x, y)=\mathbf{y}-\mathbf{S x} \geq \mathbf{0}$ and $\mathbf{x} \geq \mathbf{0}$, with S an $m \times n$ matrix. Associated with this problem, called the primal problem, is a second linear programming problem, called its dual, where one secks to minimize $\mathbf{y} \cdot \mathbf{p}$ subject to $\mathbf{S}^{\prime} \mathbf{p}-\mathbf{b} \geq \mathbf{0}$ and $\mathbf{p} \geq \mathbf{0}$.

The Lagrangian for the primal problem is $L(\mathbf{x}, \mathbf{p}, \mathbf{y})=$ $g(\mathbf{x}, \mathbf{y})+\mathbf{p} \cdot \mathbf{h}(\mathbf{x}, \mathbf{y})=\mathbf{b} \cdot \mathbf{x}+\mathbf{p} \cdot \mathbf{y}-\mathbf{p}^{\prime} \mathbf{S x}$. The Lagrangian for the dual problem is $L(\mathbf{x}, \mathbf{p}, \mathbf{y})=\mathbf{y} \cdot \mathbf{p}-\mathbf{x} \cdot\left(\mathbf{S}^{\prime} \mathbf{p}-\mathbf{b}\right)=$ $\mathbf{b} \cdot \mathbf{x}+\mathbf{p} \cdot \mathbf{y}-\mathbf{p}^{\prime} \mathbf{S x}$, which is exactly the same as the expression for the primal Lagrangian. Therefore, if the primal problem has a LCP, then the dual problem has exactly the same LCP.
2.16.3. Theorem. If $\left(\mathbf{x}^{0}, \mathbf{p}^{0}, \mathbf{y}\right)$ is a LCP, then \mathbf{x}^{0} is a maximand in \mathbf{x} of $g(\mathbf{x}, \mathbf{y})$ subject to $h(\mathbf{x}, \mathbf{y}) \geq \mathbf{0}$ for each $\mathbf{y} \in \mathbf{D}$.

Proof: The inequality $L\left(\mathbf{x}^{0}, \mathbf{p}^{0}, \mathbf{y}\right) \leq L\left(\mathbf{x}^{0}, \mathbf{p}, \mathbf{y}\right)$ gives ($\mathbf{p}^{0}-\mathbf{p}$) $\cdot \mathrm{h}\left(\mathbf{x}^{0}, \mathbf{y}\right) \leq 0$ for all $\mathbf{p} \geq \mathbf{0}$. Then $\mathbf{p}=\mathbf{0}$ implies $\mathbf{p}^{0} \cdot \mathrm{~h}\left(\mathbf{x}^{0}, \mathbf{y}\right) \leq 0$, while taking \mathbf{p} to be \mathbf{p}^{0} plus various unit vectors implies $\mathrm{h}\left(\mathbf{x}^{0}, \mathbf{y}\right) \geq \mathbf{0}$, and hence $\mathbf{p}^{0} \cdot \mathrm{~h}\left(\mathbf{x}^{0}, \mathbf{y}\right)$ $=0$. These are called the complementary slackness conditions, and state that if a constraint is not binding, then its Lagrangian multiplier is zero. The inequality $L\left(\mathbf{x}, \mathbf{p}^{0}, \mathbf{y}\right) \leq L\left(\mathbf{x}^{0}, \mathbf{p}^{0}, \mathbf{y}\right)$ then gives $g(\mathbf{x}, \mathbf{y})+$ $\mathbf{p} \cdot \mathrm{h}(\mathbf{x}, \mathbf{y}) \leq \mathrm{g}\left(\mathbf{x}^{0}, \mathbf{y}\right)$. Then, \mathbf{x}^{0} satisfies the constraints. Any other \mathbf{x} that also satisfies the constraints has $\mathbf{p} \cdot \mathrm{h}(\mathbf{x}, \mathbf{y}) \geq 0$, so that $\mathrm{g}(\mathbf{x}, \mathbf{y}) \leq \mathrm{g}\left(\mathbf{x}^{0}, \mathbf{y}\right)$. Then \mathbf{x}^{0} solves the constrained maximization problem.
2.16.4. Theorem. Suppose $g: A \times D \rightarrow \mathbb{R}$ and $h: A \times D \rightarrow$ \mathbb{R}^{m} are continuous concave functions on a convex set \mathbf{A}. Suppose \mathbf{x}^{0} maximizes $g(\mathbf{x}, \mathbf{y})$ subject to the constraint $\mathrm{h}(\mathbf{x}, \mathbf{y}) \geq 0$. Suppose the constraint qualification that for each vector \mathbf{p} satisfying $\mathbf{p} \geq \mathbf{0}$ and $\mathbf{p} \neq \mathbf{0}$, there exists $\mathbf{x} \in \mathbf{A}$ such that $\mathbf{p} \cdot \mathrm{h}(\mathbf{x}, \mathbf{y})>0$. [A sufficient condition for the constraint qualification is that there exist $\mathbf{x} \in \mathbf{A}$ at which $h(\mathbf{x}, \mathbf{y})$ is strictly positive.] Then, there exists $\mathbf{p}^{0} \geq \mathbf{0}$ such that $\left(\mathbf{x}^{0}, \mathbf{p}^{0}, \mathbf{y}\right)$ is a LCP.

