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CHAPTER 3   

THE TRIP TIMING DECISION FOR TRAVEL TO WORK BY AUTOMOBILE

Introduction and Summary

The travel time for a specific trip generally depends on the time of day at
which the trip is made.  During peak periods there is not only a substantial
increase in travel time due to congestion, but also a greater variability in travel
time and thus a more uncertain time of arrival.  The trip may therefore be
rescheduled away from the peak, at the expense of reaching the destination earlier
or later than the desired time.

Data for the Urban Travel Demand Forecasting Project (UTDFP) sample
have been used to investigate whether this effect is measurable in the case of trips
to work by automobile.  Subjects were asked to give their usual time of arrival at
work, as well as their official work start time (if any).  In some two-thirds of the
sample, trips are timed so that the subject arrives somewhat before his official
work start time.  The decision as to how much leeway to allow will depend, at
least in part, on observable supply variables and, perhaps, also on some
observable characteristics of the subject.  For automobile trips, in particular, we
expect a key determinant to be the amount of traffic congestion that the subject
has to contend with at different times.  A measure of this congestion is the
variation of on-vehicle time for different arrival times; this data had been obtained
for the UTDFP sample from network computations augmented with data from
floating car runs, which made it possible to parameterize the travel-time curve for
each subject (see Reid, Reinke, and Small, 1975).



202

This data was used to estimate the parameters of a simple empirical model
for the probabilities of rescheduling by various amounts.  The model may be
viewed as expressing the subject's internal tradeoff of time "wasted" through
arriving earlier than necessary, versus the increased travel time in the peak (which
includes effects such as the unpleasantness of driving in dense traffic) and the
probability of arriving late.  The estimated parameters can then be used to predict
the extent to which travelers will reschedule their trips if congestion time changes,
due, for example, to an increase in highway capacity.

We find that there is indeed a measurable, though generally small, effect
due to highway congestion times: if congestion times increase, work trips will
tend to be rescheduled away from the peak, subject, of course, to the constraint of
getting to work on time.  The smallness of the effect, and the difficulty in
obtaining a reasonably precise estimate of its magnitude, may perhaps be
attributed to the following: (1) arrival times for work trips are relatively inflexible,
because the worker usually cannot arrive late and there are limited opportunities
for other activities if he arrives early, (2) most subjects in the sample traveled over
relatively uncongested roads--for which congestion delay in the peak was less than
five minutes; (3) the considerable flexibility in empirically selecting a suitable
parametric form of the probability function to be estimated.  Qualitatively similar
results were, however, obtained from several different model specifications.

Although the overall effect of rescheduling is small when averaged over
the entire sample, one can identify and analyze special cases where this effect
should be significant.  Such cases occur at highway bottlenecks---tunnels and
major bridges, for example--where queues are formed when demand exceeds
capacity. We therefore give a short discussion of a deterministic queuing model,
of the type due to May and Keller (1967), but taking into account changes in
demand induced by congestion (in this analysis, through rescheduling, rather than
through switching to other transportation modes).  First, assuming the validity of
the trip-timing model, the queuing model predicts a maximum rate of increase in
congestion time that is consistent with observed travel time curves.  Second, one
can investigate the effects of, say, an increase in highway capacity at the
bottleneck: we reach the somewhat surprising conclusion that the benefit to
travelers (i.e., average increase in utility) is greater than that given by the
May-Keller analysis, which assumes an unchanged level of demand.  The reason
is as follows: although rescheduling into the peak tends to restore congestion
delay to what it was before widening the highway, this is more than offset by the
gain in utility achieved by travelers arriving closer to their preferred arrival times.
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We note that rescheduling can be considered a form of schedule delay
(usually considered in connection with public transportation) applied to
automobile trips.  In part, this schedule delay involves the internal tradeoff made
by the traveler, as described above; it becomes significant, however, only when it
also involves physical constraints on the system--if travel demand at peak hours
tends to exceed highway capacity, then equilibrium can be reached only if
congestion becomes so severe that some travelers reschedule their trips out of the
peak.

