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CHAPTER 7 

AGGREGATION OF DISAGGREGATE MODELS FOR FORECASTING

To be useful in planning and policy analysis, forecasts of individual choice
behavior must be aggregated into geographic, socioeconomic, or supply market
groups of interest to the planner.  Disaggregate models are usually non-linear in
explanatory variables, and groups for which forecasts are needed are
non-homogeneous in these variables.  Hence, the aggregation process is
non-linear, and must take into account the distribution of the explanatory
variables. Group choice shares are generally not equal to the probability of choice
an individual with the average explanatory variables of the group would have. 
The choice probabilities of individuals in the multinomial logit model, and other
choice models used in this study, can be written in the general form

(l) Pj = Fj(V1,...,Vj)   ,

where Pj = probability of choosing alternative  j ;

Vj = "mean" utility of alternative  j ;

J = number of alternatives;

and the utility  Vj  is a function of observed socioeconomic characteristics and
level-of-service attributes of alternative  j ,

(2) Vj = v(LOSj,SE)   .



1Koppelman (1975, 1976) referred to this method as integration/summation.
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Typically, the function (2) is taken to be linear in specified functions of
level-of-service and socioeconomic variables,

(3) Vj � �
K

k�1
βkZ

k(LOSj,SE) ,

with the  βk  interpreted as "importance weights" that are estimated in the demand
analysis.  Let  zjk = Zk (LOSj,SE) , and define  zjk  to be the group mean of   zjk .
Then group average utilities satisfy

(4) V j � �
K

k�1
βkz jk .

A naive aggregate forecast can be obtained by substituting  in (l) .  However,Vj

non-linearity of the function (l) implies that in general the probability evaluated at
average utilities of the group will not equal the group choice probabilities (i.e., the
average of the individual probabilities).  Consequently, the naive procedure will in
general yield biased forecasts.

If, for a group, the multivariate distribution of the utilities  Vj  is known,
and denoted by  g(V1,...,Vj) , then the aggregate probability for the group satisfies

(5) Pj � � Fj(V1,...,Vj) g(V1,...,VJ) dV1...dVJ .

This is termed aggregation by statistical integration.1  For a finite (but usually
large) group size, this formula reduces to sum



1Overall error is measured in terms of the root-mean-square of the errors in the separate alternatives with
respect to the equivalent enumerated aggregate forecast.  See equation (10) in this chapter.
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(6) Pj �
1
N �

N

n�1
Fj(Vln,...,VJn) ,

where  Vjn  is the utility of alternative  j  for individual  n .  This is known as an
enumerated aggregate forecast.

There is an aggregation problem because the enumeration (6) can be
expensive, especially for forecasts for groups such as interzonal choice matrices.
Nor is the expected value computation (5) practical in most cases.   g(V1,...,Vj)  is
neither simple nor easy to obtain, and the integral (5) has a known analytical
solution for only one special case (McFadden and Reid, 1975).

Other attempts to evaluate (5) have also been impractical.  Westin
transforms (5) to distributions in probability space.  However, his method applies
only to binary choice, and requires numerical integration procedures as costly as
enumeration (Westin, 1974).

An attempt by Talvitie to approximate the expected value of group shares
by a Taylor series has given counter-productive results for typical variances of the
explanatory variables because of the poor convergence properties of series
expansion (Talvitie, 1973; Koppelman, 1975).

The aggregation error that results from naive aggregate forecasts can be
substantial.  A study on a Washington, D. C. area sample and model of
CBD-oriented work mode-choice has shown this error to range from eight to ten
percent RMS, depending on the geographic level of aggregation (Koppelman,
1976).1  Results on the data and models of the Urban Travel Demand Forecasting
Project study show naive forecasting error between 13.8 RMS, for origin zone
aggregate trips, and forty-three percent RMS for metropolitan area trips,
respectively.  Neither of the studies were for interzonal naive aggregation, though
it is estimated that for this level of geographic interchange forecasting the error
will be about half the origin zone level error above, on the average, and
considerably greater for individual interchanges (see Vol. VII, Chapter 7, Table
7.3 discussion).
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Naive aggregation can produce larger biases than are produced by
estimating and forecasting with strictly aggregate data.  The latter procedure has,
at least, the ability to replicate baseline shares.  However, strictly aggregate
models produce biased predictions of the impacts of most policy changes and are
insensitive to many policy tests of interest.

The essential advantage of disaggregate models is that they are sensitive to
the mix of variables explaining a traveler�s choice.  Ignoring the distribution of
these variables in forecasting produces errors that cancel the advantage of the
models.  Disaggregate models and an acceptable aggregation method must be used
to gain accurate forecasts.

Fortunately, some progress has been made in approximations to
enumerated aggregate forecasts, based on classification.  These approximations
are simple and considerably reduce the error of the naive method.  Koppelman
(1976) has shown that classification by auto availability and choice set can reduce
RMS error (at various levels of aggregation) to three percent versus eight percent
by the naive method.  Later results on a sample used by this study show that
classification based on the values of differences in utilities of choices can reduce
error to less than one percent compared to forty percent for the naive method.

