Existence of Walrasian Equilibrium

Theorem (Grandmont-McFadden, 1972)

Define the closed unit simplex $\mathbf{U}^* = \{\mathbf{p} \in \mathbb{R}^m \mid \mathbf{p} \ge \mathbf{0} \text{ and } \mathbf{1} \cdot \mathbf{p} = 1\}$ and the open unit simplex $\mathbf{U}^0 = \{\mathbf{p} \in \mathbf{U}^* \mid \mathbf{p} >> \mathbf{0}\}$. Suppose there exists a set \mathbf{U} with $\mathbf{U}^0 \subseteq \mathbf{U} \subseteq \mathbf{U}^*$ and an excess demand correspondence ζ that maps \mathbf{U} into non-emply subsets of \mathbb{R}^m and satisfies

(a) ζ is bounded below; i.e., there exists $\mathbf{b} \in \mathbb{R}^m$ such that $\mathbf{b} \leq \mathbf{x}$ for all $\mathbf{x} \in \zeta(\mathbf{p})$, $\mathbf{p} \in \mathbf{U}$;

- (b) For each $p \in U$, $\zeta(p)$ is a convex set, and $p \cdot x \leq 0$ for all $x \in \zeta(p)$;
- (c) ζ is upper hemicontinuous on **U**; i.e., the graph {(\mathbf{p}, \mathbf{x}) \in **U**× \mathbb{R}^m | $\mathbf{x} \in \zeta(\mathbf{p})$ } is a closed subset of $\mathbb{R}^m \times \mathbb{R}^m$.

Then there exists a $\mathbf{p}^* \in \mathbf{U}$ and a $\mathbf{x}^* \in \zeta(\mathbf{p}^*)$ such that $\mathbf{x}^* \leq \mathbf{0}$.

Proof: Let $\mathbf{U}^k = {\mathbf{p} \in \mathbf{U}^0 \mid p \ge (1/mk,...,1/mk)}$; then the \mathbf{U}^k are convex and compact and their union is \mathbf{U}^0 . Let \mathbf{X}^k denote the closed convex hull of ${\zeta(\mathbf{p}) \mid \mathbf{p} \in \mathbf{U}^k}$. Property (a), property (b) that $\mathbf{p} \cdot \mathbf{x} \le 0$ for all $\mathbf{x} \in {\zeta(\mathbf{p})}$, and the definition of \mathbf{U}^k imply that \mathbf{X}^k is bounded, and hence compact. For $(\mathbf{x},\mathbf{p}) \in \mathbf{X}^k \times \mathbf{U}^k$, define a mapping η into non-empty subsets of $\mathbf{X}^k \times \mathbf{U}^k$ by

$$\eta(\mathbf{x},\mathbf{p}) = \{(\mathbf{x}',\mathbf{p}') \in \mathbf{X}^k \times \mathbf{U}^k \mid \mathbf{x}' \in \zeta(\mathbf{p}) \text{ and } \mathbf{p}' \cdot \mathbf{x} \ge \mathbf{p}'' \cdot \mathbf{x} \text{ for all } \mathbf{p}'' \in \mathbf{U}^k\}.$$

The maximands of a linear function $\mathbf{p}'' \cdot \mathbf{x}$ on the compact convex set \mathbf{U}^k form an upper hemicontinuous, convex valued correspondence. Together with properties (b) and (c) of ζ , this implies that η is an upper hemicontinuous, convex-valued correspondence on $\mathbf{X}^k \times \mathbf{U}^k$. A fixed point theorem of Kakutani (1941) then guarantees that there exists $(\mathbf{x}^k, \mathbf{p}^k)$ such that $(\mathbf{x}^k, \mathbf{p}^k) \in \eta(\mathbf{x}^k, \mathbf{p}^k)$. Then $\mathbf{x}^k \in \zeta(\mathbf{p}^k)$ and $0 \ge \mathbf{p}^k \cdot \mathbf{x}^k \ge \mathbf{p} \cdot \mathbf{x}^k$ for all $\mathbf{p} \in \mathbf{U}^k$. Consider the sequence $(\mathbf{x}^k, \mathbf{p}^k)$, k = 1, 2, ... Property (a) and $\mathbf{p}^1 \cdot \mathbf{x}^k \le 0$ imply that this sequence is bounded. Hence, it has a subsequence converging to a limit point $(\mathbf{x}^0, \mathbf{p}^0)$. Property (c) implies $\mathbf{x}^0 \in \zeta(\mathbf{p}^0)$, while the property $0 \ge \mathbf{p} \cdot \mathbf{x}^k$ for all $\mathbf{p} \in \mathbf{U}^k$ implies $0 \ge \mathbf{p} \cdot \mathbf{x}^0$ for $\mathbf{p} \in \mathbf{U}^0$, since each $\mathbf{p} \in \mathbf{U}^0$ is contained in \mathbf{U}^k for k sufficiently large. This in turn implies $\mathbf{0} \ge \mathbf{x}^0$.