Finally, we note certain differences between the present analysis and the
investigation of trip timing for other types of trip, e.g., travel to work by transit,
and non-work trips.  For bus trips, a measure of reliability was available for the
UTDFP sample (on an integer scale, based on subjective evaluations by persons
familiar with the operation of the transit system), but not specifically of variability
of arrival time or of other factors, such as overcrowding.  Small rescheduling
adjustments are generally not possible: one either takes the latest bus that gets one
to work on time, or one takes the previous bus.  In the survey sample, this
corresponds (approximately) to the difference between arrival time and work start
time being either greater than or less than the first headway; a preliminary
investigation, however, showed no association between this choice of trip time
and the reliability variable.  The timing of non-work trips is expected to be much
more elastic in response to supply conditions and thus lead to substantial
rescheduling effects; in the absence of firm constraints on travel time, however,
the nature of the tradeoff involved in rescheduling becomes much more difficult
to formulate and quantify (except, perhaps, for factors such as congestion versus
frequency for transit).
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Data Used in the Analysis

The data sample

The initial data set consisted of the standard 991-case UTDFP sample.  A
number of cuts were then applied to the data, removing cases characterized by: 
(1) missing data on the variables required for the analysis; (2) normal mode of
travel to work other than by automobile; (3) unspecified type of auto trip (e.g.,
drive-alone, carpool); (4) no fixed work start time; and (5) usual arrival time at
work outside a one-hour window defined (below) with respect to official work
start time.  This reduced the sample to 360 cases, of whom 210 normally drove
alone and 150 drove (or were driven) with others.

Predictions of shifts in the aggregate trip timing distribution were made
using only those subjects whose work start times lay between six and ten a.m. 
This final subsample, unfortunately, contained only 158 who drove alone and 135
who shared rides.  Considerable differences in predicted behavior were found
between these two groups, as might be expected.

Definitions and sources of variables

We define the following variables:

T is the subject's arrival time at work, ranging over the choices open to
him;

T0  is the time at which the subject normally arrives at work (i.e., the
subject's actual choice);

T1  is the subject's official work start time;

y = y(T)  is the on-vehicle time corresponding to arrival time  T ;

  i.e., "early" arrival time at work, inE �

T1�T if T1 � T
0 if T1 < T ;

minutes;

L = L(T)  is the probability that the subject will arrive late for work, if he
plans to arrive at time  T .
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The times  T0  and  T1  were obtained in the original surveys.  The highway
travel times were available from a network-based program (Reid, Reinke, and
Small, 1975) that included corrections for congestion (based on actual travel times
of "floating" cars on most of the freeway links in the network).

Estimation of the model (to be described) involved approximation of the
choice set by a discrete set of time intervals based on  T1 .  Two choice sets were
used.  The first consisted of six ten-minute intervals, with midpoints ranging from
forty minutes before official work start time to ten minutes after official work start
time.  The other set consisted of twelve five-minute intervals, with midpoints
from forty minutes early to fifteen minutes late.  Ideally, one would like to be able
to extrapolate to a continuous range of variables; it should be noted, however, that
respondents almost always gave times to the nearest five minutes.  The travel time 
 y(T)  is therefore required at six or twelve points only, rather than as a
parameterized curve.

The required values of  y(T)  were obtained by interpolation from values
previously computed by the congestion-corrected network program.  (This
interpolation was carried out as a low-cost alternative to re-running the network
program for the additional values of  T  used in the present analysis.)  The existing
data consisted of the times  y(T)  and slopes  for four points,  T = T1 ,  T =y �(T)
T1 + 30 ,  T = T1 - 30 , and  T = 480  (i.e., eight a.m., for morning trips) or  T =
1020  (five p.m., for afternoon trips), as well as the midday travel time.  Cubic
interpolation was used between these points, with modifications where necessary
to ensure that the full interpolated travel time curve had no minima or secondary
maxima.  In all cases, a five-minute interval was assumed for the subject to park
and walk to his place of work.

