Optimization Theory

Lectures 4-6

Unconstrained Maximization

Problem Maximize a function f: $\mathbb{R}^n \to \mathbb{R}$ within a set **A** $\subseteq \mathbb{R}^n$.

Typically, A is \mathbb{R}^n , or the non-negative orthant $\{x \in \mathbb{R}^n | x \ge 0\}$

Existence of a maximum:

Theorem. If **A** is <u>compact</u> (i.e., closed and bounded) and f is <u>continuous</u>, then a maximum exists.

Proof: For each $x \in A$, the set $\{z \in A | f(z) \ge f(x)\}$ is a closed subset of a compact set, hence compact, and the intersection of any finite number of these sets is non-empty. Therefore, by the finite intersection property, they have a non-empty intersection, which is a maximand. \Box

Uniqueness of a maximum:

Def: A function f is strictly concave on **A** (i.e., x,y \in **A**, x \neq y, 0 < θ < 1 implies f(θ x+(I- θ)y) > θ f(x) + (I- θ)f(y)).

Theorem. If **A** is convex and f is strictly concave and a maximum exists, then it is unique.

Proof: If $x \neq y$ are both maxima, then $(x+y)/2 \in A$ and by strict concavity, f((x+y)/2) gives a higher value, a contradiction. \Box

A vector $y \in \mathbb{R}^n$ points into **A** (from $x^0 \in \mathbf{A}$) if $x^0 + \theta y \in \mathbf{A}$ for all sufficiently small positive scalars θ .

Assume that f is twice continuously differentiable, and let f_x denote its vector of first derivatives and f_{xx} denote its array of second derivatives. Assume that x° achieves a maximum of f on **A**. Then, a Taylor's expansion gives

$$\begin{split} f(x^{o}) \geq f(x^{o} + \theta y) &= f(x^{o}) + \theta f_{x}(x^{o}) \cdot y \\ &+ (\theta^{2}/2)y' f_{xx}(x^{o})y + R(\theta^{2}) \end{split}$$

for all y that point into **A** and small scalars $\theta > 0$, where R(ε) is a remainder satisfying $\lim_{\varepsilon \to 0} R(\varepsilon)/\varepsilon = 0$. <u>First-Order Condition</u> (FOC): $f_x(x^o) \cdot y \le 0$ for all y that point into **A** (implies $f_x(x^o) \cdot y = 0$ when both y and -y point into A, and $f_x(x^o) = 0$ when x^o is interior to **A** so that all y point into **A**). When A is the nonnegative orthant, the FOC is $\partial f(x^o)/\partial x_i \le 0$, and $\partial f(x^o)/\partial x_i = 0$ if $x_i > 0$ for i = 1, ..., n.

Proof: In Taylor's expansion, take θ sufficiently small so quadratic term is negligible. \Box

<u>Second-Order Condition</u> (SOC): $y f_{xx}(x^{o})y \le 0$ for all y pointing into A with $f_x(x^{o})\cdot y = 0$ (implies $y f_{xx}(x^{o})y \le 0$ for all y when x^{o} is interior to **A**).

The FOC and SOC are necessary at a maximum. If FOC holds, and a strict form of the SOC holds,

 $y' f_{xx}(x^{o})y < 0$ for all $y \neq 0$ pointing into A with $f_{x}(x^{o})y = 0$,

then x° is a unique maximum within some neighborhood of x°.

Proof: In Taylor's expansion, take θ sufficiently small so remainder term is negligible. \Box

Inequality-Constrained Maximization

Suppose g: $A \times D \rightarrow \mathbb{R}$ and h: $A \times D \rightarrow \mathbb{R}^m$ are continuous functions on a convex set A, and define $B(y) = \{x \in A \mid h(x,y) \ge 0\}$ for each $y \in D$. Typically, A is the nonnegative orthant of \mathbb{R}^n . Maximization in x of g(x,y) subject to the constraint $h(x,y) \ge 0$ is called a *nonlinear mathematical programming problem*.

Define $r(\mathbf{y}) = \max_{\mathbf{x} \in \mathbf{B}(\mathbf{y})} g(\mathbf{x}, \mathbf{y})$ and $f(\mathbf{y}) = \arg\max_{\mathbf{x} \in \mathbf{B}(\mathbf{y})} g(\mathbf{x}, \mathbf{y})$. If $\mathbf{B}(\mathbf{y})$ is bounded, then it is compact, guaranteeing that $r(\mathbf{y})$ and $f(\mathbf{y})$ exist.