The classification methods also have great potential savings in
computation efficiency with suitably chosen classes.  Their attempts to delineate
different choice types approach the minimum amount of information necessary to
define the different market segments or traveler types making up the range of
possible choices.  Examples and recommended practice with these methods will
be explained in detail following a review of the state of aggregation theory and a
discussion of the planning context, its needs, and resources.  Questions of data
need and availability, efficiency of predictions, and effects of aggregate size will
be discussed in addition to accuracy.
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The State of Aggregation Theory

The major thrusts in simplifying the general theory of aggregation have not
been as fruitful as the approximate classification approaches.  Koppelman (1975)
extended Talvitie�s Taylor series approximation method for multiple choices to
account for covariances between utilities of different alternatives.  The aggregate
shares are

(7) �����
Sj

N
� P(j | V) �

1
2�

J

K
�

J

�

�
2P(i | V)
�VK�V

� V

cov (VK,V
�
) � ... ,

where  J  is the number of alternatives,  V  is the vector of utilities of the choices,
  is its mean in the aggregate of  N  travelers, and  VK,V

�
  are the utilities ofV

choices  k  and  � .  However, he found that this approximation suffers from larger
errors when the series is truncated after the second term than when it is truncated
after the first term.  That is, the method produces worse results than the naive
approach for aggregate sizes down to districts that were about l/l00th of the
Washington metropolitan population.

The binary logit curve can be scaled to represent the probit curve within
one percent absolute error.  Using this, Reid (1974) has shown that the simple
form of (5) for normally distributed explanatory variables can be extended from
probit to logit models:

(8)
Sj

N
� 1 � exp

Vi � Vj

(1 � Var(Vi � Vj) /2.79)1/2

�1

,

where  Vj  and  Vi  are the utilities of the two choices and  is the meanVi � Vj

of their difference in the aggregate of  N  travelers.  The assumption of normality
need apply only to the scalar utility difference, not to each explanatory variable.
Tests have shown this assumption to contribute 4.0% error for a large aggregate
forecast with large variance and forty-three percent naive error, suggesting that
normality is a reasonable assumption (see Vol. VII, Chapter 7).  The method is
still limited to binary choice. 
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Work on the theory of multiple choice by the integration method could be
very productive in extending its simplicity and accuracy.  Recent research on
estimation methods for multinomial probit models has had the side-effect of
revealing new efficient approximations to integrals of the form of (5).  (Daganzo,
et al., 1976; McFadden, 1977).

An aggregate forecast by classification can be defined as a weighted sum
of the naive shares in classes identified by some characteristics of the travelers or
their alternatives.  The aggregate shares are obtained by

(9)
Sj

N
� �

C

c�1
P(j | Vc)

Nc

N
,

where  c  is the index of the  C  cells in the classification,   is the mean utilityVc

computed for cell  c , and  Nc  is the number of travelers in cell  c .  Koppelman
(1975) has done the principal study of aggregation by classification using choice
subsets and specific variable values as identifiers.  He found that where the full
alternative set is unavailable to a significant portion of individuals in the
aggregate (thirty percent in his tests) that classification based on available choice
set is more effective than on any single variable.  Additional classification by
variables is recommended to concentrate on those with greatest contribution to the
utility variance.  Choice set classifications reduced RMS error in the Washington
sample to five percent.  Cross-classification with the variable auto/drivers in the
household reduced error to three percent regardless of aggregate size.  Naive
method error was eight percent. No other methods tested by Koppelsnan gave
smaller error.    He did not test the statistical integration method.

As stated before, the statistical integration method has been found in this
study to be capable of reducing naive error over ten-fold.  Koppelman performed
Monte Carlo simulations of the aggregation error by each of the above methods to
determine the range of error with statistics of the distribution of the utilities of the
alternatives.  These confirmed that the integration and classification methods
usually gave better results than the naive and series approximation methods,
agreeing with his empirical results, and with ours.  However, the simulations
show that for skewed distributions, exceptions may occur to this ranking,
especially regarding the desirability of the integration method.
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Results of this study have extended the general classification approach in
two ways--developing more systematic methods for defining classes based on
specific variables and considering classification directly on utility scale values.