To calculate  L(T) , the probability of being late, on-vehicle time was
replaced by a normal random variable with mean  y(T)  and standard deviation  σ
= a[y(T) - y(0)] , where  y(0)  is the off-peak travel time and   a   is a constant.  No
compelling theoretical justification is claimed for this particular form; however,
simple models (in which congestion is due to queue formation at bottlenecks)
suggest that the standard deviation should be approximately proportional to excess
travel time due to congestion.  This applies both for random fluctuations in
incoming traffic flow and for fluctuations in capacity (e.g., due to stalled
vehicles). The observed travel time data is consistent with a linear relationship,
but other functional behavior is not excluded (see Reid, Reinke, and Small, 1975). 
Several values of   a   were tried; we shall report results for the case   a = 0.2 . 
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Many of the subjects in the survey did not have to report for work at
precisely their official work start times.  These subjects were asked how many
minutes they could arrive late "without it mattering very much."  By adding this
time interval to  T1 , we obtain the auxiliary variable

T2 : the arrival time after which the subject would definitely be considered
late.

Rather than exclude these subjects from the analysis,  L(T)  (the probability of
being late) was computed with "late" defined by  T2  instead of  T1 .  The
definition of  E  however, was not changed.  Subjects with  T2 - T1  greater than
fifteen minutes were considered to have no definite work start time and were
excluded from the analysis.
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Formulation of the Trip Timing Model

The trip timing probability will be expressed in terms of the traveler's
utility, representing his tradeoff between congestion time and schedule delay.  The
simplest form would be

(1) U(T) = -αy(T) - β(T1 - T)    ,

for  T  earlier than  T1  (i.e., no late arrivals).  We may consider subjects to have
three different "values of time," for (1) normal (uncongested) on-vehicle time; (2)
increased travel time due to congestion; and (3) schedule delay time--that is, the
difference between actual and latest possible times of arrival.  A mode choice
model involving times and costs results in an estimated value for some
combination of (1) and (2); in the present case, we obtain an estimate of the ratio
of the values of (2) and (3), represented by the parameter  α/β .  A typical travel
time curve   y(T)  for a heavily congested route is shown in Figure 7(a), and a
corresponding utility function of the form equation (1) is shown in Figure 7(b).

A slightly more complex utility function was used, with an explicit term
for the probability of being late:

(2) U(T) = -αy(T) - βE - γL(T)    ,

with  E  and  L  as defined above.  Other forms were also used, to investigate the
stability of estimates of  α  under changes in the specification of the model.

The actual trip timing decision is supposed to be made by maximizing 
U(T) .  The probability of choosing time  T  (or, rather, a time in some small
interval centered on  T ) will then depend on the form of the unobserved
stochastic component of the utility function,  �(T) .  The form of the probability
will also depend on whether the parameters  α  and  β  are taken as fixed or as
random variables over the population.
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For simplicity, the probabilities were taken to be of the logit form,

(3) P(Ti) � exp{U(Ti)} / �
j

exp{U(Tj)} ,

where  Ti  refers to the midpoint of time interval  i .  This is appropriate if the
range of   T  can be divided into small intervals in each of which the stochastic
term   �(Ti)  has an independent Weibull distribution; because of the special
properties of this distribution, the form equation (3) remains true when these
intervals are aggregated into larger intervals, at least to the extent that  U(Ti)  is a
good approximation to the maximum value of  U(T)  in interval  i .  This,
however, is unlikely to be a reasonable assumption: the stochastic term is
supposed to represent all the unobserved components of the subject's utility that
depend on  T , and hence, as the time intervals become small, the terms  �(Ti)  and 
�(Tj)  are expected to become highly correlated rather than remain independent.

