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Jerry A. Hausman and David A. Wise
10.1 Introduction

Unbiased parameter estimates, although illusory, are thought by many
researchers to be the primary objective of empirical analysis in the social
sciences in general and of econometric analysis in particular. In a technical
sense unbiased estimation of the parameters of a behavioral model requires
that the independent measured variables of the specification be un-
correlated with unmeasured variables not explicitly accounted for in the
analysis, rather captured only in spirit through a stochastic (or error) term.
We normally think of correlation between independent variables and the
error term as arising from improperly excluded variables, simultaneous
relationships, or inaccurately measured independent variables. But such
correlation may also be artificially induced, often unintended, through
sample selection. Sample selection is not always random ; in fact it is often
systematically nonrandom. Stratification based on endogenous variables is
a prevalent example. '

Individual data in the social sciences are often collected by survey. The
selection of persons to be surveyed is often based on a stratified sample
design, with random sampling within strata. The proportions of obser-
vations within strata—for example, defined by levels of income and
education—do not necessarily reflect population proportions, as they
would if the sample were selected randomly from the population at large. In
general this does not pose a problem for empirical analysis based on survey
data if stratification is based on exogenous variables only. That s, unbiased
estimates of behavioral parameters may be obtained, for example, by
standard regression techniques.! But often variables considered as en-
dogenous to the model whose parameters are to be estimated are also the
basis for stratification.

The research was performed pursuant to contract number HEW 100-76-0073 from the
Department of Health, Education, and Welfare, Washington, D.C. The opinions and
conclusions expressed herein are solely those of the authors and should not be construed
as representing the opinions or policy of any agency of the United States government.
This study was part of continuing analysis of the Gary experiment at Mathematica
Policy Research. The authors aiso acknowledge research support of the National Science
Foundation. Research assistance was provided by G. Burtless. We have benefited from
comments by Charles Manski, John Pratt, and Roy Radner and from the comments of
two referees for this volume.
1. There may, however, be questions about extrapolation of the results beyond the
sample range of independent variables.
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Many major surveys, some conducted in conjunction with social
experiments, are characterized by endogenous stratification.” The selection
of participants in the New Jersey negative income tax experiment is an
extreme example; see Hausman and Wise (1977a). No families with
incomes greater than one and one-half times the poverty level were
sampled. The income maintenance experiments in Gary and
Seattle-Denver followed a less extreme selection procedure. Although
higher income families were not excluded from these experiments, they
were undersampled. In Gary this was particularly true of families with
incomes greater than 2.4 times the poverty level. Even below that level
families were grouped into intervals defined by multiples of the poverty
Jevel. Sampling proportions within the intervals did not necessarily reflect
population proportions.?

We present in this chapter alternative methods of correcting for
endogenous sampling in order to obtain consistent estimates of population
parameters. If sample-versus-population proportions within strata are
known, either weighted least squares or a more efficient maximum
likelihood procedure may be used. If these proportions are not known, they
may be estimated along with behavioral parameters using our proposed
maximum likelihood procedure. Although possibly not immediately
transparent, it should become clear that the methods we propose here are
conceptually parallel to the estimation procedures proposed by Manski
and Lerman (1977) and Manski and McFadden (chapter 1) under condi-
tions of choice-based sampling. But our procedures are directed toward esti-
mation with continuous endogenous variables, while theirs are directed at
estimation in discrete (or qualitative) choice situations. The underlying
problem—the likelihood that an observation is in the sample depends on
the value of an endogenous (or outcome) variable—is the same, however.

2. The 1967 survey of economic opportunity also undersampled high income families. So
did the University of Michigan panel study of income dynamics that resurveyed part of
the survey of economic opportunity sample. The use of any of these data sets to estimate
behavioral relationships that treat earnings or components of earnings (wages and hours
worked) as endogenous variables will lead to biased and inconsistent estimates of
population parameters.

3. In attempting to estimate the treatment effect of this experiment, we found that there
were two potentially serious statistical problems: one was attrition and the other, sample
selection. We found that either of these probiems could be handled individually without
undue complication but that treating them simultaneously, although conceptually
straightforward, would present a somewhat complicated estimation problem. Thus we
have used preexperimental (baseline) data, before attrition became a matter of concern,
in this chapter. A primary goal was to see whether or not correction for sample selection
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10.2 The Problem of Endogenous Sampling and Estimation
Methods

We shall focus the conceptual formulation of the problem on the sample
selection procedure foliowed in the Gary income maintenance experiment.
The proposed method of estimation is in no way peculiar to this
experiment.

Approximately 2,600 families were drawn at random from certain
geographic areas in Gary, Indiana, for the experiment.* But only about
1,800 families actually participated. To select the 1,800, families were
stratified by income as well as by exogenous variables. Five income
intervals were defined by multiples of the poverty level, and families were
selected at random from within the intervals ; but the within interval totals
were not intended to reflect population proportions.