A systematic picture of priorities for class identifier variables can be
gained by looking at the covariance matrices of the within-aggregate variation of
the explanatory variables at the desired level of aggregation.  The binary choice
aggregation theory has established the direct relationship between this matrix and
aggregate shares for probit models and for logit models with limited assumptions.
Though no corresponding theoretical relationship exists in the multiple choice
case, the covariance matrices are still better indicators of which variables are
appropriate classifiers than a priori knowledge, especially if these vary with
aggregate level.  Table 68 shows a normalized covariance matrix of the intra-city
aggregate values of the major explanatory variables in two alternatives of a
prediction model.  The model used is shown in Part II, Chapter 2, Table 12 of this
volume.  The covariance elements are normalized by dividing by the largest of
their values (in this case it is the variance of the utility of CARS/DRIVERS in the
traveler's household) in order to give a picture of the ranking of the contributions
of each variable to the overall utility variance.  The underlying model is a logit
function, linear in its explanatory variables.
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1Because most of the variables in this model are unique to a mode, variances of intermodal utility differences
are equal to the individual modal elements.  Where the same variable appears in the utility expression for two
modes, the differences of utilities can be obtained from the table by the expression for the variance of such a
difference:  Var (X - Y) = Var X + Var Y - 2 Cov (X,Y).
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Hence, each element in the matrix is the product of the covariances of the
individual variables and their correponding model coefficients 

 ;  k  and  �  are the matrix indices of the  K  variables in theSk� � βkS
2
k�β� / β1S

2
11β1

model, 1 < k,  � < K ; βkβ�  are the linear utility coefficients for the  k-th  and  �-th

variables;    is the sample covariance between the  k  and  �-th  variables; and   S 2
k�

 is the corresponding utility variance for the largest matrix element.  Theseβ1S
2
11β1

elements are called utility component covariances because each expresses the part
of the total sample variance of the linear utility for one mode contributed by a
single variable (diagonal variance elements) or pairs of variables (covariance
elements).  The sum of the matrix elements for any mode equals the total variance
of the utility for that mode. 

For binary logit choice models the relationship between these covariances
and aggregation error is understood under the assumption of normally-distributed
explanatory variables (equation (8 )).  Thus Table 68 provides a convenient way to
rank the individual variables and their combinations, by their importance for
reducing aggregation error for binary choice.  The larger the variance of the
difference of utilities between the two modes the larger the aggregation error.1  

The variables that have individual values that are most important for
reducing aggregation are the ones with the largest values in Table 68, such as
BUSWALK, CARS/DRIVERS, and AONVEH (time riding in autos).  The
inter-modal covariances show the relative importance of these pairs of variables in
aggregation.  However, because inter-modal elements contribute to the variance of
binary utility difference with negative sign it is the negative values such as that
between CARS/ DRIVERS and BUSWALK that increase the aggregation
correction.  Positive values indicate a compensating reduction in aggregation
error.  The amount of aggregation error that will result in a forecast using the
individual values of only selected variables can be estimated by comparing
equation (8) with and without the unnormalized values of the matrix elements to



1Only the individual values of some variables or their variance may be available in a forecasting situation.  In
some cases, variances are possible to obtain or estimate where covariances are not Talvitie and Dehghani,
1976).
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be considered.1

Inspection of Table 68 shows that a large part of the variance of the
utilities, and hence aggregation correction, can be recovered by considering only a
few of the variables in the model.  For example, three of the eleven variables in
the model used here--CARS/DRIVER, BUSWALK, and BONVEH (riding on
bus)--constitute fifty-nine percent of the utility variance.  When only their
individual values are used for prediction, they correct for sixty-nine percent of the
aggregation error produced by the naive method.  Auto (AONVEH) time, in
contrast, contributes nothing to the correction of aggregation error by its inclusion
with this set since its covariance with BUSWALK cancels out its variance
contribution alone.

The covariance matrix alone gives incomplete information on the
advantage gained in classification because of the correlations between the
classifier variable(s) and the others.  This can also be evaluated by adding the
information from a corresponding correlation matrix of the variables within the
same prediction aggregate.  The additional power of a classifier due to this effect
is given by the sum of the product of covariances and correlation coefficients of
all variables correlated to the classifier.  With this procedure, one can minimize
aggregation error, given limits on the number of classification variables, or
minimize the number of classifiers, given tolerable limits on error.

When applying this covariance analysis to multiple choice, simpler
approximate guides to the important aggregation variables can be gained by
observing the covariance matrices of major subsets of the alternatives.  These
should be alternatives which have shares different from  1/J  and are considerably
different from one another.

The procedure also does not account for skewed utility distributions.
Skewedness will weaken the analysis.  This does not appear be a problem in the
tests of this study (see Vol. VII).

The covariance analysis on a subsample of the population can also guide
larger sample data collection and processing priorities for planning and policy
analysis.
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Utility Scale Classification

Though the covariance analysis procedure above can systematically guide
selection of classification variables, the process is inefficient.  If more than a few
variables contribute significantly to aggregation variance, the number of
cross-classifications becomes large for achievement of small error.  This is
especially true of predictions for  large geographic aggregates.

A more efficient method of classification is possible for the class of simply
scalable models of the form of equation (1).  These models express choice among 
J  alternatives as a function of  J  utility scales of the individual decision-maker�s
characteristics and choice attributes.  As long as each scale is only a function of
the attributes of one choice alternative, regardless of complexity, classification
directly on these utilities is much more efficient than on the individual variables.

