SPECIAL REPORT UCB-ITS-SR-77-9

Demand Model Estimation and Validation

Daniel McFadden, Antti P. Talvitie, and Associates

Urban Travel Demand Forecasting Project Phase 1 Final Report Series, Vol. V

JUNE 1977

THE INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA BERKELEY AND IRVINE Institute of Transportation Studies 109 McLaughlin Hall University of California Berkeley, California 94720

THE URBAN TRAVEL DEMAND FORECASTING PROJECT PHASE I FINAL REPORT SERIES

VOLUME V

DEMAND MODEL ESTIMATION AND VALIDATION

by

Daniel McFadden Antti Talvitie and

Stephen Cosslett Ibrahim Hasan Michael Johnson Fred A. Reid Kenneth Train

June 1977

Research was supported by the National Science Foundation, through grants GI-43740 and APR74-20392, Research Applied to National Needs Program, and by the Alfred P. Sloan Foundation, through grant 74-21-8, to the University of California, Berkeley.

TABLE OF CONTENTS

ACKNOWLED	GEMENTS	i
EXECUTIVE S	UMMARY	ii
PART I	THEORY AND ESTIMATION OF BEHAVIORAL TRAVEL DEMAND MODELS	1
Chapter 1	<u>The Theory of Econometric Choice Models and</u> <u>Estimation of Parameters</u>	2
	Introduction Individual Choice Behavior Behavior of a Homogeneous Market Segment The Multinomial Logit Model of Choice Probabilities The Structure of Utility	2 5 9 11 14
	Statistical Calibration of the MNL Model Model Evaluation and Validation	23 25
Chapter 2	<u>Alternative Structures for the Estimation and</u> Forecasting of Urban Travel Demand	30
	Introduction Components of Travel Demand Factorization of the Demand System The Short-Range Generalized Policy (SRGP) Model Attitudinal and Objective Data Aggregation of Alternatives	30 32 34 38 40 42
	Model Complexity	46

PART II	DEVELOPMENT, TESTING, AND VALIDATION	47
	OF A WORK-TRIP MODE-CHOICE MODEL	4/
Chapter 1	Pretesting the Sample and Initial Model Specifications	48
	Introduction	48
	The Basic Three-Alternative Model Specification	50
	Examination of an Empirical Issue with the Basic Model An Examination of a Specification Issue with the	60
	Basic Model	64
	Testing of Hypotheses in the MNL Model	70
	A Non-Logit Choice Model: The Maximum Model	71
	The Tradeoff between Goods and Leisure	76
Chapter 2	Re-Estimation of the Pretest Mode-Choice Model with	
_	the Full UTDFP Sample	84
	Introduction	84
	Tests of Model Specification on the Full Sample	85
	Coefficient Estimates and the Choice Set	106
Chapter 3	Validation of Disaggregate Travel Demand Models:	
	Some Tests	110
	Introduction	110
	Validation Tests of Pre-BART Models	111
	Forecasting Ability of the Final Pre-BART Model	113
	Forecasting Ability of Other Pre-BART Models	121
	Comparison of Model Coefficients Developed Using	105
	Pre- and Post-BART Data	125
	Reasons for Mispredictions	129
Chapter 4	Some Specification Tests on the Post-BART Model	136
	Introduction	136
	Tests of Non-Genericity	137
	Tests of Non-Linearity	139
	Tests of Taste Variations	141

PART III	MODELING CHOICES OTHER THAN WORK-TRIP	146
Chapter 1	A Structured Logit Model of Auto Ownership and Mode Choice	147
	Introduction	147
	Previous Research	148
	Model Specification	151
	Conditional Probabilities of Work-Trip Mode-Choice	154
	Marginal Probabilities of Auto-Ownership Levels	169
	Summary of the Model	188
Chapter 2	A Destination Choice Model for Work Trips	189
	Introduction	189
	Socioeconomic Determinants of Work Locations	191
	Empirical Results	197
	Extension of the Model to Include Level-of-Service Variables	200
Chapter 3	The Trip Timing Decision for Travel to Work	
enapter e	by Automobile	201
	Introduction and Summary	201
	Data Used in the Analysis	204
	Formulation of the Trip Timing Model	207
	Estimation of Parameters	211
	Effects of Changes in Congestion	214
	Queue Formation at Bottlenecks	218