While for estimation purposes it is necessary to assume a precise
formulation of the sampling procedure, we do not in fact have a precise
description of the process followed in the Gary experiment. Consequently
we obtained approximate accounts from persons knowledgeable about the
early phases of the experiment and assumed a process that we think
represents a good approximation to the true procedure: (1) a family was
selected at random, (2) the family was classified according to five income
intervals, (3) the family was retained in the sample with some probability
that depended on its income interval, and (4) this procedure was followed
until a sample size of 1,800 was obtained. We assume that the 1,800 was
fixed by the sample design rather than the 2,600. There are several other
reasonable possibilities. We shall develop a statistical model and obtain
empirical estimates based on these assumptions. Then we shall discuss
other plausible procedures and statistical models that correspond to them.

lead to parameter estimates that were substantially different from those obtained without
correction. We previously found that the extreme form of sample selection in the New
Jersey experiment lead to seriously biased estimates of behavioral parameters (see
Hausman and Wise 1976, 1977). The much less severe sampling procedure followed in
the Gary experiment, however, does not seem to produce large bias in parameter
estimates. Thus we have concluded that evaluation of experimental results without
explicit corrections for sample selection would not in this case yield substantial
inaccuracies. In particular we have in another paper proposed a method of correcting for
attrition bias and have presented estimates based on it that do not at the same time
correct for sample selection bias (see Hausman and Wise 1977b).

4. All the families were black, and there had to be at least one dependent under the age
of 18 present in the household. The majority of the families were headed by feinales. For
more detail see Kehrer et al. (1975).
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We shall begin by assuming only two income intervals. Assume that in
the population, income ¥ =Xp + ¢, with Y given X distributed normally
with mean Xp, variance ¢2, and density function denoted by f(Y | X).
Assume that below some level L a proportion P; of arandom sample of the
population is in fact sampled and above L, a proportion P,. (Note that with
purely random sampling these proportions would have expected value
equal to one.) These values may be thought of as the probabilities of
retaining randomly sampled values. The density function 4 of Y given X in
the sample can be written as

T LAY ' (10.1)
ify>L,

P, PriY<L]+P, Pr{Y>L}

where fis the normal density function N(X8, a?). The distribution of ¥ for
any given X, say X*, would not be smooth like that of the normal. The
distribution might look something like the one in figure 10.1, where the
solid line represents a normal distribution and the dashed line the
distribution in our sample. There is a discontinuity at the point L with

Figure 10.1

greater density relative to the normal below L and less density above. The
denominator in (10.1) can be thought of as a mormalizing constant,
assuring that the integral over 4(y) with respect to y is one. Note that we
cannot identify both P, and P,, only their ratio. We divide through by P,
and let P,/ P, = P and rewrite the probabilities in the denominator, giving
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f(y)

A p , Ify<L,
f S(y)dy +P'J‘f(y)dy
hy)={ P-f(y)L | (10.2)
3 = , ify>L,
Jf(y)dy+P'ff(y)dy
N - L

Note that, if no persons are sampled above L, so that P, = 0 (and thus P),
equation (10.2) reduces to the density of a truncated distribution (as shown
in Hausman and Wise 1977, equation 1.4). Thus complete truncation can
be seen to be a special case of this more general possibility.

The expected value of Y given X can be obtained in a straightforward
manner by integration over the density function shown in equation (10.2).

It is

(1 — P)oI(L; — X;B)/o]

1 — PYD[(L;, — X;B)/c]1+ P’ (10.3)

E(Y|X)=xp—a(

where ¢ is a unit normal density function and @ the corresponding
distribution function. Note that this expression reduces to the expected
value of a truncated distribution when P = 0, which of course indicates
complete truncation of the distribution at L. We see also that it equals Xp
when sample selection is random.?

If we write Pr[Y; < L], as ®[(L — X;B)/s] = ®,, and divide the sample
into N, persons with ¥ < L and N, with y > L, we can write the log
likelihood function as

S. The form of equation (10.3) suggests an estimator not discussed in the text. If P, and
P, were known, a probit specification could be used to estimate §/o, allowing estimation
of values for ¢ and ® in equation (10.3). Using the fitted value of {(1 — P)¢[ - 1}/{(1

— P)®[ ] + P}, consistent estimates of both g and ¢ could be obtained by ordinary least
squares regression of Y on X and the fitted value. This procedure is related to those
proposed by Heckman (1976) and Lee, chapter 9, for censored models. The extension of

this approach to more groups (strata) is outlined in note 7.
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Ny

L='§ Inf(y)— 2 (@ +P(l-D)
+_i§ InP+ Z Inf(y)— Z In (@ + P(1 — @)

Inf(y) — i In(P+ (1 ~P)d)+ NyInP. (10.4)

1 i=1

=

il

For convenience we let the index 7 begin at 1 in both groups, instead of
letting it run from 1 to N, and from N, + 1to N,, for example. We use this
convention throughout the chapter. It should be clear from the context
what the more precise notation would be. Maximization of this function
would lead to a maximum likelihood estimate for P as well as for § and o.
Or, if P were known, it could be maximized with respect to g and ¢ only.®

Xp

Figure 10.2

It is easy to extend the idea to more income groups. Assume that the five
groups in the Gary experiment are defined by the points L;, Lo, . . ., Ls.
Then, given X, the distribution of ¥ might look something like the dashed
representation in figure 10.2. Let the proportion of a random sample ofthe
population below L,, that is, selected, be P, between L, and L, be P,, and
so on, and above L, be P;. Again we normalize by dividing each
proportion by P,. In the following we will use P,, P;, P,, and P but
understand them to be P,/ P;, P3/ P, and so on. Then the density function
of Y is given by
6. N, and N, = N — N, are assumed random in the sampling procedure. N =N, + N, is

given. An alternative sampling procedure is to fix N, and N,. That is, N, values are
sampled below L and N, above. This possibility is discussed in some detail in section

10.5.