Proof: Define the sets $\mathbf{C}_{1}=\left\{(\lambda, \mathbf{z}) \in \mathbb{R} \times \mathbb{R}^{m} \mid\right.$ $\lambda \leq g(\mathbf{x}, \mathbf{y})$ and $\mathbf{z} \leq \mathrm{h}(\mathbf{x}, \mathbf{y})$ for some $\mathbf{x} \in \mathbf{A}\}$ and $\mathbf{C}_{2}=$ $\left\{(\lambda, \mathbf{z}) \in \mathbb{R} \times \mathbb{R}^{m} \mid \lambda>g\left(\mathbf{x}^{0}, \mathbf{y}\right)\right.$ and $\left.\mathbf{z}>\mathbf{0}\right\}$. Show as an exercise that \mathbf{C}_{1} and \mathbf{C}_{2} are convex and disjoint. Since \mathbf{C}_{2} is open, they are strictly separated by a hyperplane with normal (μ, \mathbf{p}); i.e., $\mu \lambda^{\prime}+\mathbf{p z} \mathbf{z}^{\prime}>$ $\mu \lambda^{\prime \prime}+\mathbf{p z} \mathbf{z}^{\prime \prime}$ for all $\left(\lambda^{\prime}, \mathbf{z}^{\prime}\right) \in \mathbf{C}_{2}$ and $\left(\lambda^{\prime \prime}, \mathbf{z}^{\prime \prime}\right) \in \mathbf{C}_{1}$, This inequality and the definition of \mathbf{C}_{2} imply that $(\mu, \mathbf{p}) \geq$ $\mathbf{0}$. If $\mu=0$, then $\mathbf{p} \neq \mathbf{0}$ and taking $\mathbf{z}^{\prime} \rightarrow \mathbf{0}$ implies $0 \geq$ $\mathbf{p} \cdot \mathrm{h}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x} \in \mathbf{A}$, violating the constraint qualification. Therefore, we must have $\mu>0$. Define $p^{0}=p / \mu$. Then, the separating inequality implies $g\left(\mathbf{x}^{0}, \mathbf{y}\right) \geq g(\mathbf{x}, \mathbf{y})+\mathbf{p}^{0} \cdot \mathrm{~h}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x} \in \mathbf{A}$. Since $\mathbf{p}^{0} \geq \mathbf{0}$ and $\mathrm{h}\left(\mathbf{x}^{0}, \mathbf{y}\right) \geq \mathbf{0}$, taking $\mathbf{x}=\mathbf{x}^{0}$ implies $\mathbf{p}^{0} \cdot h\left(\mathbf{x}^{0}, \mathbf{y}\right)=0$. Therefore, $L(\mathbf{x}, \mathbf{p}, \mathbf{y})=g(\mathbf{x}, \mathbf{y})+$ $\mathbf{p} \cdot \mathrm{h}(\mathbf{x}, \mathbf{y})$ satisfies $\mathrm{L}\left(\mathbf{x}, \mathbf{p}^{0}, \mathbf{y}\right) \leq \mathrm{L}\left(\mathbf{x}^{0}, \mathbf{p}^{0}, \mathbf{y}\right)$. Also, $\mathbf{p} \geq \mathbf{0}$ implies $\mathbf{p} \cdot h\left(\mathbf{x}^{0}, \mathbf{y}\right) \geq 0$, so that $\mathrm{L}\left(\mathbf{x}^{0}, \mathbf{p}^{0}, \mathbf{y}\right) \leq \mathrm{L}\left(\mathbf{x}^{0}, \mathbf{p}, \mathbf{y}\right)$. Therefore, $\left(\mathbf{x}^{0}, \mathbf{p}^{0}, \mathbf{y}\right)$ is a LCP. \square
2.16.5. Theorem. Suppose maximizing $g(x)$ subject to the constraint $q(\mathbf{x}) \leq \mathbf{y}$ has LCP $\left(\mathbf{x}^{0}, \mathbf{p}^{0}, \mathbf{y}\right)$ and $\left(\mathbf{x}^{0}+\Delta \mathbf{x}, \mathbf{p}^{0}+\Delta \mathbf{p}, \mathbf{y}+\Delta \mathbf{y}\right)$. Then $\left(\mathbf{p}^{0}+\Delta \mathbf{p}\right) \cdot \Delta \mathbf{y}$ $\leq g\left(\mathbf{x}^{0}+\Delta \mathbf{x}\right)-g\left(\mathbf{x}^{0}\right) \leq \mathbf{p}^{0} \cdot \Delta \mathbf{y}$.