Define a Lagrangian $L(\mathbf{x},\mathbf{p},\mathbf{y}) = g(\mathbf{x},\mathbf{y}) + \mathbf{p}\cdot h(\mathbf{x},\mathbf{y})$. A vector $(\mathbf{x}^0,\mathbf{p}^0,\mathbf{y})$ with $\mathbf{x}^0 \in \mathbf{A}$ and $\mathbf{p}^0 \ge \mathbf{0}$ is a (global) Lagrangian Critical Point (LCP) at $\mathbf{y} \in \mathbf{D}$ if

$$L(\mathbf{x},\mathbf{p}^{0},\mathbf{y}) \leq L(\mathbf{x}^{0},\mathbf{p}^{0},\mathbf{y}) \leq L(\mathbf{x}^{0},\mathbf{p},\mathbf{y})$$

for all $x \in A$ and $p \ge 0$.

Note that a LCP is a *saddle-point* of the Lagrangian, which is maximized in \mathbf{x} at \mathbf{x}^0 given \mathbf{p}^0 , and minimized in \mathbf{p} at \mathbf{p}^0 given \mathbf{x}^0 . The variables in the vector \mathbf{p} are called *Lagrangian multipliers* or *shadow prices*.

Example: Suppose **x** is a vector of policy variables available to a firm, $g(\mathbf{x})$ is the firm's profit, and excess inventory of inputs is $h(\mathbf{x},\mathbf{y}) = \mathbf{y} - q(\mathbf{x})$, where $q(\mathbf{x})$ specifies the vector of input requirements for **x**. The firm must operate under the constraint that excess inventory is non-negative.

The Lagrangian $L(\mathbf{x},\mathbf{p},\mathbf{y}) = g(\mathbf{x}) + \mathbf{p} \cdot (\mathbf{y} \cdot q(\mathbf{x}))$ can then be interpreted as the overall profit from operating the firm and selling off excess inventory at prices \mathbf{p} . In this interpretation, a LCP determines the firm's implicit reservation prices for the inputs, the opportunity cost of selling inventory rather than using it in production.

The problem of minimizing in \mathbf{p} a function $t(\mathbf{p}, \mathbf{y})$ subject to $v(\mathbf{p},\mathbf{y}) \geq \mathbf{0}$ is the same as that of maximizing -t(p,y) subject to this constraint, with the associated Lagrangian $-t(\mathbf{p},\mathbf{y}) + \mathbf{x} \cdot v(\mathbf{p},\mathbf{y})$ with shadow prices **x**. Defining $L(\mathbf{x}, \mathbf{p}, \mathbf{y}) = t(\mathbf{p}, \mathbf{y})$ - $\mathbf{x} \cdot \mathbf{v}(\mathbf{p}, \mathbf{y})$, a LCP for this constrained minimization problem is then $(\mathbf{x}^0, \mathbf{p}^0, \mathbf{y})$ such that $L(\mathbf{x}, \mathbf{p}^0, \mathbf{y}) \leq \mathbf{x}$ $L(\mathbf{x}^0, \mathbf{p}^0, \mathbf{y}) \leq L(\mathbf{x}^0, \mathbf{p}, \mathbf{y})$ for all $\mathbf{x} \geq \mathbf{0}$ and $\mathbf{p} \geq \mathbf{0}$. Note that this is the same string of inequalities that defined a LCP for a constrained maximization problem. The definition of L(x, p, y) is in general different in the two cases, but we next consider a problem where they coincide.

2.16.2. An important specialization of the nonlinear programming problem is *linear programming*, where one seeks to maximize $g(x,y) = b \cdot x$ subject to the constraints $h(x,y) = y - Sx \ge 0$ and $x \ge 0$, with S an m×n matrix. Associated with this problem, called the *primal* problem, is a second linear programming problem, called its *dual*, where one seeks to minimize $y \cdot p$ subject to $S'p - b \ge 0$ and $p \ge 0$.