A more realistic stochastic term could be obtained by taking the  �(Ti)  to
be given by a stationary Markov process, and taking the limit as the size of the
interval tends to zero.  This appears to result, in general, in a stationary Gaussian
process, and there is no simple expression for the probability that  U(T) + �(T) 
will be maximized in an interval about  T .

Another procedure is to treat the coefficients  α  and  β  as random
variables over the population, with some specified distributions (a gamma
distribution was tried), instead of adding a stochastic term  �(T) .  It was not
possible, however, to obtain a tractable form for the probabilities  P(Ti)  in this
model, even for the simpler utility function of equation (1) with only one
coefficient  α .   An attempt was made to approximate these probabilities to obtain
a logit form, as in equation (3), but with  U(Ti)  replaced by some other function,
say  V(Ti) .  This suggested that an appropriate form for the probabilities   P(Ti)  
might be a logit expression in which the "pseudo-utility"  V(Ti)  contained the
slope of the travel time curve,   .  [Note that if  U(T)  in equation (1) isy �(Ti)
maximized at a stationary point, then the maximum occurs at  .]α � y �(T)
However, logit estimations that included the slopes    yielded coefficientsy �(T)
not significantly different from zero.

In view of these difficulties, the logit model of equation (3) was used, with 
 U(T)  given by equation (2).  Because of the unrealistic nature of the
independence assumption, it should perhaps be regarded as an empirical fit rather
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than as a utility-maximizing choice model.  For this reason, caution should be
exercised in interpreting the estimated function  as representing the traveler's�U(T)
utility.

In the present analysis, only supply variables and work times were
included in  U(T) , as opposed to characteristics of the subject.  A potentially
useful characteristic would be occupation code (or employment code), because
this might help in categorizing subjects according to the seriousness of late arrival
at work, and thus their response to the risk of delay.
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Estimation of Parameters

The logit model described by equations (2) and (3) was estimated by
standard methods, using the QUAIL program package.  Table 32 presents the
estimated coefficients for subjects with work start times between six a.m. and ten
a.m.  Subjects were divided into those who drive alone and those who share rides.
The twelve-interval choice set was used.  T-statistics are given in parentheses.

We see that all the parameters are significantly different from zero for
those who drive alone.  The relative disutility of congestion time to schedule
delay,  ρ � α/β , is 1.6 for these travelers.  We note also that the response of
shared-ride travelers to congestion time is much smaller and is consistent with
zero.  This is not unexpected and may reflect the greater difficulty in scheduling
shared rides.  There is also the obvious possibility of schedule delay for some of
the riders that is not a result of avoidance of congestion.

Estimation for the larger subsamples, without restriction of work start
times, gave estimates consistent with those in Table 32 but with larger errors.

A number of variants of this model were also estimated, to test the
sensitivity of the estimated parameters to some of the assumptions made in
specifying the model.  A summary of these variants is as follows:

(1) Different values of   a   were used, where   a   is the constant of
proportionality relating the standard deviation of travel time to the congestion
time,  σ(T) = a[y(T) - y(0)] . This changes the computed values of  L(T) , the
probability of late arrival.  For   a = 1   and   a = 0.5 , estimated coefficients differ
from those in Table 32 by ten to twenty percent, i.e., within the estimated errors;
the likelihood ratios are somewhat smaller.

(2) The model was estimated with six ten-minute intervals instead of
twelve five-minute intervals.  For the drive-alone group, differences in the
estimated coefficients were within ten percent, and for both groups the differences
were within the estimated errors.  This suggests that the size of the time interval
selected is not critical.

(3) The slope of the travel time curve, , was included as anothery �(T)
variable.  (See the discussion in the section, "Formulation of the Trip Timing
Model," of an alternative formulation of the choice model.)  The estimated
coefficient of the slope term was small and consistent with zero; this remained
true when different coefficients were allowed for positive and negative slopes.  If
the travel time  y(T)  remained in the equation, there was very little improvement



212

in the fit (in terms of the likelihood ratio index), while if  y(T)  was excluded, a
poor fit was obtained.