Cross-classifications between the individual variables include much
information that does not enter into a simply scalable choice model.  The essential
information to predict each individual�s choice in these models is contained in the
total utility of each alternative.  Cross-alternative classification between these
utilities describes the full distribution of individual choice factors in an aggregate
prediction sample.  Because this procedure bypasses individual variable
cross-class information, which does not enter into the choices, it requires fewer
classes.   Classification directly on the total utility in choice picks up the total
variance including the minor variables, not just the variance of the limited number
of interactions feasible in classification, by specific variables.  This further
increases its efficiency.  Defining relatively homogeneous classes of utility
combinations across modes is getting at the essence of the classification
approach--the grouping of individuals with uniform choice situations.  Because
the procedure operates on the utility scales, it is termed the utility classification
method of aggregation.

This method would not capture the full information entering into
non-simply scalable models such as probit types that  incorporate
inter-relationships of cross-alternative attributes with separate model coefficients
(Hausman and Wise, 1976; McFadden, 1977).  Aggregate predictions with these
models require individual variable interactions.  This is accomplished by the
classification by variable values and enumeration methods previously discussed.

The utility class sizes and boundaries cannot be defined in the same way as
for individual variables, because utilities are not discrete and intuition gives no
guide on utility thresholds in choice such as it does, for example, for BUSWALK
time.  However, utilities are directly related to choice ranges.  For the binary logit
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case the optimum divisions would be differentiating utility differences near the
maximum non-linearity of the choice function (near choice probabilities of .25--or
1.1 on the utility scale).  For multiple choice logit model classification criteria
should concentrate on the differences of utilities of pairs of alternatives with the
same relative probabilities as in the binary case, thus distributions of utilities of
pairs of alternatives falling, for example, in the range + 1.1 to + 0.5 should be
differentiated most closely.

Various cluster analysis techniques could be employed to achieve isolation
of classes (Green and Wind, 1973; Friedman and Rubin, 1967).  In practice, tests
have shown that ad hoc class divisions are quite adequte and more feasible in the
press of obtaining predictions.

One such procedure is the successive division of an aggregate sample
about the median (or mean) values of the differences of the utilities of pairs of
alternatives, starting with the pair with the largest variance of utility difference.
The procedure cycles through all pairs of utilities, further subdividing the first
pairs if the variance of utility differences in the resulting classes are still large. 
The variance criteria for desired accuracy can be estimated with the covariance
analysis procedures previously discussed, the ranges for which divisions are
fruitful from the discussion above.  This procedure resulted in a smaller error than
any of the individual variable classifications considered in tests of this study for
regional aggregation with only two utility classes for a four-alternative model. 
With eight classes it resulted in insignificant error.  In contrast, the class counts
defined on explanatory variables or on geography ranged from four to 136, with
only the larger divisions equalling the accuracy of the two segment utility
classification.

The focus of this aggregation method on the total utility value need not
preclude the retention and association of the values of specific explanatory
variables with the classes.  This would be needed for interpretation, predicting
sub-segment choice or the analysis of the effects of policy changes on choices.
These can all be accommodated by characterizing each class cell by, in addition to
the average value of the  J  total utilities of its members, the average value of any
desired model variable or socioeconomic descriptor.  Thus the characteristics of
the homogeneous choice groups may be interpreted and sub-segment predictions
may be obtained.  Together with the values of the underlying model scale
coefficients, the mean utilities may be adjusted for policy changes on specific
variables to simply analyze their effects on aggregate choices.  A complete
dsecription and examples of the use of the utility classification method in regional
travel prediction and policy analysis is given in Volume IX of the Urban Travel
Demand Forecasting Project�s Final Report Series.



1Planning simplicity requirements are more than hopes of something for nothing in tightly-budgeted
agencies.  Budgets are tighter, but the credibility of large complex models is also low.  Decision-makers need
simpler, more conceptual models that they can understand. Disaggregate models are a paradox in that they
basically have this conceptual simplicity, yet, in applications, seem to hunger for even more data and
forecasting complexity to achieve their promised accuracy.  The aggregation methods must be simple if the
models are to be understood and be financially feasible.  They must be simple and inexpensive if they hope to
be extended into other realms of analysis, such as joint-choice among the many transport and land-use
dimensions.
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Forecasting in Practice: Planning Requirements Versus Resources

The planning and policy analysis environment in public agencies is
characterized by different needs for analysis complexity and by available
resources.  Forecasts can be needed for aggregate sizes from small geographic
zones to entire regions, for demand levels by mode or their financial and
environmental impacts or for impacts across socioeconomic, political, and
geographical groups.  Issues of interest can range from the effects of pricing on
work mode-choice to the effects of transport and zoning policies on congestion
and urban form.  The implied models range from simple binary choice to complex
joint-choice structures and supporting data.  Some analyses may allow
long-scheduled turn-around time; others need results immediately.  Available data
may be only for aggregates. Institutionalized procedures and skills, and budgets,
may not allow major additions to analytic libraries.