The Lagrangian for the primal problem is $L(x,p,y) = g(x,y) + p \cdot h(x,y) = b \cdot x + p \cdot y - p' S x$. The Lagrangian for the dual problem is $L(x,p,y) = y \cdot p - x \cdot (S'p - b) = b \cdot x + p \cdot y - p' S x$, which is exactly the same as the expression for the primal Lagrangian. Therefore, if the primal problem has a LCP, then the dual problem has exactly the same LCP.

2.16.3. Theorem. If $(\mathbf{x}^0, \mathbf{p}^0, \mathbf{y})$ is a LCP, then \mathbf{x}^0 is a maximand in \mathbf{x} of $g(\mathbf{x}, \mathbf{y})$ subject to $h(\mathbf{x}, \mathbf{y}) \ge \mathbf{0}$ for each $\mathbf{y} \in \mathbf{D}$.

Proof: The inequality $L(\mathbf{x}^0, \mathbf{p}^0, \mathbf{y}) \leq L(\mathbf{x}^0, \mathbf{p}, \mathbf{y})$ gives $(\mathbf{p}^{0} - \mathbf{p}) \cdot h(\mathbf{x}^{0}, \mathbf{y}) \leq 0$ for all $\mathbf{p} \geq \mathbf{0}$. Then $\mathbf{p} = \mathbf{0}$ implies $\mathbf{p}^{0} \cdot \mathbf{h}(\mathbf{x}^{0}, \mathbf{y}) \leq 0$, while taking **p** to be \mathbf{p}^{0} plus various unit vectors implies $h(\mathbf{x}^0, \mathbf{y}) \ge \mathbf{0}$, and hence $\mathbf{p}^0 \cdot h(\mathbf{x}^0, \mathbf{y})$ = 0. These are called the <u>complementary slackness</u> conditions, and state that if a constraint is not binding, then its Lagrangian multiplier is zero. The inequality $L(\mathbf{x}, \mathbf{p}^0, \mathbf{y}) \leq L(\mathbf{x}^0, \mathbf{p}^0, \mathbf{y})$ then gives $g(\mathbf{x}, \mathbf{y}) + \mathbf{x}^0$ $\mathbf{p} \cdot \mathbf{h}(\mathbf{x}, \mathbf{y}) \leq \mathbf{g}(\mathbf{x}^0, \mathbf{y})$. Then, \mathbf{x}^0 satisfies the constraints. Any other **x** that also satisfies the constraints has $\mathbf{p} \cdot \mathbf{h}(\mathbf{x}, \mathbf{y}) \ge 0$, so that $g(\mathbf{x}, \mathbf{y}) \le g(\mathbf{x}^0, \mathbf{y})$. Then \mathbf{x}^0 solves the constrained maximization problem. \Box

2.16.4. **Theorem**. Suppose $g: A \times D \rightarrow \mathbb{R}$ and $h: A \times D \rightarrow \mathbb{R}$ \mathbb{R}^m are continuous concave functions on a convex set **A**. Suppose \mathbf{x}^0 maximizes $g(\mathbf{x}, \mathbf{y})$ subject to the constraint $h(\mathbf{x},\mathbf{y}) \ge 0$. Suppose the *constraint qualification* that for each vector \mathbf{p} satisfying $\mathbf{p} \ge \mathbf{0}$ and $\mathbf{p} \neq \mathbf{0}$, there exists $\mathbf{x} \in \mathbf{A}$ such that $\mathbf{p} \cdot \mathbf{h}(\mathbf{x}, \mathbf{y}) > 0$. [A sufficient condition for the constraint qualification is that there exist $\mathbf{x} \in \mathbf{A}$ at which $h(\mathbf{x}, \mathbf{y})$ is strictly positive.] Then, there exists $\mathbf{p}^0 \ge \mathbf{0}$ such that $(\mathbf{x}^0, \mathbf{p}^0, \mathbf{y})$ is a LCP.