PART IV	ISSUES IN DEMAND MODELING AND FORECASTING	222
Chapter 1	The Independence from Irrelevant Alternatives Property of the Multinomial Logit Model	223
	Introduction and Background	223
	Diagnostic Tests for the IIA Property	231
	An Empirical Application of the Diagnostic Tests Appendix I A Simulation Study of the Independence	237
	from Irrelevant Alternatives Property	258
Chapter 2	Models without IIA: Sequential Logit, Generalized Logit, and Probit Models	289
	Introduction	289
	Ad Hoc Choice Models	290
	The Multinomial Logit Model for Joint Choice	292
	The Sequential MNL Model	294
	The Generalized Extreme Value Model	295
	Relation of Sequential MNL and GEV Models	300
	The Multinomial Probit Model	302
Chapter 3	Forecasting the Values of Exogeneous Variables:	.
	Socioeconomic Variables	307
	Introduction	307
	Background: Construction of Sampling Tables	309
	The Iterative Proportional Fitting Method	313
Chapter 4	Forecasting the Values of Exogeneous Variables:	317
	Transportation System Attributes	517
	Introduction	317
	A Comparison of Experienced and Network Based	
	Travel Time Measurements	319

	A Comparison of Mode-Choice Models Developed with	
	Two Types of Supply Measurements	330
	Development of Parametric Models to Forecast	
	Level-Of-ServiceVariables for Access	341
	Method and Assumptions in Detail	344
	Variable Definitions and Initial Model Specifications	349
	Discussion of Model Assumptions	353
	The Estimated Models	356
	Development of Models to Forecast the Travel Times	
	as Linehaul	363
		000
Chapter 5	Transferability of Mode-Choice Models of Urban Travel	375
- · · · · ·	<u> </u>	
	Introduction	375
	Data and Comparative Model Specification	376
	Data Checks for OutliersMetrical Trimming	382
	Tests on Model Specification	384
	Transferability of the Models	389
	Conclusions	393
Chapter 6	Attitudes, Beliefs, and Transportation Behavior	395
- ·· r ·· ·	<u> </u>	
	Definitions	395
	Attribute Importance	396
	Basic Preferences	399
	Perceived Costs of Driving	402
	6	-
Chapter 7	Aggregation of Disaggregate Models for Forecasting	403
I		
	The State of Aggregation Theory	407
	Utility Scale Classification	413
	Forecasting in Practice: Planning Requirements	
	Versus Resources	415
	Methods of Aggregation in Practice	419
	Aggregation Error Tests	421
	Conclusions	426

Chapter 8	Equilibration of Travel Demand and System Performance: An Application in a Transportation Corridor	428
	Introduction	428
	Equilibration in Transport Networks	430
Reformulation of the Equilibration Problem		437
	On the Determination of an Approximate Fixed Point:	
	The Scarf Algorithm Summarized	449
	Computation of the Equilibrium Flow PatternAn Example	454

REFERENCES

458

ACKNOWLEDGMENTS

The preparation of this volume was aided by the following individuals who served as research assistants and programmers: Aaron Adiv, Youseff Dehghani, Gerald Duguay, John Faris, Jean Garrard, Woo Jung, David Gautschi, Daniel Kirshner, and Rafi Melnick; Jerome Berkman, David Brownstone, and Christopher Murano.

Grace Katagiri was responsible for the overall editing and assembling of the volume, and Ted Bogascz provided editorial assistance for some parts of this work.

The manuscript was typed by the following individuals: Greer Collins, Jane Duran, Rachel Elkins, Matthew Emery, Julie Grottola, Brenda Megerle, Mona Radice, JoAnn Takahashi, and Grace Katagiri. They typed excellent copy under great pressure, and provided the authors with invaluable encouragement and support through countless drafts.

The authors wish to express their great appreciation to all of these individuals who contributed so generously to the compilation of this work.

Finally, the authors wish to acknowledge the generous financial support of the National Science Foundation, Research Applied to National Needs Program, through grants GI-43740 and APR74-20392, and the Alfred P. Sloan Foundation, through grant 74-12-8, to the University of California, Berkeley.