(4) A dummy variable was included in alternative nine, i.e., for the interval
corresponding to official work start time.  The coefficient of the dummy variable
was significantly different from zero, and the likelihood ratio index improved.
However, because the coefficient of the dummy variable presumably depends, in
an unspecified way, on the extent of congestion, this model may be less useful in
predicting rescheduling in response to changes in travel time.

(5) The probability of late arrival,  L(T) , was omitted.  For subjects with  
T1 � T2   (i.e., a "soft" deadline  T1  and a "hard" deadline  T2 ), an additional
linear variable,

E2   =   
T�T1 if T1�T�T2
0 otherwise ,

was included.  This model gave less satisfactory fits, with likelihood ratio indices
of the order of 0.05 or less.

An unsatisfactory feature of the model was revealed when a special
subsample was estimated, consisting of subjects who cross the San
Francisco-Oakland Bay Bridge.  (This subsample was selected on the basis of
residence zones in Alameda County and Contra Costa County, with workplace
zones in San Francisco; it may, therefore, include some who cross the
Hayward-San Mateo bridge instead.)  These commuters are expected to face
particularly great variations in travel time (see, for example, Figure 7(a)). 
Although there were only eleven cases in this subsample in the drive-alone
category, an apparently significant fit was obtained.  The estimated coefficients
are presented in Table 33.  While the ratio of the coefficients of  E  and  L  has not
changed appreciably, the relative disutility of congestion time has increased:  the
ratio  ρ � α/β  has risen from 1.6 in Table 32 to 4.4 in Table 33.  Although the
small number of cases may make these latter estimates unreliable, the discrepancy
does suggest a substantial degree of nonlinearity in the disutility of congestion
time.  This could be accommodated by including in equation (2) either (1) a term
quadratic in   [y(T) - y(0)] , or (2) a separate coefficient for the excess of
congestion time above some threshold value, e.g., ten minutes.
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TABLE 32

Estimated Coefficients

Variable Drive-Alone Shared-Ride

y -0.127 (1.70) 0.00466 (0.077)

E -0.0782 (8.37) -0.0548 (6.25)

L -2.72 (8.12) -2.61 (6.69)

LRI 0.150 0.107

No. of Cases 158 135

Estimated coefficients in the utility function equation (2).  Numbers in
parentheses are t-statistics.  LRI is the likelihood ratio index.  y  is the congestion
time,  E  the schedule delay, and  L  the probability of late arrival.  Work start time
restricted to 6 a.m. to 10 a.m.

TABLE 33

Variable

Estimated
Coefficients

(Drive Alone)

y -0.582 (2.15)

E -0.132 (2.22)

L -4.16 (2.19)

LRI 0.222

No. of Cases 11

Estimated coefficients for the subsample of Bay Bridge commuters.
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Effects of Changes in Congestion

The estimated parameters give a choice probability function  Pij(y) , which
expresses the probability that individual  i  will plan to arrive in time interval  j . 
It is a known function of  y , i.e., the on-vehicle times for every time interval for
this individual.  Thus one can calculate the estimated change in, say, the aggregate
cumulative distribution of arrival times, for a specified change in congestion
times. This is shown in Table 34 for the case where congestion times  (y - y0) 
have been increased uniformly by twenty-five percent.  (The differences, though
small, are significant, even though the estimated distributions are of course not
significant to the quoted four figures.)  The smallness of the shift may be
attributed to the small proportion of the sample who experience any substantial
degree of congestion delay.  Note that our sample is not, in fact, a random sample
of commuters, in view of the original sampling procedure and the cuts imposed on
the initial sample.

A single summary statistic may be more helpful than a distribution in
some circumstances, and we have defined a "rate of shift" of start time and an
effective "elasticity of start time."   Analogous quantities are defined for arrival
time.