Stratification on Endogenous Variables and Estimation 371
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3

L; La )
J S(yydy + P, Jf(y)dy+ A o J-f(y)dy
- L, La

ify<lL,,
P f(y)

h(y)= ’ (10.5)

L, L> ©
J f(»dy + P, Jf(y)dy+“'+Ps Jf(y)dy

ifL, <y<L,,

Psf(»)

»

L, Ly ©
f f(y)dy + P, jf(y)dy+ o+ P Jf(y)dy
- Ly La

if Ly <y.

If welet ®[(L, — XB)/o} = ®,, and so on, we can again write the expected
value of Y given X as :

E(Y|X)=Xp
e (1 — P)p, + (P, — P3)py + (P3 — Pu)gps + (Py — Ps)ps
(1—P2)®1+(P2—P3)(I>2+(P3—P4)(D3+(P4—P5)(D4+P5'

(10.6)

The last term of course is an indicator of sample selection bias; if all
proportions were 1, the expected value would be Xp.” We see that it is no
longer straightforward to evaluate the direction of the bias. It depends on
the relative values of the proportions P,, ..., Ps. They may have

7. The estimator suggested in note 6 could be extended to this more complex situation as
well, if P, through P, were known. Let the bias term in equation (10.6) be V. Then the
elements of V could be estimated using ordered probit analysis, and next § and ¢ by
regressing ¥ on X and the fitted value of V. Probit analysis can be used here, even
though there are several groups, because the groups are ordered. Let

I, = Pr(y is observed and —co <y <L |X)
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offsetting effects, for example. But we can observe that, if the sampling
proportions decrease consistently with income, the bias will be negative.?

In practice both y and L would be indexed by i to indicate the i th family.
If we let ®[(L,; — X;)/a] = ®,;, and so on, and N, be the number of
observations below L,, N, the number between L, and L,, and so on, we
can write the log likelihood function for this case as

L= Inf(y)-— Z In{(1 = P,)®; + (P, — Py)D,;
i=1

i

+ (P3 — P)®;; + (P4 — Ps5)Py; + Ps]
+ N,InP, + N3InP; + N,inP, + NsInPs. (10.7)

As in the first example maximization of L would yield estimates for B, ¢°.
and the proportions P, through Ps, if they were unknown.

Note that one could test the hypothesis of population proportions under
the normality assumptions by testing the hypothesis that P, through P, are
all equal to one. Each could also be tested individually. If the hypothesis
that they are all equal to one cannot be rejected, then it seems reasonable to
assume random sampling.

The proportions P, through P are often known, at least approximately.
For example, for each income interval of the Gary data it is possible to
calculate the approximate ratio of the number of persons in the actual
sample to the number in a larger random sample. In some instances one
could make use of population-versus-sample frequencies within intervals.

Li— XB)e
=P _r P(u)du,

I, = Pr(y i-smobserved and L, <y <L, |X)
L;—Xpe

=Py P(u)du,
(Li - XBio

and so on through IT5. Construct the likelihood function

™=

L=

i

5
Z InIL} ,

1

where y,; equals 1 if y is in the jth income interval and 0 otherwise. Maximization of L
will yield estimates of /¢, which can in turn be used to estimate the elements of V.

8. Equation (10.6) does not of course indicate the magnitude of the bias in individual
elements of the vector of parameters p. In practice, however, the bias in individual
parameters tends toward 0.
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But if the proportions are known, it seems intuitively plausible that
weighted least squares would also yield consistent estimates. The idea can
be motivated by referring again to figure 10.1. Consider a particular value
of X, say X*. Because a random sample would include approximately two
times as many observations above L as there in fact are, we would like to fill
in these missing points. This can be done by using inverse sampling weights.
If P is the proportion of observations above L in a random sample actually
sampled, then 1/P would be the expected number of observations in a
random sample. If again we divide the sample into two groups, with N,
below and N, above L, we minimize the expression

N1 1 Ny

S=Y (Y-Xp+35 2 (Y- XpP (10.8)
i=1 i=1

More generally, if for each value Y, we associate a sampling proportion

P—Dby determining in which income interval Y, falls—we minimize the
expression

M=

S =

i

1
7 (Yi— X.B)%, (10.9)

"

1

which is of course equivalent to weighted least squares with the weights
given by 1 /\/}Ti . As with the maximum likelihood estimates we can
normalize by dividing each P, by the value of P associated with values of ¥
below L,, P, in our terminology. To draw an explicit comparison with the
likelihood function in equation (10.7), the sample can be broken into five
groups and S written as

=

1

F( Y, - X:p)*, (10.10)

5
S=Y
j=1
where 1/P, = 1. The log likelihood function analogous to this expression

189

il

9. Estimates of § could be obtained by weighted least squares in the usual way or by
maximizing this function.
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(10.11)
5 N. N. Yool (Y. ~-XpB)\?
—_ 4 - —_ PEESNNY el S
= 2 { 7 In./2=n 5 Ino __E 2Pj( - ) }

The relative efficiency of maximum likelihood versus weighted ieast
squares estimates is discussed in the next section. Both are consistent. We
shall show, however, that the maximum likelihood estimates based on the
density function shown in equation (10.5), and the corresponding like-
lihood function of equation (10.7), are likely to be more efficient than the
weighted least squares estimates, or identical estimates obtained from
maximization of the analogous likelihood function shown in equation
(10.11). If the sampling ratios are not known, as at first appeared to be the
case with the Gary data, a maximum likelihood procedure must of course
be used, with the weights estimated along with the behavioral parameters.

