
Optimization Theory

Lectures 4-6



Unconstrained Maximization

Problem: Maximize a function f:ún 6 ú within a set A
f ún.  

Typically, A is ún,  or the non-negative orthant
{x0ún|x$0}



Existence of a maximum:

Theorem. If  A is compact (i.e., closed and bounded)
and f is continuous, then a maximum exists.

Proof: For each x 0 A, the set {z0A|f(z)$f(x)} is a
closed subset of a compact set, hence compact, and
the intersection of any finite number of these sets is
non-empty.  Therefore, by the finite intersection
property, they have a non-empty intersection, which
is a maximand.  ~



Uniqueness of a maximum:

Def: A function f is strictly concave on A (i.e., x,y 0
A, x …y, 0 < 2 < 1 implies f(2x+(l-2)y) > 2f(x) + (l-
2)f(y)).

Theorem.  If A is convex and f is strictly concave
and a maximum exists, then it is unique.

Proof: If x …y are both maxima, then (x+y)/2 0 A and
by strict concavity, f((x+y)/2) gives a higher value, a
contradiction.  ~

A, x …y, 0 < 2 < 1 implies f(2x+(l-2)y) > 2f(x) + (l-
2)f(y)).

contradiction.  ~



A vector y 0 ún points into A (from x0 0 A) if x0 + 2y 0
A for all sufficiently small positive scalars 2.

Assume that f is twice continuously differentiable,
and let fx denote its vector of first derivatives and fxx

denote its array of second derivatives.  Assume that
xo achieves a maximum of f on A.  Then, a Taylor’s
expansion gives

f(xo) $ f(xo+2y) = f(xo) + 2fx(xo)@y 
                                 + ( 22/2)ytfxx(xo)y + R(2 2)

for all y that point into A and small scalars 2  > 0,
where R(g) is a remainder satisfying limg60 R(g)/g =
0.



First-Order Condition (FOC):   fx(xo)@y # 0 for all y
that point into A (implies fx(xo)@y = 0 when both y and
-y point into A, and fx(xo) = 0 when xo is interior to A
so that all y point into A).  When A is the non-
negative orthant, the FOC is Mf(xo)/Mxi # 0, and
Mf(xo)/Mxi = 0 if xi > 0 for i = 1,...,n.

Proof:  In Taylor’s expansion, take 2 sufficiently
small so quadratic term is negligible.  ~



Second-Order Condition (SOC):  ytfxx(xo)y # 0 for all
y pointing into A with fx(xo)@y = 0  (implies ytfxx(xo)y #
0 for all y when  xo is interior to A).

The FOC and SOC are necessary at a maximum.  If
FOC holds, and a strict form of the SOC holds,

ytfxx(xo)y < 0 for all y … 0 pointing into A with fx(xo)@y
= 0,

then xo is a unique maximum within some
neighborhood of xo.

Proof: In Taylor’s expansion, take 2 sufficiently
small so remainder term is negligible.  ~



Inequality-Constrained 
Maximization

Suppose g:A×D 6 ú and h:A×D 6 úm are continuous
functions on a convex set A, and define B(y) = {x0A|
h(x,y) $ 0} for each y 0 D.  Typically, A is the non-
negative orthant of ún.  Maximization in x of g(x,y)
subject to the constraint h(x,y) $ 0 is called a
nonlinear mathematical programming problem. nonlinear mathematical programming problem. 



Define r(y) = maxx0B(y)g(x,y) and f(y) =
argmaxx0B(y)g(x,y).  If B(y) is bounded, then it is
compact, guaranteeing that r(y) and f(y) exist.  



Define a Lagrangian L(x,p,y) = g(x,y) + p@h(x,y).  A
vector (x0,p0,y) with x0 0 A and p0 $ 0 is a (global)
Lagrangian Critical Point (LCP) at y 0 D if

L(x,p0,y) # L(x0,p0,y) # L(x0,p,y) 

for all x 0 A and p $ 0.

Note that a LCP is a saddle-point of the Lagrangian,
which is maximized in x at x0 given p0, and
minimized in p at p0 given x0.  The variables in the
vector p are called Lagrangian multipliers or shadow
prices.  prices.  



Example:  Suppose x is a vector of policy variables
available to a firm, g(x) is the firm’s profit, and
excess inventory of inputs is h(x,y) = y - q(x), where
q(x) specifies the vector of input requirements for x. 
The firm must operate under the constraint that
excess inventory is non-negative.  

The Lagrangian L(x,p,y) = g(x) + p@(y-q(x)) can then
be interpreted as the overall profit from operating the
firm and selling off excess inventory at prices p.  In
this interpretation, a LCP determines the firm’s
implicit reservation prices for the inputs, the
opportunity cost of selling inventory rather than
using it in production. 