Proof: The inequalities $L\left(\mathbf{x}^{0}+\Delta \mathbf{x}, \mathbf{p}^{0}, \mathbf{y}\right) \leq L\left(\mathbf{x}^{0}, \mathbf{p}^{0}, \mathbf{y}\right)$
$\leq L\left(\mathbf{x}^{0}, \mathbf{p}^{0}+\Delta \mathbf{p}, \mathbf{y}\right)$ and $\mathrm{L}\left(\mathbf{x}^{0}, \mathbf{p}^{0}+\Delta \mathbf{p}, \mathbf{y}+\Delta \mathbf{y}\right) \leq$
$\mathrm{L}\left(\mathbf{x}^{0}+\Delta \mathbf{x}, \mathbf{p}^{0}+\Delta \mathbf{p}, \mathbf{y}+\Delta \mathbf{y}\right) \leq \mathrm{L}\left(\left(\mathbf{x}^{0}+\Delta \mathbf{x}, \mathbf{p}^{0}, \mathbf{y}+\Delta \mathbf{y}\right)\right.$ imply $L\left(\mathbf{x}^{0}, \mathbf{p}^{0}+\Delta \mathbf{p}, \mathbf{y}+\Delta \mathbf{y}\right)-\mathrm{L}\left(\mathbf{x}^{0}, \mathbf{p}^{0}+\Delta \mathbf{p}, \mathbf{y}\right) \leq$
$L\left(\mathbf{x}^{0}+\Delta \mathbf{x}, \mathbf{p}^{0}+\Delta \mathbf{p}, \mathbf{y}+\Delta \mathbf{y}\right)-\mathrm{L}\left(\mathbf{x}^{0}, \mathbf{p}^{0}, \mathbf{y}\right) \leq$
$\mathrm{L}\left(\left(\mathbf{x}^{0}+\Delta \mathbf{x}, \mathbf{p}^{0}, \mathbf{y}+\Delta \mathbf{y}\right)-\mathrm{L}\left(\mathbf{x}^{0}+\Delta \mathbf{x}, \mathbf{p}^{0}, \mathbf{y}\right)\right.$. Then,
cancellation of terms gives the result. \square
This result justifies the interpretation of a Lagrangian multiplier as the rate of increase in the constrained optimal objective function that results when a constraint is relaxed, and hence as the shadow or implicit price of the constrained quantity.

Classical Programming Problem

Consider the problem of maximizing $\mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ subject to equality constraints

$$
\begin{aligned}
h^{i}(x)-c_{j}=0 & \text { for } j=1, \ldots, m \text { (in vector notation, } \\
& h(\mathbf{x})-\mathbf{c}=\mathbf{0})
\end{aligned}
$$

where $\mathrm{m}<\mathrm{n}$.

Lagrangian: $L(x, p)=f(x)-p \cdot[h(x)-c]$
The vector ($\mathrm{x}^{0}, \mathrm{p}^{0}$) is said to be a local (interior) Lagrangian Critical Point if
(11) $L_{x}\left(x^{0}, p^{0}\right)=0, L_{p}\left(x^{0}, p^{0}\right)=h\left(x^{0}\right)-c=0$, and
$z^{\prime} L_{x x}\left(x^{0}, p^{0}\right) z \leq 0$ if z satisfies $h_{x}\left(x^{0}\right) z=0$,
where p° is unconstrained in sign.