The maximum likelihood procedure proposed in this section can easily
be extended to accomodate two time periods, or a two-equation—wages
and hours worked—model. But because our empirical results based on pre-
experimental data do not suggest substantial sample selection bias, we have
not extended the analysis here. We have, however, sketched out the density
and corresponding likelihood functions applicable to these extensions in

the appendix.

10.3 Relative Efficiencies of Weighted Least Squares versus
Maximum Likelihood Estimates

Only when the sampling proportions P; are known can weighted least
squares estimates be obtained. Thus only in this case does it make sense to
compare the variances of weighted least squares with maximum likelihood
estimates. In practice these proportions or their approximate values are
likely to be known.

Although the weighted least squares estimates do not depend on
distributional assumptions, because of the stratification of the endogenous
variable, both their expected value and variance do. Not surprisingly,
standard errors calculated from a weighted least squares regresston are not
consistent estimates of the true standard errors, even asymptotically.!® On

10. We have reported the calculated weighted least squares standard errors in the results,
however.
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the other hand, the maximum likelihood estimates themselves depend on
distributional assumptions. Given that the distributional assumptions are
correct, however, the maximum likelihood estimates are more efficient than
weighted least squares. And standard errors are provided easily by
applying asymptotic distribution theory relevant to maximum likelihood
estimates. But because the weighted least squares estimates are distribution
free, they provide a check on the distributional assumptions used to obtain
maximum likelihood estimates. Both estimates are asymptotically unbiased.

As we will see, the relative efficiencies of these two estimators depend on
several parameters. To obtain some idea of the orders of magnitude that
one might expect, we consider a case with only two strata and in which only
the expected value of the dependent variable is to be estimated, without
variables X. This gives a reasonable indication of relative efficiencies when
the expected value depends on a vector of parameters.

The model we consider is of the form

Y;=B+¢, (10.12)

where the ¢, are independently distributed as N(0, ¢2). Assume that Y is
divided into two strata defined by point L as shown in figure 10.1 and as
discussed in section 10.2. For convenience we continue to use both £, and
P, (as opposed to their ratio P). Recall that because ordinary least squares,
OLS, yields an unbiased estimate of the sample mean, the expectation
of the OLS estimate, Y, is

. (P, = P)S((L - B)Jo)
Bbows =B =95, (P, — PO - Blo) (10.13)

which is analogous to equation (10.2) with P relaced by P,/ P,. Note that, if
P, is greater than P, (values of Y greater than L are oversampled), the bias
is positive. It is negative if values less than L are oversampled, so that P, is
greater than P,.

The weighted least squares, WLS, estimate of f is found by minimizing
the expression

S=F L(r-pF=Y (Y- py
s P el S
N,
+ PL(Y,-—B)Z, (10.14)

i=1 2
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where N, of the values in the sample fall below L and N, above. This is 2
special case of equation (10.9). The estimate is given by

5 N, N\RvYy By
pos=(505) [E 72 5 7 1013
If the Y; are normally distributed, the expected value of Y; for ¥; <L is
given by § — o(¢/®), and for ¥; > L by B + a(¢/(1 — D)), where both ¢
and @ are functions of (L — B)/o. Although the weighted least squares
estimator of §is not unbiased, in general it is consistent and asymptotically
unbiased. Given N, (and thus N, = N — N,), its expected value is given by

) N, NN N ¢ N, ¢
E N,) = L2 ¥ e .
(Bwis | N1) 'B+(P1 + Pz) [ P, G(I)+P261 —(I)] (10.16)

As N gets large, N, goes to PLON/D,and N, =N — N,to P,(1 — ®)N/D,
where D = P,® + P,(1 — ®). The second term of (10.16) is zero when
these values are substituted for N, and N,."*

The derivation of the variance of the weighted least squares estimator is
complicated by the fact that N, (and N,), as well as the Y, are random
variables. If we use the property that the variance of § is equal to
E[Var(f | Ny)] + Var[E(f | Ny)], we can write it as

] N, N\"*M, L- 2
a2 B4 2:5)
Nof L-8 ¢ ¢’
+T>’( “’2( s 1—@‘(1—@2))]}

N NA\! N o N ¢
Y Mo, 72 _h Y2 ¥
+ ar{,3+(Pl+P2) [ P10d>+P261—(I>

= E{f(Ny)} +Var {g(N)}, (10.17)

where f and g are defined by the last equality. By using appropriate
asymptotic Taylor expansions of both f and g, the variance can be
approximated by

11. By expanding the second term in (10.16) around the expected value of N, it can be
shown that the expected value of this term with respect to N, goes to zero at the rate of
1/N.
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] DO L- 2
Var(fwys) = PI—N':O-Z - (—a/i g‘ + %):l
D(1-9) L- ¢ ¢’
tTTPAN ["2“’2( o 1—<1>_(1—<1>)2>]

+P1(I)-P2(l—~d))'¢»2-az 1-® OV 1 1 2’
N P, PJ)\o 1-o

(10.18)

where the first two terms come from E{f(N,)} and the third from
Var{g(N,)}. The last term essentially represents the variance in the estimate
due to the randomness of N;.

The correct variance is not given when a standard regression program is
used to calculate the weighted least squares estimates. The correct variance
is also considerably more difficult to calulate than the maximum likelihood
variance.