The problem of minimizing in p a function t(p,y)
subject to v(p,y) $ 0 is the same as that of
maximizing -t(p,y) subject to this constraint, with the
associated Lagrangian -t(p,y) + x@v(p,y) with
shadow prices x.  Defining L(x,p,y) = t(p,y) -
x@v(p,y), a LCP for this constrained minimization
problem is then (x0,p0,y) such that L(x,p0,y) #
L(x0,p0,y) # L(x0,p,y) for all x $ 0 and p $ 0.  Note
that this is the same string of inequalities that
defined a LCP for a constrained maximization
problem. The definition of L(x,p,y) is in general
different in the two cases, but we next consider a
problem where they coincide.  



2.16.2.  An important specialization of the nonlinear
programming problem is linear programming, where
one seeks to maximize g(x,y) = b@x subject to the
constraints h(x,y) = y - Sx $ 0 and x $ 0, with S an
m×n matrix.  Associated with this problem, called the
primal problem,  is a second linear programming
problem, called its dual, where one seeks to
minimize y@p subject to SNp - b $ 0 and p $ 0.  

primal problem,  is a second linear programming
problem, called its dual, where one seeks to



The Lagrangian for the primal problem is L(x,p,y) =
g(x,y) + p@h(x,y) = b@x + p@y - pNSx.  The Lagrangian
for the dual problem is L(x,p,y) = y@p - x@(SNp - b) =
b@x + p@y - pNSx, which is exactly the same as the
expression for the primal Lagrangian.  Therefore, if
the primal problem has a LCP, then the dual
problem has exactly the same LCP.



2.16.3. Theorem.  If (x0,p0,y) is a LCP, then x0 is a
maximand in x of g(x,y) subject to h(x,y) $ 0 for
each y 0 D.

Proof: The inequality L(x0,p0,y) # L(x0,p,y) gives
(p0 - p)@h(x0,y) # 0 for all p $ 0.  Then p = 0 implies
p0
@h(x0,y) # 0, while taking p to be p0 plus various

unit vectors implies h(x0,y) $ 0, and hence p0
@h(x0,y)

= 0.  These are called the complementary slackness
conditions, and state that if a constraint is not
binding, then its Lagrangian multiplier is zero.  The
inequality L(x,p0,y) # L(x0,p0,y) then gives g(x,y) +
p@h(x,y) # g(x0,y).  Then, x0 satisfies the constraints. 
Any other x that also satisfies the constraints has
p@h(x,y) $ 0, so that g(x,y) # g(x0,y).  Then x0 solves
the constrained maximization problem.  ~



2.16.4. Theorem.  Suppose g:A×D 6 ú and h:A×D 6
úm are continuous concave functions on a convex
set A.  Suppose x0 maximizes g(x,y) subject to the
constraint h(x,y) $ 0.  Suppose the constraint
qualification that for each vector p satisfying p $ 0
and p … 0, there exists x 0 A such that p@h(x,y) > 0. 
[A sufficient condition for the constraint qualification
is that there exist x 0 A at which h(x,y) is strictly
positive.]   Then, there exists p0 $ 0 such that
(x0,p0,y) is a LCP.



Proof:  Define the sets C1 = {(8,z)0ú×úm|
8#g(x,y) and z # h(x,y) for some x 0 A} and C2 =
{(8,z)0ú×úm| 8>g(x0,y) and z > 0}.  Show as an
exercise that C1 and C2 are convex and disjoint. 
Since C2 is open, they are strictly separated by a
hyperplane with normal (:,p); i.e., :8N+pzN >
:8O+pzO for all (8N,zN) 0 C2 and (8O,zO) 0 C1, This
inequality and the definition of C2 imply that  (:,p) $
0.  If : = 0, then p … 0 and taking zN 6 0 implies 0 $
p@h(x,y) for all x 0 A, violating the constraint
qualification.  Therefore, we must have : > 0. 
Define p0 = p/:.  Then, the separating inequality
implies g(x0,y) $ g(x,y) + p0

@h(x,y) for all x 0 A. 
Since p0 $ 0 and h(x0,y) $ 0, taking x = x0 implies 
p0
@h(x0,y) = 0.  Therefore , L(x,p,y) = g(x,y) +

p@h(x,y) satisfies L(x,p0,y) # L(x0,p0,y).  Also, p $ 0
implies p@h(x0,y) $ 0, so that L(x0,p0,y) # L(x0,p,y). 
Therefore, (x0,p0,y) is a LCP.  ~



2.16.5. Theorem.  Suppose maximizing g(x) subject
to the constraint q(x) # y has LCP 
(x0,p0,y) and (x0+)x,p0+)p,y+)y).  Then (p0+)p)@)y
# g(x0+)x) - g(x0) # p0

@)y.