The aggregation procedure complicates this situation because it adds a
new step to the traditional forecasting process and may not have similar
requirements or errors across these ranges of requirements.  An assumption of
level-of-service homogeneity will make more error for large aggregate forecasting
than it will for interzonal predictions.  Defining homogeneous classes for one
dimension of a joint choice for example, between modes and destinations, may be
quite different than for the other.  Tolerable errors are different for sketch
planning and specific project analysis.  It does not seem possible to give general
guidelines on aggregation, especially ones that will suffice across wide geographic
forecasting scales or differing requirements for simplicity.1

Some general guidelines will prevail. A version of the classification
approach will probably be best for most aggregated forecasts.  The questions will
be as follows:  Which variables will be considered?  How many classes are
necessary?
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The differences needed in aggregation guidelines can be clarified by listing
at least a few existing and emerging forecasting environments faced in planning.
Table 69 shows categories of planning systems.  Different ranges of output
aggregates, levels of complexity, and resource budgets that affect aggregation
procedures are also shown.  Typical data resources associated with these
categories are discussed below.

The traditional four-step interzonal transportation forecasting systems are
complex even before the aggregation issue is added.  They do embody a high
degree of geographical classification and only require forecasts of small
aggregates.  The naive method is tempting in its simplicity to apply in these cases,
but it still gives significant error.  Accurate results require additional data, yet
these systems have little tolerance for increases in complexity even if their error is
high.   Their behavioral generality is now only moderate due to their sequential
choice assumptions.  Improvements to this are challenging their complexity
(Ruiter and Ben-Akiva, 1977).

The data available in these systems are usually only zonally aggregated
values, sometimes supplemented by small individual traveler data or the
supporting survey data from which intrazonal classes may be reconstructed at a
cost.   Four-step systems are established in most larger U.S. urban areas.

Policy analysis systems have highly aggregated outputs--usually the whole
region plus some socioeconomic segments.  They can include fairly general
behavioral interactions and are defined to be low-effort.  They are moderately
expensive but accurate when employing aggregation by enumeration, and
inexpensive and fairly accurate with classification.  The coarse aggregates of these
models require that they consider more variables and class cells when using the
latter procedure than, for example, would be necessary for interzonal (four-step)
forecasting systems.

To the extent that these systems need improvements in simplicity system
generality, or faster turn-around they require more efficient aggregation methods.
For example, if they are to reach the level of simplicity allowing hand
computation or their inclusion as small components in much larger context
analyses (such as category 4) they require simpler aggregation methods. Their
small, but in-depth, disaggregate data sets support these needs.  Such data sets are
available in only a few urban areas.
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TABLE 69 Categories of Planning and Policy Analysis Systems

Planning Category Physical
Scope

Outputa

Detail
Generalityb Resourcesc Example

System
(ref.)d

1 Four-step large fine med.e high UTPS UMTA (1976)

2 Policy Analysis any coarse med. low SRGP MKT.
SEGM.

Atherton, et al. (1976)
Dunbar (1977)

3 Special Area corridor coarse low very low Chicago
Parking

Lisco & Tahir (1974)

4 General Policy any coarse high moderate RAND Bigelow, et al. (1973)

Notes:

l. Output detail refers to choices, geography, or market segements.

m. Generality refers to issues, system, and behavioral scope.

c. Resources include data, computation, and skill requirements and usually in the inverse of turn-
around time of analysis.

d. Examples are referred to by common names as well as the references to text.

e. UTPS is of medium generality because its sequential behavioral assumptions restrict its role.
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Part IV, Chapters 3 and 4 discussed methods of overcoming the problem
of traditionally collecting such data from scratch in new areas.  Policy Analysis
Systems data can also be derived from the individual survey files supporting
four-step systems at some cost.  They cannot utilize the highly aggregated or
idealized data typically used by sketch-planning models, which are seen to have a
similar planning role but are not usually derived from behavioral models
(Scheifler, et al., 1975; Mann, 1975).

Special Area studies employing behavioral models are usually small scale,
simple forms of the category 2 above.  They have coarse or total area, yet small
aggregates.  They have very low budgets and are feasible only if the data and
aggregation requirements are very simple.  They require the simplest and most
general rules for aggregation such as methods to estimate utility variance from
aggregate data or classification segment definition without individual data.

The General Policy category is seen as an extension of the (medium
generality) policy models of category 2 into a greater individual and system
behavioral scope.  Examples are the consideration of equilibration for
supply-demand and joint transportation and locational decisions.  The message of
this category is that they are not feasible, within the generality and accuracy
potential of joint-choice behavioral models, without very simple aggregation
procedures.  Enumeration would become very expensive; class cells counts could
grow greatly.