Proof: Define the sets $C_1 = \{(\lambda, z) \in \mathbb{R} \times \mathbb{R}^m | z \in \mathbb{R} \times \mathbb{R}^m \}$ $\lambda \leq g(\mathbf{x}, \mathbf{y})$ and $\mathbf{z} \leq h(\mathbf{x}, \mathbf{y})$ for some $\mathbf{x} \in \mathbf{A}$ and $\mathbf{C}_2 =$ $\{(\lambda, \mathbf{z}) \in \mathbb{R} \times \mathbb{R}^m | \lambda > g(\mathbf{x}^0, \mathbf{y}) \text{ and } \mathbf{z} > \mathbf{0}\}$. Show as an exercise that C_1 and C_2 are convex and disjoint. Since C_2 is open, they are strictly separated by a hyperplane with normal (μ ,**p**); i.e., $\mu\lambda'$ +**pz**' > $\mu\lambda'' + \mathbf{pz}''$ for all $(\lambda', \mathbf{z}') \in \mathbf{C}_2$ and $(\lambda'', \mathbf{z}'') \in \mathbf{C}_1$, This inequality and the definition of C_2 imply that $(\mu, \mathbf{p}) \geq 1$ **0.** If $\mu = 0$, then $\mathbf{p} \neq \mathbf{0}$ and taking $\mathbf{z}' \rightarrow \mathbf{0}$ implies $0 \geq 0$ $\mathbf{p} \cdot \mathbf{h}(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x} \in \mathbf{A}$, violating the constraint qualification. Therefore, we must have $\mu > 0$. Define $\mathbf{p}^0 = \mathbf{p}/\mu$. Then, the separating inequality implies $g(\mathbf{x}^0, \mathbf{y}) \ge g(\mathbf{x}, \mathbf{y}) + \mathbf{p}^0 \cdot h(\mathbf{x}, \mathbf{y})$ for all $\mathbf{x} \in \mathbf{A}$. Since $\mathbf{p}^0 \ge \mathbf{0}$ and $h(\mathbf{x}^0, \mathbf{y}) \ge \mathbf{0}$, taking $\mathbf{x} = \mathbf{x}^0$ implies $\mathbf{p}^{0} \cdot \mathbf{h}(\mathbf{x}^{0}, \mathbf{y}) = 0$. Therefore, $\mathbf{L}(\mathbf{x}, \mathbf{p}, \mathbf{y}) = \mathbf{g}(\mathbf{x}, \mathbf{y}) + \mathbf{g}(\mathbf{x}, \mathbf{y}) + \mathbf{g}(\mathbf{x}, \mathbf{y}) = \mathbf{g}(\mathbf{x}, \mathbf{y}) + \mathbf{g}(\mathbf{x}, \mathbf{y}) = \mathbf{g}(\mathbf{x}, \mathbf{y}) + \mathbf{g}(\mathbf{x}, \mathbf{y}) + \mathbf{g}(\mathbf{x}, \mathbf{y}) = \mathbf{g}(\mathbf{x}, \mathbf{y}) + \mathbf{g}(\mathbf{x}, \mathbf{y}) = \mathbf{g}(\mathbf{x}, \mathbf{y}) + \mathbf{g}(\mathbf{x}, \mathbf{y}) = \mathbf{g}(\mathbf{x}, \mathbf{y}) + \mathbf{g}(\mathbf{x}, \mathbf{y}) + \mathbf{g}(\mathbf{x}, \mathbf{y}) = \mathbf{g}(\mathbf{x}, \mathbf{y}) + \mathbf{g}(\mathbf{x}, \mathbf{y}) = \mathbf{g}(\mathbf{x}, \mathbf{y}) + \mathbf{g}(\mathbf{x}, \mathbf{y}) + \mathbf{g}(\mathbf{x}, \mathbf{y}) = \mathbf{g}(\mathbf{x}, \mathbf{y}) + \mathbf{g}(\mathbf{x}, \mathbf$ $\mathbf{p} \cdot \mathbf{h}(\mathbf{x}, \mathbf{y})$ satisfies $L(\mathbf{x}, \mathbf{p}^0, \mathbf{y}) \leq L(\mathbf{x}^0, \mathbf{p}^0, \mathbf{y})$. Also, $\mathbf{p} \geq \mathbf{0}$ implies $\mathbf{p} \cdot \mathbf{h}(\mathbf{x}^0, \mathbf{y}) \ge 0$, so that $\mathbf{L}(\mathbf{x}^0, \mathbf{p}^0, \mathbf{y}) \le \mathbf{L}(\mathbf{x}^0, \mathbf{p}, \mathbf{y})$. Therefore, $(\mathbf{x}^0, \mathbf{p}^0, \mathbf{y})$ is a LCP.