A maximum likelihood, ML, estimate for § may be obtained by
maximization of a function analogous to (10.4).!? The variance of the
asymptotic distribution of the maximum likelihood estimator of § is given

by

s o[ (P=P) (L-B _ (P—P)p \]|
Var(BML)_N[l P2+(P1——P2)<D( o +Pz+(P1—P2)¢):| ’

(10.19)

using the appropriate term from the information matrix. Note that it
equals ¢?/N when P, = P, and increases as P, approaches zero.

To compare the relative efficiencies of maximum likelihood and
weighted least squares estimates, we need to make some simplifications,
since both estimators depend on L, B, and o, as well as P, and P,. As
discussed in the previous section, we need only consider the ratio of P, and
P,; we accomplish this by setting P, = 1. We also set L =0and o = 1.
Ratios of the weighted least squares to the maximum likelihood variance
for various values of P, and B are given in table 10.1.

12. The case of known P; yields a likelihood function very similar to those corresponding
to tobit and standard truncation situations. Amemiya’s (1973) proofs of the properties of
maximum likelihood estimators can be altered in a straightforward way and applied here.
His proofs, however, cannot be as easily extended to cover the case of unknown P,.
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Table 10.1
Relative efficiency of maximum likelihood versus weighted least squares estimates

for selected values of P, and f

P, B=0 B =0.5 g=1 g=2
0.01 9.906 5.439 3.818 4.506
0.10 1.736 1.524 1.696 1.748
0.20 1.291 1.256 1.379 1.325
0.30 1.148 1.149 1.225 1172
0.50 1.045 1.053 1.080 1.054
0.70 1.012 1.015 1.022 1.014
0.80 1.005 1.006 1.009 1.006
0.90 1.001 1.001 1.002 1.001
0.99 1.000 1.000 1.000 1.000
1.00 1.000 1.000 1.000 1.000

The gain in efficiency from using maximum likelihood instead of
weighted least squares is small, as long as P, is greater than 0.5. But the
relative efficiency of maximum likelihood becomes substantial if P, is less
than 0.3, say. It should be emphasized, however, that the maximum
likelihood asymptotic variance is much easier to calculate for any values of
P, (as well as the other parameters), although weighted least squares
estimates themselves may be easier to obtain. The relative efficiencies are
not affected very much by j except at very low levels of P,. One might
conclude that weighted least squares would give a good indication of the
importance of endogenous stratification, when compared to least squares
estimates, as long as P, were not very small.

Relative efficiencies in the more general case with ¥, = X + ¢;, where B
is a vector of parameters, would be developed analogously, with f§ replaced
by the conditional expectation X,f. But in this case the conditional
expectation depends on X as well as B, and the variance calculations depend
on the values of X in the sample. Thus it is impossible to present simple
comparisons like those in table 10.1. Presumably the same considerations
apply, however. For P, close to one, weighted least squares should entail
little loss of efficiency. The analysis also could be extended to more strata
and associated values P, There seems to be no straightforward way to
compare efficiencies in this case either, and in addition our results for two
strata may provide a less reliable guide for this more complicated case.
However, one might suspect that very low values of P, with respect to any
strata tend to lower the relative efficiency of weighted least squares.
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10.4 Empirical Results of the Selection Bias in the Gary Income
Maintenance Experiment

We will first describe briefly the sample selection procedure followed in the
Gary experiment. (For a more detailed discussion see Kehrer et al. 1975.)
Then we will compare maximum likelihood and weighted least squares
estimates—that correct for sample selection—with least squares estimates
obtained with no attempt to correct for selection bias.

Recall that after some preliminary screening a random sample of
approximately 2,600 black families was selected from specified geographic
areas of Gary. The families had to include at least one dependent child
under the age of 18; more than half were female-headed households. This
group was stratified by income as well as by exogenous variables. Families
were then selected at random within the income intervals defined by
multiples of the poverty level, which depends on family size. The
government poverty line for a family of four was $4,275 in 1972, when the
experiment began.

Only the male-headed households, of which about 730 were selected for
the experiment, are used in our analysis. The proportions of the random
sample of male-headed households in each income interval that were
included in the selected sample of 730 are shown in the third column of
table 10.2. Normalized ratios—the P values in equations (10.5) through
(10.7)—are shown in the last column. The first two columns define the
income groups. (The last four numbers are the values of P, through Pq,
which follow the definitions applied in equation 10.4, in particular the bias
expression in equation 10.6.) We see that relative to families in the first
income interval those in the third and fourth intervals are slightly
oversampled, while those in the highest income group are substantially
undersampled. In a random sample we would expect to find about two and
one-half times as many observations in the high income group as we in fact
have. By referring back to equation (10.6), we see that of the four terms in
the numerator of the bias expression the first is approximately zero, while
the second and third are positive, and the fourth is negative. Thus we
cannot a priori evaluate the direction of the bias. But it seems clear that the
bias should be much less than in the New Jersey negative income tax
experiment. The New Jersey sample excluded altogether families in the two
highest income intervals as defined here. As one might expect, the estimates
indicate much less bias using the Gary sample than was found using data
from the New Jersey experiment.
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Table 10.2
Sampling proportions and ratios

Income (Y) Proportion of

interval random sample

(multiple of selected for Normalized
Group  poverty line) experiment ratios
1 Y<05 0.7273 P, =1.0000
2 05<Y<1.0 0.7381 P, =1.0148
3 10<¥Y<15 0.8061 P, =1.1083
4 1.5<Yx<24 0.8594 P, =1.1816
5 24<Y 0.2966 P =0.4078

To evaluate the extent of sample selection bias in the Gary data, we
estimated earnings equations using pre-experimental (baseline) data rather
than experimental data, because a large number of families dropped out of
the experiment over time. We wanted to avoid the somewhat more complex
specification that would be required to correct for sample selection and
attrition bias simultaneously. The results indicate that sample selection
bias was not severe. Therefore in evaluating the extent of attrition bias
(Hausman and Wise 1977b), we have not at the same time made a
correction for sample selection bias.