The use of behavioral models with the various planning categories thus
requires different data efforts and aggregation guidelines.  The common threads
are: (1) additional disaggregated data is needed in varying degrees for their
beneficial use, and (2) some form of the classification method is likely to be
required.  Questions of the amount and type of these efforts are addressed in the
conclusion of the next section on aggregation practice.
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Methods of Aggregation in Practice

This section gives some examples of aggregate forecasting done with
disaggregate models, shows results of controlled aggregation error tests on actual
data, and concludes with recommendations on the practice for the four planning
categories of Table 69.

Liou, et al. (1975) attempted aggregate forecasts with disaggregate models
in the four-step interzonal forecasting context.  Recognizing that naive
aggregation gave biases, even for small geographic zones, they used the method of
statistical differentials, developed by Talvitie (1973), to obtain the aggregate
shares in each zone.  No actual data was available to compute the
within-aggregate variances required for this method.  It was assumed that the
desired variances were equal to the variances of the between-aggregate variable
values in each of two classes of trips--urban and suburban.  Only level-of-service
variables were involved in the model.   Because no true aggregate predictions
were possible, these results were evaluated by comparison with on-the-ground
observations and against a traditional method.  The aggregation method was
considered a success because it more than equaled the accuracy of the traditional
method at a lower effort.  The aggregated results showed improvements over
those using the naive method.

This comparison is confounded by the additional sources of error due to
the model and data when comparing actual with predicted aggregate choices.  The
assumption of equal intra- and inter-aggregate variance will be highly dependent
on the level of aggregation and variables used.  The statistical differentials method
has since been shown to be counter-productive relative to the naive method.  It is
expected that the improvement in errors over the naive method in this study was
due to the better convergence properties of the statistical differentials method on
low variance data.  More recent efforts on interzonal forecasting have used
income-level classification within the zones to reduce naive method error (Ruiter
and Ben-Akiva, 1977).

Policy analysis studies have employed both the methods of enumeration
and of classification-by-variable-values in their predictions.  The study by
Atherton, et al. (1976) for the Federal Energy Administration accepted the burden
of enumerated computations for each traveler for large alternative sets and
joint-choice, thus producing accurate results.  Forecasts were for the total
geographic sample but by three socioeconomic segments and trip purposes.  Cost
was about $100 per policy test at the metropolitan scale.  This is a good
demonstration of the feasibility of the enumeration method where data is
available.   Its retention of the full file of individual characteristics also offers
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flexibility in selecting outputs for any sub-aggregates.  Its limitation is that on
sample sizes feasible for enumeration computations, the statistical accuracy of
predictions is poor for sub-segments smaller than ten percent of the sample.

Dunbar (1977) applied cross-classification by values of specific model
variables in his policy analysis model.  Forecasts were also for whole urban areas.
He chose three ranges of transit access, and two each of autos per worker and
length of trip, for a total of twelve class cells.  The classification criteria were
largely observations of natural ranges of the data, medians, bi-modal distributions,
and the use of variables expected to contribute most of the utility variance.  He
mentioned that the process involved much judgment, and that his classification of
the transit access variable on a priori grounds was inefficient.

The aggregation error was 0.9 RMS for the three mode shares predicted.
This indicates that a moderate number of roughly determined classes produces
good aggregation results.  The model used had three level-of-service variables and
one socioeconomic variable--autos per worker.  The data set was the 1973
Nationwide Personal Transportation Survey.

 Lisco and Tahir (1974) used a modified form of geographic classification
in a special area study of the effect of parking taxes in the Chicago CBD.  They
only had data for the zonal averages of each model variables, so their effort was
on the best way of using this limited data to efficiently obtain total area
predictions. This was done by combining zones into rings which they judged
would have similar mode-splits and proceeding by classification for area
predictions on the weighted zonal averages of the variables in the rings.  There
was no basis for evaluation of the accuracy of these results.  This study was one of
the first to recognize that more than geographic homogeneity was necessary for
aggregation. It also reduced the procedure to sufficiently simple classes and
counts that it could be applied with very low effort.

The messages from these experiences are:

1. Regional planning agencies may not have the data necessary to
accomplish aggregation.

2. Enumeration methods are viable for non-segmented forecasts
with moderate model structure complexity.

3. Cross-classification by variable values, though inefficient in
selection criteria and computation, gives accurate results.

4. Extremely simple classification procedures in special area studies
may be accurate enough for low budget forecasts.



1Controlled error refers to the isolation of aggregation from model and data error.  It is expressed as the
difference between the results from the test method and those by enumeration (with a sufficiently large
sample to make sampling error in the minor shares negligible).
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Aggregation Error Tests

This study has provided controlled evaluations of aggregation error by
different methods in different situations.1  Similar isolation of aggregation error
on empirical data has been done only by Koppelman (1975).