Proof: The inequalities L(x0+)x,p0,y) # L(x0,p0,y)
# L(x0,p0+)p,y) and L(x0,p0+)p,y+)y) #
L(x0+)x,p0+)p,y+)y) # L((x0+)x,p0,y+)y) imply
L(x0,p0+)p,y+)y) - L(x0,p0+)p,y) #
L(x0+)x,p0+)p,y+)y) - L(x0,p0,y) #
L((x0+)x,p0,y+)y) - L(x0+)x,p0,y).  Then,
cancellation of terms gives the result.  ~

This result justifies the interpretation of a Lagrangian
multiplier as the rate of increase in the constrained
optimal objective function that results when a
constraint is relaxed, and hence as the shadow or
implicit price of the constrained quantity.



Classical Programming Problem

Consider the problem of maximizing f:ún 6ú subject
to equality constraints 

hj (x) - cj = 0 for j = 1,..., m (in vector notation,
h(x) - c = 0)

where m < n.



Lagrangian:  L(x,p) = f(x) - p@[h(x) - c]

The vector (xo,po) is said to be a local (interior)
Lagrangian Critical Point if

(11) Lx(xo,po) = 0, Lp(xo,po) = h(xo) - c = 0, and

zNLxx(xo,po)z # 0 if z satisfies hx(xo)z = 0,

where po is unconstrained in sign.



Theorem.  If (xo,po) is a local LCP and zNLxx(xopo)z <
0 if z … 0 satisfies hx(xo)z = 0, then xo is a unique
local maximum of f subject to h(x) = 0.

Proof: Note that 0 = Lp(xo, po) = h(xo) - c implies
that xo is feasible, and that L(xo,po) = f(xo).  A Taylor’s
expansion of L(xo+2z,po) yields

L(xo+2z,po) = L(xo,po) + 2Lx(xo,po)@z 
                       + (22/2)zNLxx(xo,po)z + R(22),

the R(23) term is a residual.  



Theorem.  If (xo,po) is a local LCP and zNLxx(xopo)z <
0 for all z … 0 satisfying hx(xo)z = 0, then xo is a
unique local maximum of f subject to h(x) = 0.

Proof: Note that 0 = Lp(xo, po) = h(xo) - c implies
that xo is feasible, and that L(xo,po) = f(xo).  Taylor’s
expansions yield

f(xo+2z) = f(xo) + 2fx(xo)@z + (22/2)zNfxx(xo)z + R(22),

h(xo+2z) = c + 2hx(xo)@z + (22/2)zNhxx(xo)z + R(22),

 the R(23) terms are residuals. 



Using Lx (xo,po) = 0, 

L(xo+2z,po) = L(xo,po) + 2Lx(xo,po)@z 
                       + (22/2)zNLxx(xo,po)z + R(22)

    = f(xo)  + (22/2)zNLxx(xo,  po, qo)z + R(22)

A point xo + 2z satisfying the constraints, with 2
small, must satisfy hx(xo)z = 0.  Then, the negative
semidefiniteness of Lxx subject to these constraints
implies

f(xo +2z) # f(xo) + (22/2)zNLxx(xo,po)z +R(22) 
        # f(xo) + R(22).

If Lxx is negative definite subject to these constraints
then the SOC is sufficient for xo to be a local
maximum.  ~



Theorem.  If xo maximizes f(x) subject to h(x) - c = 0,
and the constraint qualification holds that the m×n
array B = hx(xo) is of full rank m, then there exist
Lagrange multipliers p0 such that (x0,p0) is a local
LCP.

Proof: The hypothesis of the theorem implies
that

f(xo) $ f(xo+2z) 
             = f(xo) + 2fx(xo)@z + (22/2)zNfxx(xo)z + R(22)

for all z such that

c = h(xo+2z) 
                = c + 2hx(xo)@z + (22/2)zNhxx(xo)z + R(22).



Taking 2 small, these conditions imply

xo)@z = 0 and zNfxx(xo)z for any z satisfying hx(xo)@z = 0

ecall that B = hx(xo) is m×n of rank m, and define the
dempotent) n×n matrix M = I - BN(BBN)-1B.  Since BM
0, each column of M is a vector z meeting the

ondition hx(xo)@z = 0, implying that fx(xo)@z = 0, or

0 = Mfx(xo) = fx(xo) - hx(xo)Np0,

here

p0 = (BBN)-1Bfx(xo).



Define L(x,p) = f(x) - p@[h(x) - c].  Then

(21) Lx(xo,po) = fx(xo) - hx(xo)Npo

= [I - BN(BBN)-1B]fx(xo) = 0.

The construction guarantees that Lp(xo,po) = 0. 
Finally,  Taylor’s expansion of the Lagrangian
establishes that zNLxx(xo,po)z # 0 for all z satisfying
hx(xo) @ z = 0.  Therefore, the constrained maximum
corresponds to a local LCP.  ~