We will compare four sets of estimates:

1. ordinary least squares,
2. weighted least squares using inverse sample ratios,

3. maximum likelihood with known sample ratios,
4. maximum likelihood with unknown sample ratios.'?

The weights used in the second and third approaches are those listed in the
last column of table 10.2. Estimates using the last two methods are
obtained by maximization of a likelihood function similar to equation
(10.7), but the third uses the known normalized sample ratios and estimates
only B and o2, while the fourth estimates the ratios P, through P along
with B and ¢2. If the maintained assumptions of the modei are in accord
with empirical evidence—in particular that given X income is distributed

13. The maximum likelihood estimates were obtained using the Berndt, Hall, Hall, and
Hausman modified scoring algorithm. The costs were approximately twice the cost of the

weighted least squares estimates.
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log normal—then the estimated ratios should be close to the those shown in
the table.

The dependent variable in each case is the logarithm of labor income.
The independent variables are

Constant

Education: years of education,

Experience: years of work experience,

Income: log of nonlabor family income, including foodstamps, AFDC
payments, public assistance, and earnings of other family members,
Union: a dummy variable that is one for union members and zero
otherwise.

A total of 585 black males were used in the analysis, comprising both
controls and experimentals (persons ultimately assigned an experimental
income guarantee and tax rate).'* Note the limits L,, . . . , L, that define
the income intervals depend on family size and must therefore be calculated
for each observation. The ratios, however, are the same over all obser-
vations. The limits have been adjusted slightly because they pertamn to
family income, whereas our data pertain to earnings of the male head
only.'®

Parameter estimates are presented in table 10.3. Ratios of the other
estimates to least squares estimates are shown in table 10.4. In this case we
find that least squares estimates do not differ substantially from those that
correct for sample selection bias and do not seem to be systematically
biased in one direction or another. In general the estimates obtained by
weighted least squares and by the two maximum likelihood methods agree
rather closely with one another. The estimated coefficients on income, how-
ever, differ substantially, with the weighted least squares estimates tend-
ing considerably closer to zero than the maximum likelihood estimates.

14. Although there were about 730 male-headed households in the sample, we had
complete data for only 585 of them. This could of course affect the relationship between
the estimated P values and the sampling proportions as shown in table 10.2. Based on
evidence reported elsewhere (Hausman and Wise 1977b), we believe that these missing
observations would not have a substantial affect on the parameter estimates.

15. Other income was assumed given, and the limits were related to the earnings of the
male head by determining individual earnings limits corresponding to the specified limits.
For example, if other family income is 0.5 times the poverty level, then the male head
would have to earn between 0.5 and 1.0 times the poverty level to be in group 3. In
practice family income not included in labor income of the male head was very small on
the average.
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Table 10.3
Parameter estimates (and standard errors) by method of estimation
Maximum Maximum
Weighted likelihood likelihood
Least least (ratios (ratios
Variable squares squares?® known) unknown)
Constant 5916 5.8424 5.9300 5.7355
(0.0879) (0.0899) (0.1047) (0.1196)
Education 0.0190 0.0270 0.0252 0.0281
(0.0068) (0.0068) (0.0079) (0.0083)
Experience 0.0042 0.0048 0.0050 0.0053
(0.0018) (0.0018) (0.0020) (0.0023)
Income ~0.0162 —0.0056 ~-0.0189 ~0.0231
(0.0068) (0.0069) (0.0092) (0.0101)
Union 0.2596 0.2314 0.2021 0.2881
(0.0519) (0.0407) (0.0386) (0.0647)
P, — — — 1.4831
— — — (0.1836)
P — — — 0.8267
— — — (0.1983)
P, — _ — 2.3916
— — — (0.2361)
P — — — 0.2429
— — — (0.0570)

2The standard errors shown in this column are those reported from a regression
program. They understimate the true standard etrors.

Table 10.4
Ratios of other estimates to least squares estimates by method of estimation
Maximum Maximum
Weighted likelihood likelihood
least (ratios (ratios
Variable squares known) unknown)
Constant 0.9 1.00 0.97
Education 1.42 1.33 1.48
Experience 1.14 1.19 1.26
Income 0.35 1.17 1.43
Union 0.89 0.78 1.11




Stratification on Endogenous Variables and Estimation 383

The estimated ratios P, through Ps do differ from their sample
counterparts shown in table 10.2, but the general pattern of the estimates is
similar to the sample ratios. That is, they suggest that persons in the highest
income group were undersampled relative to persons in the other groups.
But they also suggest a much larger oversampling of persons in the fourth
interval than the sample ratios indicate and a somewhat larger oversam-
pling in the second interval. We can see nonetheless that, if these estimates
were in fact accurate reflections of empirical ratios, the undersampling n
the highest interval would tend to be offset by oversampling in the fourth.'®
Thus the bias resulting from one is offset by the other.

We note also that these sampling ratios are estimated with considerable
precision. Each of the standard errors is less than one-fourth of the
corresponding estimate. We have not formally tested the hypothesis that all
are equal to one, indicating random sampling, but it is clear from the
standard errors that this hypothesis would be rejected.