Suppose congestion delay time increases uniformly by a small fraction  � ,
that is, from  (y - y0)  to  (y - y0)(l + �) .  One can then compute the mean change in
arrival time over the sample and divide by  ε : this gives the "rate of shift" of
arrival time.  This can be expressed as

(4) rA �
1
N �

N

i�1
�
N

j�1
Tij

d
dλ

pij λ(y�y0) �(λ�1) ,

where  Tij  is the arrival time corresponding to time period  j  for subject  i .   N  is
the number of subjects, and  M  is the number of time intervals in the choice set
used in the estimation procedure.  Note that probabilities  Pij(y) , j = l,...,M  are
unchanged if the travel time  y  is increased by a constant independent of  j .  The
rate-of-shift parameter  rA  is expressed in minutes or other time units.

The effective "elasticity" of arrival time is defined similarly, except that
the change in arrival time is expressed as a fraction of the corresponding off-peak
travel time   y0   before taking the mean.  This parameter,  ηA  is dimensionless,
i.e., it has no units.

The rate of shift and "elasticity" for start time (i.e., time of leaving home),  
rs  and  ηs , are defined analogously.  Note that these are largely determined just by
the rate of increase in travel time, rather than by the effects of rescheduling.
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TABLE 34

Cumulative Distribution (percent)

Time (a.m.)
With Existing

Congestion
Congestion Times

Increased 25%

7.00 14.98 15.06

7.10 17.56 17.67

7.20 21.92 22.16

7.30 28.74 29.13

7.40 35.96 36.41

7.50 48.13 48.41

8.00 64.20 64.17

8.10 70.97 70.86

8.20 76.01 75.89

8.30 81.94 81.83

Aggregate probability distribution of arrival times at work for the drive-alone
subsample.
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In the case of the logit model for the choice probabilities, the expressions
for these quantities may be simplified; for example,  rA  in equation (4) is the

sample mean of the covariance between  T  and .(y � y0) α � γ
�L
�y

These summary statistics are presented in Table 35 for the drive-alone and
shared-ride subgroups with work start times between six a.m. and ten a.m.,
corresponding to the estimated parameters given in Table 32.  The greater degree
of congestion experienced by the second subgroup may be due in part to the
greater likelihood of arranging shared rides between areas of high residential and
employment density.   The difference between the elasticities of arrival time for
the drive-alone and shared-ride subsamples appears particularly noteworthy.
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TABLE 35

Drive Alone Shared Ride

Rate of shift of start time (minutes) -2.91 -4.45

Rate of shift of arrival (minutes) -0.46 -0.088

�Elasticity� of start time -0.177 -0.243

�Elasticity� of arrival time -0.024 -0.0059

Mean increase in on-vehicle time due to
congestion

16.2% 24.3%

Summary statistics for changes in trip timing in response to increased congestion
(sample with work start times between 6 a.m. and 10 a.m.).
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Queue Formation at Bottlenecks

Because the effects of rescheduling are small when averaged over the
entire sample, we consider, briefly, a case where its effects are expected to be
significant. This occurs when congestion time may be viewed as due to the
buildup of queues at bottlenecks on congested highways when demand exceeds
capacity.  Growth of the queue can result in a rapid rate of increase in congestion
time, and thus make rescheduling worthwhile.

Traffic flow has been analyzed in terms of deterministic queue formation
by May and Keller (1967) (the first in a series of investigations of increasingly
complex traffic flow models) and by Small (1976).  Demand was taken as given in
the May-Keller model, and was used to determine the delay caused by queuing
when demand exceeds the capacity of the bottleneck.

Here we consider also the feedback effect of delay on demand, i.e., on how
the rate at which travelers arrive at the bottleneck is influenced by the existing
length of the queue.  With appropriate simplifications, the shape of the travel time
curve can then be expressed in terms of a parameter representing the tradeoff
between congestion time and "schedule delay."  Further details of these results
will be presented elsewhere.