2.16.5. **Theorem**. Suppose maximizing $g(\mathbf{x})$ subject to the constraint $q(\mathbf{x}) \leq \mathbf{y}$ has LCP $(\mathbf{x}^0, \mathbf{p}^0, \mathbf{y})$ and $(\mathbf{x}^0 + \Delta \mathbf{x}, \mathbf{p}^0 + \Delta \mathbf{p}, \mathbf{y} + \Delta \mathbf{y})$. Then $(\mathbf{p}^0 + \Delta \mathbf{p}) \cdot \Delta \mathbf{y} \leq g(\mathbf{x}^0 + \Delta \mathbf{x}) - g(\mathbf{x}^0) \leq \mathbf{p}^0 \cdot \Delta \mathbf{y}$.

Proof: The inequalities $L(\mathbf{x}^0 + \Delta \mathbf{x}, \mathbf{p}^0, \mathbf{y}) \leq L(\mathbf{x}^0, \mathbf{p}^0, \mathbf{y})$ $\leq L(\mathbf{x}^0, \mathbf{p}^0 + \Delta \mathbf{p}, \mathbf{y})$ and $L(\mathbf{x}^0, \mathbf{p}^0 + \Delta \mathbf{p}, \mathbf{y} + \Delta \mathbf{y}) \leq L((\mathbf{x}^0 + \Delta \mathbf{x}, \mathbf{p}^0, \mathbf{y} + \Delta \mathbf{y}))$ imply $L(\mathbf{x}^0, \mathbf{p}^0 + \Delta \mathbf{p}, \mathbf{y} + \Delta \mathbf{y}) - L(\mathbf{x}^0, \mathbf{p}^0 + \Delta \mathbf{p}, \mathbf{y}) \leq L((\mathbf{x}^0 + \Delta \mathbf{x}, \mathbf{p}^0 + \Delta \mathbf{p}, \mathbf{y} + \Delta \mathbf{y})) - L(\mathbf{x}^0, \mathbf{p}^0, \mathbf{y}) \leq L((\mathbf{x}^0 + \Delta \mathbf{x}, \mathbf{p}^0, \mathbf{y} + \Delta \mathbf{y})) - L(\mathbf{x}^0, \mathbf{p}^0, \mathbf{y}) \leq L((\mathbf{x}^0 + \Delta \mathbf{x}, \mathbf{p}^0, \mathbf{y} + \Delta \mathbf{y})) - L(\mathbf{x}^0 + \Delta \mathbf{x}, \mathbf{p}^0, \mathbf{y})$. Then, cancellation of terms gives the result. \Box

This result justifies the interpretation of a Lagrangian multiplier as the rate of increase in the constrained optimal objective function that results when a constraint is relaxed, and hence as the shadow or implicit price of the constrained quantity.

Classical Programming Problem

Consider the problem of maximizing $f:\mathbb{R}^n \to \mathbb{R}$ subject to equality constraints

$$\begin{aligned} h^{j}(\mathbf{x}) - c_{j} &= 0 \\ h(\mathbf{x}) - \mathbf{c} &= \mathbf{0} \end{aligned} \ \ \, \text{for } j &= 1, \dots, \text{ m (in vector notation, } \\ h(\mathbf{x}) - \mathbf{c} &= \mathbf{0} \end{aligned}$$

where m < n.

Lagrangian: $L(x,p) = f(x) - p \cdot [h(x) - c]$

The vector (x°,p°) is said to be a local (interior) Lagrangian Critical Point if

(11)
$$L_x(x^o, p^o) = 0, L_p(x^o, p^o) = h(x^o) - c = 0, and$$

 $z'L_{xx}(x^o, p^o)z \le 0$ if z satisfies $h_x(x^o)z = 0$,

where p° is unconstrained in sign.

Theorem. If (x°,p°) is a local LCP and $z'L_{xx}(x^{\circ}p^{\circ})z < 0$ if $z \neq 0$ satisfies $h_x(x^{\circ})z = 0$, then x° is a unique local maximum of f subject to h(x) = 0.

Proof: Note that $0 = L_p(x^o, p^o) = h(x^o) - c$ implies that x^o is feasible, and that $L(x^o, p^o) = f(x^o)$. A Taylor's expansion of $L(x^o + \theta z, p^o)$ yields

$$L(x^{o}+\theta z,p^{o}) = L(x^{o},p^{o}) + \theta L_{x}(x^{o},p^{o}) \cdot z + (\theta^{2}/2)z'L_{xx}(x^{o},p^{o})z + R(\theta^{2}),$$

the $R(\theta)$ term is a residual.