Theorem. If $\left(x^{0}, p^{0}\right)$ is a local LCP and $z^{\prime} L_{x x}\left(x^{0} p^{0}\right) z<$ 0 if $z \neq 0$ satisfies $h_{x}\left(x^{0}\right) z=0$, then x^{0} is a unique local maximum of f subject to $h(x)=0$.

Proof: Note that $0=L_{p}\left(x^{0}, p^{0}\right)=h\left(x^{\circ}\right)-c$ implies that x° is feasible, and that $L\left(x^{\circ}, p^{\circ}\right)=f\left(x^{0}\right)$. A Taylor's expansion of $L\left(x^{\circ}+\theta z, p^{\circ}\right)$ yields

$$
\begin{aligned}
\mathrm{L}\left(\mathrm{x}^{0}+\theta \mathrm{z}, \mathrm{p}^{0}\right) & =\mathrm{L}\left(\mathrm{x}^{0}, \mathrm{p}^{0}\right)+\theta \mathrm{A}_{\mathrm{x}}\left(\mathrm{x}^{0}, \mathrm{p}^{\circ}\right) \cdot \mathrm{z} \\
& +\left(\theta^{\prime} / 2\right) \mathrm{z}^{\prime} \mathrm{L}_{\mathrm{xx}}\left(\mathrm{x}^{\circ}, \mathrm{p}^{\circ}\right) \mathrm{z}+\mathrm{R}(\theta),
\end{aligned}
$$

the $R\left(\theta^{\beta}\right)$ term is a residual.

Theorem. If $\left(x^{0}, p^{0}\right)$ is a local LCP and $z^{\prime} L_{x x}\left(x^{0} p^{0}\right) z<$ 0 for all $z \neq 0$ satisfying $h_{x}\left(x^{0}\right) z=0$, then x° is a unique local maximum of f subject to $h(x)=0$.

Proof: Note that $0=L_{p}\left(x^{0}, p^{0}\right)=h\left(x^{0}\right)-c$ implies that x^{0} is feasible, and that $L\left(x^{\circ}, p^{0}\right)=f\left(x^{0}\right)$. Taylor's expansions yield
$f\left(x^{0}+\theta z\right)=f\left(x^{0}\right)+\theta_{x}\left(x^{0}\right) \cdot z+\left(\theta^{\prime} / 2\right) z^{\prime} f_{x x}\left(x^{0}\right) z+R\left(\theta^{0}\right)$,
$h\left(x^{0}+\theta z\right)=c+\theta h_{x}\left(x^{0}\right) \cdot z+\left(\theta^{\prime} / 2\right) z^{\prime} h_{x x}\left(x^{\circ}\right) z+R(\theta)$,
the $R\left(\theta^{B}\right)$ terms are residuals.

Using $L_{x}\left(x^{\circ}, p^{0}\right)=0$,

$$
\begin{aligned}
\mathrm{L}\left(\mathrm{x}^{\circ}+\theta \mathrm{z}, \mathrm{p}^{\circ}\right) & =\mathrm{L}\left(\mathrm{x}^{\circ}, \mathrm{p}^{\circ}\right)+\theta \mathrm{p}_{x}\left(\mathrm{x}^{\circ}, \mathrm{p}^{\circ}\right) \cdot \mathrm{z} \\
& +\left(\theta^{\circ} / 2\right) \mathrm{z}^{\prime} \mathrm{L}_{x x}\left(\mathrm{x}^{\circ}, \mathrm{p}^{\circ}\right) \mathrm{z}+\mathrm{R}\left(\theta^{0}\right) \\
= & \mathrm{f}\left(\mathrm{x}^{\circ}\right)+\left(\theta^{\circ} / 2\right) \mathrm{z}^{\prime} \mathrm{L}_{x x}\left(\mathrm{x}^{\circ}, \mathrm{p}^{\circ}, \mathrm{q}^{\circ}\right) \mathrm{z}+\mathrm{R}\left(\theta^{\theta}\right)
\end{aligned}
$$