EXECUTIVE SUMMARY

The overall objective of the Urban Travel Demand Forecasting Project is to provide transportation engineers and planners with the information necessary to select and use policy-oriented disaggregate behavioral travel demand models, and to assess the applicability and limits of specific alternative models. This volume is devoted to the investigations of demand, forming the core of this project.

The research plan underlying this demand research was to:

- Collect data on a sample of individual commuters in the San Francisco Bay Area before the initiation of Bay Area Rapid Transit (BART) service;
- Predict BART patronage from demand models fitted to the pre-BART data, and
- Compare the predictions with actual BART patronage, using a second survey taken after BART was in service.

Attention was concentrated on work mode-choice. A number of parallel questions in demand analysis were addressed:

- What variables influence demand?
- How does the method of measurement of variables affect demand model estimates?

- What functional forms for demand achieve the multiple objectives of validity, practicality, and simplicity? (In particular, is the multinomial logit (MNL) model, with its structural property of independence from irrelevant alternatives (IIA), a valid forecasting model for a new mode?
- How can socioeconomic and demographic variables be forecast as inputs to transportation policy forecasts?
- How can transportation level-of-service attributes be calculated under alternative policy scenarios without building complete networks?
- To what degree are disaggregate behavioral models transferable from one population to another within, or between, cities?
- How can aggregate travel demands be conveniently calculated from disaggregate behavioral models?
- What is the role of attitudes and perceptions in travel behavior?
- How can disaggregate behavioral models be adapted to equilibration of transportation supply and demand?

The conclusions of the research can be summarized:

- A short list of traditional transportation system attributes (e.g., travel times and costs) explain most travel demand behavior. Socioeconomic variables improve overall fits significantly. Inclusion or exclusion of most socioeconomic variables from the models does not greatly affect the importance attributed to on-vehicle time and costs--thus, policies affecting only these variables may be validly analyzed in models without great socioeconomic detail. Variables that are related to the "availability" of alternatives, such as auto ownership, are extremely important.
- Disaggregate behavioral models fitted to pre-BART data provided relatively accurate forecasts of BART patronage. Forecasting accuracy was significantly better in models with socioeconomic detail than in models employing only traditional transportation variables. The forecasts were best for BART with bus- or walk-access but substantially overpredicted

BART-with-walk-access patronage.

- The use of network travel times, compared with travel times calculated directly from trip timing studies, showed considerable dispersion and some systematic biases. Overall fits were not greatly affected, but implied values of time changed substantially depending on the method of variable measurement used.
- The multinomial logit model is found to provide a valid functional form for a variety of transportation applications. Empirical tests are developed for the independence from irrelevant alternatives (IIA) property, and are not rejected for the travel demand behavior observed by the project.
- A pragmatic method for synthesizing census data into a transportation demand data base at any desired date for policy analysis has been developed.
- Analytic supply models, giving transportation level-of-service attributes as parametric functions of policies and of patronage, provide a relatively inexpensive, policy sensitive supply counterpart to disaggregate demand models.
- Disaggregate behavioral models fail tests of transferability between urban and suburban residents, indicating either significant taste variations with residential locations or geographical variations in network coding practices. There is also some evidence of non-transferability between cities, most probably attributable to differences in variable measurements.
- A market segmentation based on summary "utility levels" of alternatives is found to be a particularly effective method of obtaining reasonably accurate aggregate forecasts. Random sampling from the population is a second effective method.
- Attitude and perception measurements complement traditional transportation measures as explanations of travel behavior, in the sense that adding attitude variables to a model containing traditional transportation variables has little effect on the importance assigned to the traditional variables. Generally, adding attitude variables to a model does not substantially increase its explanatory power.

• Equilibration of disaggregate demand models and parametric supply models in a corridor has been achieved using a computational procedure for approximating fixed points of a mapping. This method provides a practical alternative to conventional network equilibration methods.

Overall, the demand studies summarized in this volume have demonstrated disaggregate travel demand forecasting to be a practical policy-analysis tool. The limitations of the current generation of these models are spelled out, and suggest that considerable care is needed in their application to new mode forecasting, and in transferring models across populations. Some limitations of the models appear to be amenable to improved variable specification, achievable with further research and improved disaggregate data collection.