Finally we emphasize that in principle it is not possible to distinguish
deviations from random sampling from deviations from normality in the
population. We have maintained the hypothesis of a log normal distri-
bution of income in the population, given X. On the other hand, it seems
unlikely that deviations from normality in the population would follow the
pattern of the estimates we have obtained.

10.5 Alternative Sampling Procedures

The sampling process assumed in the foregoing analysis was intended to
reflect as closely as possible the process actually used in the Gary
experiment, as we understand it. There are of course several other
possibilities. We will briefly discuss two others, to the point of presenting
appropriate likelihood functions. Recall that we assumed that the total
number of observations retained was fixed, but the number of retained
observations within each stratum was random. One alternative is to stratify
the population (or a random sample from the population) and draw a fixed
number of observations within each stratum. A second alternative is to fix
the number of retained plus unretained observations, letting both the number
of observations within each stratum and the number of observations
actually observed be random.

16. We note that the calculated ratios are subject to error.
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Consider first sampling within strata, with N, observations taken from
the first, N, from the second, and so on. The density function for

observations in the sample is given by

fy) .
——g— ify<lLl,,

’
1

SO i <y <L, (10.20)

h(1) =43, — 6,

f(y)

, ifL,<y.
[ — @, L, <)y

Within each stratum the values of y have truncated normal density
functions. The appropriate log likelihood function is then

5 Ny N;
L= Z {Z In f(y)— Z In(®;; —- (I)j—l,i}’ (10.21)
j=1 l=1 i=1 )
where ®, = 0and ®; = 1. Thisis a straightforward generalization of our
earlier work (Hausman and Wise 1977a). ,
A variant of this possibility arises if we know the proportions of the
population with values of y within each of the strata. Let the values be

Q,, - .., Qs Then, for example,

0 = J‘d)l -g(X)dX,

X

where g(X) is the multivariate density function defined over population
values of the vector X. Similar expressions apply to @, through Q..
Presumably more efficient estimates could then be obtained by maximizing
(10.21) subject to these identity constraints. In general, however, they seem
to be intractable.!’

17. A possible exception is to suppose that X is distributed multivariate normal with
mean g, and covariance matrix Zy. Then, for example,

_ L1‘.‘-‘xﬂ:|
2 =°[1 + pEBY

and analogous expressions define @, through Q. Alternatively g(X) could be replaced by
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Next suppose that the total sample size is fixed but that some values of y
are unobserved. Each value of X is observed. Whether y is observed or not
depends on the stratum in which the randomly selected observation of y
falls. If it falls in the first stratum, it is retained in the sample with
probability P, . It is retained with probability P, ifit falls in the second, and

so forth.
To develop a likelihood function for this case, consider the pairs of

values (y, X) and the sample selection probability P. The likelihood that a
pair (y, X) will be in the sample is given by

13, X)- P(y) =f(y | X)g(X) P(p)- (10.22)

It is the likelihood that the pair (, X) is randomly selected multiplied by the
probability that it is retained in the sample, once selected. The probability
of retention depends only on y. As shown in (10.22), P(y) equals P, for

y<L,P,for L, <y<L,, and so on.
The likelihood of a pair (¥, X) with y unobserved is given by

[, X)1 = P(y)) =/ (¥ X)g(X)1 = P(p))- (10.23)

But only the stratum of y is known if y is unobserved, not y itself. The
likelihood of observing X with unobserved y in the first stratum, for
example, is given by

L, .
-X
J f1X)gX)1 — P(y))dy = ®|:L—‘;—p]g(x) - Py

= @, g(X)P,.

The analogous expression for unobserved y in the second stratum is given
by

(@, — ©)g(X) Py,

and so forth.
If there are N, observed values of y in the first stratum, and N,
unobserved, N, observed values in the second and N, unobserved, and so

forth, the likelihood function for N observations is

weights corresponding to empirical observations and (10.21) maximized with respect to
these weights as well as the other parameters of the likelihood function (sec Cosslett
1977).
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Ny
L=75 {N,.lnPj+ > I (f(3]X) + NyIn(1 = Py)

j=1 i=1
Nj'

+ ) In(®;— <I>,~_1,.-)}, (10.24)
i=1

where ®, =0 and ®; = 1.
The term £, In g(X;) has been deleted because it does not include any

of the parameters of (10.24). Presumably this formulation would provide
more efficient estimates of P, through P, because within any stratum the
number of unobserved as well as observed values of y is known. The
expected value of each of these numbers is determined by the correspond-
ing value of P. The estimates of the B parameters would also be more
efficient because, although given N; + - - - + N, we have the same number
of observations of y ; the observations with y unobserved are represented
explicitly by N,. + - -+ + N5, probit functions in (10.24). Each indicates the
probability that y falls in the indicated interval, given X, and provides
additional information on the value of .

A variant of this case is to suppose that for y unobserved, X is also
unobserved; the observations are completely missing. This was the
assumption in sections 10.2 through 10.4. But we assume somewhat more
information here, namely, the number of observations that are discarded in
each stratum, and we make explicit use of this information.