The tests of this study were done on a sample of 771 workers drawn from
about half of the San Francisco Bay Area.  Their choice of mode of commuting to
work was described by the four alternative models shown in Part II, Chapter 2,
Table 12 of this volume.  The overall exact mode shares were 55.6% auto alone,
17.4% bus-with-walk-access, 3.9% bus-with-drive-access, and 23.1% shared ride.
The data were from household surveys and transportation network minimum-path
simulations with modifications to produce trip attributes temporally and spatially
disaggregated to the individual schedules and locations of the trips modeled.

The measure of aggregation error was the percent root mean square of the
choice shares as defined by Koppelman:

(10) �
J

j�1

�Pj � Pj

Pj

2

Pj

1/2

,

where  J is the number of choice alternatives,

is the aggregate share of alternative  j  estimated by the tested method,�Pj
and

Pj is the aggregate share by enumeration.
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Table 70 shows the error from the naive aggregation method applied at
three levels of geographic classification on our sample.  Predictions are all for the
total region.  The impact variables were aggregated to the classes shown to
represent results for either of two forecasting situations: geographic classification
for regional forecasts or the average absolute errors when making separate
predictions for all the cells at a geographic level.  These errors are equivalent.

TABLE 70 Percent Aggregation Error for the Naive Method for Three Scales of
Geographic Classification

Error Measure Region (1) Cities (17) Traffic Analysis Zones (200)

RMS 40.0 17.9 13.8

Multinomial Choices (4 alternatives)

Notes:

1. Errors all based on predictions made for the full sample; inputs are the
average values of the explanatory variables in classes as defined by
the residential origin of the trips at the indicated geographic scale.

2. The numbers in the parentheses at each geographic classification are
the number of  cells at that scale.

The errors are large.  It is obvious that geographic classification alone is
not an adequate aggregation method for this region and model.  Error does
decrease with geographic scale.  Smaller samples apparently do have less
variability.  Because classification/aggregation was done on the basis of
residential origin only these results do not represent what would be expected from
interzonal aggregate forecasts.  However, it is expected that such errors for this
sample would be about half those shown.  Individual inter-district errors would be
worse.



1It is expected that the average choice shares close to zero bias point (equal shares), caused by Koppelman�s
results to be insensitive to geographic level.  The larger the aggregates the less individual cells varied from
the low bias equal shares case.
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Koppelman�s results were lower in magnitude and insensitive to
geographic scale.  He showed an 8.5 percent RMS error for a superdistrict scale
similar to our cities.  Several reasons are speculated for this difference: he had a
CBD trip oriented sample only; his average shares were more nearly equal;1  the
choice model he used was simpler; and, the level of service data was less
disaggregate.

Table 71 shows the error on our sample by five available methods of
aggregate prediction of regional choice shares.  The naive method entry is the
same as that for the regional level on the previous table.

TABLE 71 Percent Aggregation Error for Regional Choice Shares Prediction
by Five Methods

Error
Measure

Naive Statistical
Differentials

Classification
by City (17)

Classification by
Auto Ownership

Classification by
Utility Scale3 (4)

RMS 40.0 121.0 17.9 21.7 3.1

Multinomial Choice (4 alternatives)

Notes:

1. Errors are all based on predictions made for the full sample.

2. The statistical differentials method followed the original Talvitie
method (1973), which ignores the covariances of the utilities between
alternatives.  These were unavailable for this report.  It also shows
errors larger than for the naive case (Koppelman, 1975) .

3. An approximation was used for the error in the alternative with the
smallest choice share.
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All of the methods except that of statistical differentials reduce error
below that of the naive procedure.  These results confirm earlier tests that the
Taylor series approximation produces counterproductive results due to its poor
convergence properties on large variance data.  Unfortunately, such data is where
the correction is important.  Geographic classification, as shown above, reduces
error but insufficiently.

The predictions by classes of auto ownership also reduce the majority of
the naive error but are not very accurate at the regional scale of forecasting.
Koppelman showed auto availability classification to reduce naive error by
one-third, with a result of three percent.  Our classifier halved naive error, but
from a larger base.  Hence while specific variable classification may be acceptable
for one data set and geographic scale, it may not be for another.

The method of utility classification gives a much greater reduction relative
to naive error than the other methods.  Only four class cells were used.  They were
defined by successive divisions of the sample about the means of the distribution
of the difference between pairs of utilities (see the utility classification section
above describing this method).  Obviously, this procedure is more efficient than
the others.  This is to be expected at the regional level where the total utility
variance of the sample is present.  It would also be true within small aggregates
unless a much smaller number of variables dominated the variability of the
sample.  This is not the case for within-city aggregates, as seen from Table 68.