Theorem. If (x°,p°) is a local LCP and $z'L_{xx}(x^{\circ}p^{\circ})z < 0$ for all $z \neq 0$ satisfying $h_x(x^{\circ})z = 0$, then x° is a unique local maximum of f subject to h(x) = 0.

Proof: Note that $0 = L_p(x^o, p^o) = h(x^o) - c$ implies that x^o is feasible, and that $L(x^o, p^o) = f(x^o)$. Taylor's expansions yield

$$f(x^{o}+\partial z) = f(x^{o}) + \partial f_{x}(x^{o}) \cdot z + (\partial^{2}/2) z' f_{xx}(x^{o}) z + R(\partial^{2}),$$

 $h(x^{o}+\partial z) = c + \partial h_x(x^{o}) \cdot z + (\partial^2/2) z' h_{xx}(x^{o}) z + R(\partial^2),$

the $R(\theta)$ terms are residuals.

Using $L_x(x^{o},p^{o}) = 0$,

$$L(x^{\circ}+\theta z,p^{\circ}) = L(x^{\circ},p^{\circ}) + \theta L_{x}(x^{\circ},p^{\circ}) z + (\theta^{2}/2)z'L_{xx}(x^{\circ},p^{\circ})z + R(\theta^{2})$$

 $= f(x^{o}) + (\theta^{2}/2)z'L_{xx}(x^{o}, p^{o}, q^{o})z + R(\theta^{2})$

A point $x^{\circ} + \theta z$ satisfying the constraints, with θ small, must satisfy $h_x(x^{\circ})z = 0$. Then, the negative semidefiniteness of L_{xx} subject to these constraints implies

$$\begin{array}{l} f(x^{\circ} + \theta z) \leq f(x^{\circ}) + (\theta^{2}/2)z'L_{xx}(x^{\circ}, p^{\circ})z \ + R(\theta^{2}) \\ \leq f(x^{\circ}) \ + \ R(\theta^{2}). \end{array}$$

If L_{xx} is negative definite subject to these constraints then the SOC is sufficient for x° to be a local maximum. \Box

Theorem. If x° maximizes f(x) subject to h(x) - c = 0, and the constraint qualification holds that the m×n array B = $h_x(x^{\circ})$ is of full rank m, then there exist Lagrange multipliers p° such that (x°,p°) is a local LCP.

Proof: The hypothesis of the theorem implies that

$$f(x^{o}) \ge f(x^{o} + \theta z)$$

= f(x^{o}) + \theta f_{x}(x^{o}) \cdot z + (\theta / 2)z' f_{xx}(x^{o})z + R(\theta)

for all z such that

$$c = h(x^{\circ} + \theta z)$$

= c + $\theta h_x(x^{\circ}) \cdot z + (\theta^2/2) z' h_{xx}(x^{\circ}) z + R(\theta^2).$

Taking θ small, these conditions imply

 x^{o})·z = 0 and z'f_{xx}(x^{o})z for any z satisfying $h_{x}(x^{o})$ ·z = 0

ecall that $B = h_x(x^\circ)$ is m×n of rank m, and define the lempotent) n×n matrix $M = I - B'(BB')^{-1}B$. Since BM 0, each column of M is a vector z meeting the indition $h_x(x^\circ) \cdot z = 0$, implying that $f_x(x^\circ) \cdot z = 0$, or

$$0 = Mf_x(x^o) = f_x(x^o) - h_x(x^o)' p^0,$$

nere

$$p^{0} = (BB')^{-1}Bf_{x}(x^{0}).$$

Define L(x,p) = f(x) - p [h(x) - c]. Then

(21)
$$L_x(x^o, p^o) = f_x(x^o) - h_x(x^o)' p^o$$

= $[I - B'(BB')^{-1}B]f_x(x^o) = 0.$

The construction guarantees that $L_p(x^o, p^o) = 0$. Finally, Taylor's expansion of the Lagrangian establishes that $z'L_{xx}(x^o, p^o)z \le 0$ for all z satisfying $h_x(x^o) \cdot z = 0$. Therefore, the constrained maximum corresponds to a local LCP. \Box