In the simplest case, suppose all peak-time travelers have the same
deadline   T1  for exit from the bottleneck, and all have the same tradeoff  ρ 
between time spent waiting in the queue and time "wasted" through early arrival at
the destination.  We assume the simple utility model of equation (1),  with  ρ �
α/β .  [There is no difficulty, in principle, in using the model of equation (2) with
an explicit term for the probability of being late; it then becomes necessary,
however, to compute the resulting graphs numerically.]  Suppose that the queue is
stable , where a stable queue is defined as one for which no traveler could increase
his utility by changing his arrival time at the queue.  (Where utility is constant
over a range of arrival times, the position of individual travelers in the queue will
be determined by the unobserved stochastic component of the utility function.)

One then finds that the queuing delay has the triangular form shown in
Figure 8, corresponding to a uniform arrival rate of travelers between times  TA  
and  TB .  The parameters are:

TA � T1 �
ρn

ρC � q(ρ�1)
;
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TB � T1 �
n

ρC�q(ρ�1)
;

TC �
q

C�q
(T1�TB) � T1 ;

where   n   is the total number of peak travelers,   C   is the capacity of the
bottleneck, and   q   is a constant "background" traffic flow   (q < C)  .  [If the
background flow   q   is zero, the formulae remain well-defined but the queue may
become unstable, i.e., there may be no configuration in which no traveler could
gain by further rescheduling.]

The rates of growth and decline of the delay time in Figure 8 are   l/(ρ - 1)  
and   (1 - q/C)  , respectively.

The assumption that all travelers have the same exit deadline  T1  is not
essential, and Figure 9 illustrates the case of a continuous distribution of exit
deadlines, represented by the curve  (giving the cumulative distribution as aDD �

function of  t ) .  The queue has the same form as in Figure 8.   The point  Z ,
where the queue finally disperses, occurs when the slope of the curve    DD �

equals  C - q .  The straight line  XZ , of slope  C - q(ρ - l)/ρ , gives the cumulative
distribution of peak travelers leaving the queue, and its intersection with the
demand curve  at  X  determines the time at which the queue begins to form. DD �

The line  XY  has slope  Cρ/(ρ - 1) - q ;  XYZ  then gives the cumulative
distribution of peak travelers entering the queue.

A typical value for the maximum rate of increase in travel time for trips
involving potential bottlenecks (e.g., the Caldecott Tunnel and the Bay Bridge) is
about 0.3 ; setting this equal to  l/(ρ - 1)  gives   ρ � 4.3 .  The similarity of this
value to that obtained from the estimates in Table 33 (0.582/0.132 � 4.4) suggests
that the utility model is not entirely unrealistic.
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As a final exercise in this simplified queuing model, we consider the
change in utility (benefit to peak travelers) of an increase in the capacity of the
bottleneck. Utility will be expressed in units of the "value" of schedule delay in
minutes.  As an example, suppose  T1  is fixed,  C = 10,000  vehicles per hour,  n
= 5000 , and  ρ = 2 .  The queue parameters (see Figure 8) are, then,

T1 - TB = 15 minutes ,

T1 - TA = 30 minutes ,

and the average utility is -30 minutes (in schedule delay equivalent units). 
Suppose capacity is increased by twenty percent. The average reduction in travel
time would be 2.5 minutes if the incoming flow remained unchanged (as in the
May-Keller model), but is only 1.25 minutes when we allow for rescheduling. 
Thus, if we consider only the reduction in travel time, the effect of rescheduling
into the peak halves the benefit obtained from the increase in capacity.  

If, however, the change in utility is calculated, we find  ∆U = 2.5  minutes
(in schedule delay units) with no rescheduling, but  ∆U = 5 minutes when
rescheduling is taken into account.  The reduction in schedule delay achieved by
rescheduling, therefore, more than offsets the corresponding increase in average
travel time.  We see that the gain for peak travelers is (at least in this special case)
greater than would have been estimated for a fixed incoming flow.