The likelihood for retained observations is the same as in equation
(10.22). But to get expressions for the likelihoods of unobserved values, we
must integrate out X as well as y, since neither is observed in this case. For
example, the probability of an unobserved pair (¥, X) with y in the first
stratum is given by

L,

J J S 1X)gX)(1 — P(p))dydX = J ®,g(X)(1 — Py)dX

X - X

=(1-P)0;.-
Note this expression is identical to (1 — P,)Q,. Similar expressions pertain

to unobserved pairs in the other strata.
The log likelihood function for N observations would be
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N; N
{Nj P+ Y InflX)+ 3 lngX)
; i=1

)

J=1 =1
+ N, fIn(1 = P)) + In Qj]}, (10.25)
where
Q, = d,g(X)dX, (10.26)
X

~

0, = (@, — q)l)g(X)dX,
X

™

Qs = | (1 ~ Ig(X)dX.

X
One could think of this function as the likelihood of Ny, N,, ..., N
observed values in the five strata; N, N, . .., Ns. unobserved values;
Vigs - - - > Vin, instrata 15y, ... ¥y, instrata 2;andsoontoys, .. -,

Vsn, in strata 5. Because more information is retained in this procedure
than the one described in section 10.3, it yields more efficient estimates. In
fact, if the Q, were known, (10.25) could be maximized subject to (10.26)
and considered as a series of identity constraints. Maximization of this
likelihood function, with or without the constraint, appears to be
impractical at this time, however.

10.6 Conclusion

Sample selection for panel surveys is often based on a stratified sample
design with random sampling within strata. The proportions of obser-
vations within strata do not necessarily correspond to population pro-
portions. This is usually not a serious problem if stratification is based on
exogenous variables. But often variables we would like to treat as
endogenous are also the basis for stratification. For example, the New
- Jersey negative income tax experiment excluded entirely all families with
" income greater than 1.5 times the poverty level. The income maintenance
‘ experiments in Gary and Seattle—Denver, although not excluding higher
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income families, undersampled them. The 1967 survey of economic
opportunity also undersampled high income families, as did the University
of Michigan panel study of income dynamics that resurveyed part of the
SEO sample. Any uses of these data sets that treat earnings or components
of earnings as endogenous variables in behavioral relationships will lead to
biased estimates of population parameters.

We have presented alternative methods of correcting for endogenous
sample selection when faced with rather general stratification designs. If
relevant sample versus population proportions are known, either weighted
least squares or a more efficient maximum likelihood procedure can be
used. If the proportions are not known, they can be estimated along with
behavioral parameters using our proposed maximum likelihood pro-
cedure. We have demonstrated the technique through estimation of
earnings functions using data from the Gary income maintenance experi-
ment. In this case we find that, although the sampling was not random,
undersampling of the highest income families tended to be offset by
oversampling of the next highest group. Thus parameter estimates were not
seriously biased. All of the methods of correcting for endogenous sampling
produced similar results.

We note in particular that estimation of sampling ratios when they are
unknown is quite practical. In fact we obtained very precise estimates. The
general pattern of the estimates was consistent with a priori knowledge
about actual ratios, although some of the individual estimates differed
significantly from their empirical counterparts.

10.7 Appendix: Extension of the Analysis to Two Time Periods and
to Two Equations

The idea embodied in equations (10.5) and (10.7) can easily be extended to
earnings, for example, in two time periods such as before and during an
experiment, by noting that, if ¥, and Y, arejointly normal, with ¥; =X,
+¢, and Y, = X, + &, the appropriate density function would now be
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S y2)

>

Ly Ly 0
J' Sfi)dy, + P, Jﬂ(Y1)dY1 + ...+ Ps ‘[ﬁ(J’l)dh
- L,y Ly

if yy<L, :
h{yy, y2) = (10.27)

Psf(y1, ¥2)

Fe) k)

L 73
J fiy)dy, + P, jﬁ(%)d}ﬁ + ...+ P;s fo(}ﬁ)dyl

Ls

if Ly <y,

where f(y,, y,) is a bivariate normal density function with appropriate
mean vector and covariance matrix and f;(y;) is the marginal density
function for y,. This would lead to a log likelihood function of the form

L= i“l S 329

| N

- .-;1 In[(P, — Py)®,; + (P, — P3)D,;

+ (Py — Py)®@s; + (Py — Ps)Py; + Ps]

+ N,InP, + NyinPy + N,InP, + N5In Ps, (10.28)
where the functions @,;, ®,;, . . . , are defined as shown and refer to the

cumulative distribution function of Y;.

The extension of this approach to estimation of simultaneous hourly
wage rate and hours-worked equations is also straightforward. Without
going through the details here, it can be shown that the appropriate density
function would be of the form
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fnw,In k)=

o(n w, In k)
(P, — P)®[d,] + (P, — P3)®[d,] + ... + (Py — Ps)®[dy] + Ps’

if y<UL,,
(10.29)
P $(n w, In k)
(P — Py)®[d\] + (P, — P3)®[d,] + ... + (Py — Ps)®[d,] + Ps’

if L,<y,

where §( -) is a bivariate normal density function, and

_ lnLl - Xlél - Xlélﬁ - X262

d
! \/a)ll + Wy + 2(1)12

d =lnL2 —X151 _Xlélﬁ——XZaZ
2 \/wu + Wy + 200y,

d —lnL4_X161—X161ﬁ-X252
4 = .

\/wn + W,y + 204,

The notation is the same as that in Hausman and Wise (1977a), and the
development leading to equation (10.29) 1s analogous to the approach
followed there. Again the resulting likelihood function has a rather simple
form.

Finally, extension to two equations and two time periods is also
straightforward but somewhat tedious and therefore not carried out here.
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