Table 72 shows the variation in aggregation error by cell count for the
utility classification method.  These results are shown for a three-alternative
subset of the four-mode choice model above (auto alone, bus-with-walk-access
and shared ride).  The cell definition criteria were the same.  The error can be
reduced below all of the other methods tested with only two utility classes.  With
eight it becomes negligible.  The instability in error reduction with cell  count is
partly due to the ad hoc cell definition criteria used.  It is also due to the
non-linearity of the RMS measure; an error measure composed of a linear sum of
absolute errors in each alternative decreased monotonically with cell count.
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TABLE  72 Percent Aggregation Error by Cell Count for the Utility
Classification Method for Regional Share Predictions

Error Measure Total Class Cell Count

2 4 6 8

RMS 6.4 2.3 2.6 0.5

Multinomial Choice (3 alternatives)

Some perspective on the importance of these errors is gained by noting
examples of model and data error--the two other contributions to total forecasting
error.  As with aggregation, these errors are influenced by many factors.  A model,
forecasting on the same data and sample on which it was estimated, predicts
exactly by definition, as long as alternative-specific constants are allowed.  Errors
arise as it is transferred to new samples, with sample size, with changes in the
environment, due to unobserved factors, not modeled over time and with different
or erroneous data collection.

Two empirical results of model and data error are illustrative. Koppelman
(1975) found a 19.7 percent RMS error from these sources in predicting
super-district shares with a model calibrated on a sample of the Washington area
data.  This study found a twenty-three percent RMS error in forecasting the
redistribution of choice shares among four modes using a new data set (eighty
percent of which was a new sample) and with the passage of three years.  These
errors are less than those for naive aggregation but more than most of the
remaining methods.
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Conclusions

Some general conclusions and guidelines can be made, followed by more
specific recommendations for each of the planning categories defined earlier.

Aggregation error cannot be ignored, that is, the naive method cannot be
used.  Even where aggregates are small and other errors are large, such as in
four-step interzonal forecasting, it would usually be better to use models
calibrated, as well as forecasting, with aggregate data than accept naive error.

A classification procedure, especially one based on the utility scales, will
be superior if efficient, rather than enumerated forecasts are desired.  When
classification is by specific variables, many more cross-classifications will be
needed than on the basis of utility scale values.  The utility classification
procedure is useless for non-simply scalable models such as those of Part IV,
Chapter 2.   Classification by variables must be used with that category of models. 
The statistical differentials method is counter-productive.

For the traditional regional forecasting environment with UTPS (four-step)
type systems, it is necessary to obtain some individual zonal data, most profitably
socioeconomic variable values, in order to construct at least a few classes in each
interchange.  This will be more important if the disaggregate models  being used
to modify aggregate forms of these procedures have high ambitions for response
to issues, thus including many variables, or if they employ joint-choice.

Policy analysis forecasting on single groups (non-segmented) can take
advantage of the accuracy of the enumeration method unless their objective for
sub-aggregate outputs, quick response or low cost use is important.  In either case,
they can best use the utility classification method unless non-simply scalable
models are being used.  In this case, the intra-aggregate utility component
covariance matrix analysis discussed in the State of the Theory section above may
be used to most efficiently define the classes.

The Special Area studies can profitably employ the utility classification
procedure if disaggregate data is available.  Even if it is not, that principle of
attempting to classify the sample along lines of homogeneous choice groups
should be followed in collecting and grouping aggregate or approximate data for
forecasting.

Generally, policy analysis systems employing simultaneous choice or
iterations for equilibration are the ones that require the simplest form of
classification to reduce each component of the computation effort.  The message
for data requirements in all of these categories is that some degree of disaggregate



1Omission of intrazonal transit access data in these forecasts has been found in this study to give a 4.2
percent RMS error in average zonal shares.
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data information within the forecasting aggregates must be available or
recoverable.  Otherwise strictly aggregate methods are superior.  UTPS
frameworks can get by on a small additional amount of individual data.  The
policy analysis categories require full disaggregate household data and, at least,
interzonal level-of-service data.1

Chapters 3 and 4 of Part IV have dealt with the problem of deriving
disaggregate data from more conventional sources when it cannot be collected
directly.

Classification methods of forecasting, especially those based on selecting
homogeneous utility or choice groups, realize the full potential for efficiency of
disaggregate models in transportation planning that was first seen when it was
found that these models could be calibrated on a fraction of the observations
necessary for aggregate models.  Now forecasting can be done by identifying only
a limited number of utility classes, that is, decision-maker types.  Forecasts for
any aggregates or sub-aggregates are simply a process of determining the relative
numbers of the population in each of these classes.  Thus, each class will have
associated with it the number of travelers in each forecasting--aggregate,
socioeconomic, so forth--that has utilities falling within the class.  The total
aggregate outputs are just the sums of the shares weighted by the aggregate
populations.  The forecasting problem has been reduced from one of computing
choice shares for great numbers of aggregate outputs to locating the proportions of
these aggregate cases in a small number of behavioral market segments.  More
in-depth data is necessary, but forecasting computations are greatly reduced. 

Volume VII of the Urban Travel Demand Forecasting Project Final Report
Series Aggregation Methods and Tests, gives more details on the subjects of this
chapter.