A point $x^{\circ}+\theta z$ satisfying the constraints, with θ small, must satisfy $h_{x}\left(x^{\circ}\right) z=0$. Then, the negative semidefiniteness of $L_{x x}$ subject to these constraints implies

$$
\begin{gathered}
f\left(x^{\circ}+\theta z\right) \leq f\left(x^{\circ}\right)+\left(\theta^{\circ} / 2\right) z^{\prime} L_{x x}\left(x^{\circ}, p^{\circ}\right) z+R\left(\theta^{0}\right) \\
\leq f\left(x^{\circ}\right)+R\left(\theta^{\circ}\right) .
\end{gathered}
$$

If $L_{x x}$ is negative definite subject to these constraints then the SOC is sufficient for x° to be a local maximum. \square

Theorem. If x^{0} maximizes $f(x)$ subject to $h(x)-c=0$, and the constraint qualification holds that the $m \times n$ array $B=h_{x}\left(x^{0}\right)$ is of full rank m, then there exist Lagrange multipliers p^{0} such that $\left(\mathrm{x}^{0}, \mathrm{p}^{0}\right)$ is a local LCP.

Proof: The hypothesis of the theorem implies

 that$$
\begin{aligned}
& f\left(x^{\circ}\right) \geq f\left(x^{0}+\theta z\right) \\
& =f\left(x^{\circ}\right)+\theta f_{x}\left(x^{0}\right) \cdot z+\left(\theta^{\circ} / 2\right) z^{\prime} f_{x x}\left(x^{\circ}\right) z+R\left(\theta^{\circ}\right)
\end{aligned}
$$

for all z such that

$$
\begin{aligned}
\mathrm{c} & =\mathrm{h}\left(\mathrm{x}^{0}+\theta \mathrm{z}\right) \\
& =\mathrm{c}+\theta \mathrm{h}_{\mathrm{x}}\left(\mathrm{x}^{0}\right) \cdot \mathrm{z}+\left(\theta^{0} / 2\right) \mathrm{z}^{\prime} \mathrm{h}_{\mathrm{xx}}\left(\mathrm{x}^{0}\right) \mathrm{z}+\mathrm{R}\left(\theta^{2}\right)
\end{aligned}
$$

Taking θ small, these conditions imply
$\left.x^{0}\right) \cdot z=0$ and $z^{\prime} f_{x x}\left(x^{0}\right) z$ for any z satisfying $h_{x}\left(x^{0}\right) \cdot z=0$
ecall that $B=h_{x}\left(x^{0}\right)$ is $m \times n$ of rank m, and define the dempotent) $n \times n$ matrix $M=I-B^{\prime}\left(B B^{\prime}\right)^{-1} B$. Since $B M$ 0 , each column of M is a vector z meeting the indition $h_{x}\left(x^{0}\right) \cdot z=0$, implying that $f_{x}\left(x^{\circ}\right) \cdot z=0$, or

$$
0=\mathrm{Mf}_{\mathrm{x}}\left(\mathrm{x}^{0}\right)=\mathrm{f}_{\mathrm{x}}\left(\mathrm{x}^{0}\right)-\mathrm{h}_{\mathrm{x}}\left(\mathrm{x}^{\mathrm{o}}\right)^{\prime} \mathrm{p}^{0},
$$

רere

$$
\mathrm{p}^{0}=\left(\mathrm{BB}^{\prime}\right)^{-1} \mathrm{Bf}_{\mathrm{x}}\left(\mathrm{x}^{0}\right) .
$$

Define $L(x, p)=f(x)-p \cdot[h(x)-c]$. Then
(21) $\quad L_{x}\left(x^{0}, p^{0}\right)=f_{x}\left(x^{0}\right)-h_{x}\left(x^{0}\right)^{\prime} p^{0}$

$$
=\left[1-\mathrm{B}^{\prime}\left(\mathrm{BB}^{\prime}\right)^{-1} \mathrm{~B}^{\prime}\right]_{\mathrm{x}}\left(\mathrm{x}^{0}\right)=0 .
$$

The construction guarantees that $\mathrm{L}_{\mathrm{p}}\left(\mathrm{x}^{0}, \mathrm{p}^{0}\right)=0$. Finally, Taylor's expansion of the Lagrangian establishes that $z^{\prime} \mathrm{L}_{\mathrm{x}}\left(\mathrm{x}^{0}, \mathrm{p}^{0}\right) \mathrm{z} \leq 0$ for all z satisfying $h_{x}\left(x^{0}\right) \cdot z=0$. Therefore, the constrained maximum corresponds to a local LCP. \square

