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The Effect of State Taxes on the Geographical Location  
of Top Earners: Evidence from Star Scientists†

By Enrico Moretti and Daniel J. Wilson*

We quantify how sensitive is migration by star scientists to changes 
in personal and business tax differentials across states. We uncover 
large, stable, and precisely estimated effects of personal and 
corporate taxes on star scientists’ migration patterns. The long-run 
elasticity of mobility relative to taxes is 1.8 for personal income taxes, 
1.9 for state corporate income tax, and −1.7 for the investment tax 
credit. While there are many other factors that drive when innovative 
individuals and innovative companies decide to locate, there are 
enough firms and workers on the margin that state taxes matter.  
(JEL H24, H25, H71, H73, J44, J61, R32)

In the United States, personal taxes vary enormously from state to state. These 
geographical differences are particularly large for high income taxpayers. Figure 1 
shows the average tax rate (ATR) component due solely to state individual income 
taxes for a taxpayer with income at the ninety-ninth percentile nationally in 2010.1 
The ATRs in California, Oregon, and Maine were 8.1 percent, 9.1 percent, and 
7.7 percent, respectively. By contrast, Washington, Texas, Florida, and six other 
states had zero income tax.2 Large differences are also observed in business taxes. 
As shown in Figure 2, Iowa, Pennsylvania, and Minnesota had corporate income 
tax (CIT) rates of 12 percent, 9.99 percent, and 9.8 percent, respectively, while 
Washington, Nevada, and three other states had no corporate tax at all. And not only 
do tax rates vary substantially across states, they also vary within states over time. 
Figure 3, for instance, shows how states’ individual income ATRs changed during 

1 We map here the average tax rate component due solely to state income taxes, rather than the full average 
tax rate which accounts additionally for federal income taxes, in order to illustrate the ATR differences driven by 
state tax policy differences. Our empirical analyses in the remainder of the paper utilize the full ATR. 

2 One of those six, Alaska, is not shown on the map. 
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various  intervals  spanning the period 1977 to 2010. Corporate tax rates exhibit sim-
ilar within-state variation (see online Appendix Figure 1).

If workers and firms are mobile across state borders, these large differences over 
time and place have the potential to significantly affect the geographical allocation 
of highly skilled workers and employers across the country. The literature on the 
effect of taxes on the labor market has largely focused on how taxes affect labor 
supply, and by and large it has ignored how taxes might affect the geographical 
location of workers and firms. This is surprising because the effect of state taxes on 
the ability of states to attract firms and jobs figures prominently in the policy debate 
in the United States.

Many states aggressively and openly compete for firms and high-skilled workers 
by offering low taxes. Indeed, low-tax states routinely advertise their favorable tax 
environments with the explicit goal of attracting workers and business activity to 
their jurisdiction. Between 2012 and 2014, Texas ran TV ads in California, Illinois, 
and New York urging businesses and high-income taxpayers to relocate. Governor 
Rick Perry visited dozens of California companies to pitch Texas’ low taxes, 
famously declaring: “Texas rewards success with no state income tax.” Similarly, 
Kansas has paid for billboards in Midwestern states to advertise its recent tax cuts. 
Wisconsin governor Scott Walker has called upon Illinois and Minnesota employers 
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to “escape to Wisconsin.” Louisiana and Indiana have followed similar strategies. In 
the 2014 election cycle, state taxes and their effect on local jobs were a prominent 
issue in many gubernatorial races.

But despite all the attention from policymakers and voters, the effect of taxes on 
the geographical location of high earners and businesses remains poorly understood 
because little systematic evidence on their effects is available. As noted in a recent 
paper by Kleven, Landais, and Saez (2013, p. 1892), there is “very little empiri-
cal work on the effect of taxation on the spatial mobility of individuals, especially 
among  high-skilled workers.”

In this paper, we seek to quantify how sensitive is internal migration by  high-skilled 
workers to personal and business tax differentials across US states. Personal taxes 
might shift the supply of workers to a state; states with high personal taxes pre-
sumably experience a lower supply of workers for given before-tax average wage, 
cost of living, and local amenities. Business taxes might shift the local demand for 
skilled workers by businesses: states with high business taxes presumably experi-
ence a lower demand for workers, all else equal.

We focus on the locational outcomes of star scientists, defined as scientists—in 
the private sector as well as academia and government—with patent counts in the 
top 5 percent of the distribution. Using data on the universe of US patents filed 
between 1976 and 2010, we identify their state of residence in each year. We com-
pute bilateral migration flows for every pair of states (51 × 51) for every year. 
We then relate bilateral outmigration to the differential between the destination and 
origin state in personal and business taxes in each year. To this end, we compiled 
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a comprehensive dataset on state personal income tax rates, corporate income tax 
rates, R&D tax credits, and investment tax credits (ITC).

Star scientists are important for at least two reasons. First, star scientists are well 
educated, highly productive workers with high income levels. By studying them, 
we hope to shed some light on the locational decisions of other well-educated, 
 productive, and high-income workers. Second, and more fundamentally, star sci-
entists are an important group of workers because their locational decisions have 
potentially large consequences for local job creation. Unlike professional athletes, 
movie stars, and rich, elderly people—the focus of some previous research—the 
presence of star scientists in a state is typically associated with research and produc-
tion facilities and in some cases, with the fostering of new industries, from biotech 
to software to nanotech.3

Of course, taxes are not the only factor that can determine the location of star 
scientists. Indeed, we find a limited cross-sectional relationship between state taxes 
and number of star scientists in a state as the effect is swamped by all the other 
differences across states. California, for example, has relatively high taxes through-
out our sample period, but it is also attractive to scientists because of the historical 
presence of innovation clusters like Silicon Valley and the San Diego biotech cluster.

Our models estimate the elasticity of migration to taxes by relating changes in 
number of scientists who move from one state to another to changes in the tax dif-
ferential between the two states. By focusing on changes over time, within a given 
state pair, our models absorb all time-invariant factors that can shift the demand and 
supply of scientists across states.

We uncover large, stable, and precisely estimated effects of personal and business 
taxes on star scientists’ migration patterns. The probability of moving from state o 
(origin) to state d (destination) increases when the net-of-tax rate (hence after-tax 
income) in d increases relative to o. For the average tax rate faced by an individual 
at the ninety-ninth percentile of the national income distribution, we find a long-run 
elasticity of about 1.8: a 1 percent increase in after-tax income in state d relative to 
state o is associated with a 1.8 percent long-run increase in the net flow of star sci-
entists moving from o to d. The elasticity of the stock of scientists in a given state 
to a change in that state’s ATR is, of course, lower given that the base is larger. To 
be clear: the flow elasticity implies that if after-tax income in a state increases by 1 
percent due to a personal income tax cut, the stock of scientists in the state experi-
ences a percentage increase of 0.4 percent per year until relative taxes change again.

As an illustration, our estimates imply that the effect of New York cutting its 
statutory personal income tax rate on the top 1 percent of earners from 7.5 percent 
to 6.85 percent in 2006 was to increase the net inflow of star scientists to the state 
by about 3 per year, which is a sizable effect over time. Over a ten-year period, for 
instance, this implies an addition of 30 to New York’s stock of star scientists—a 
2.6 percent increase.

3 The literature has highlighted the role that star scientists have historically played in the birth and localization 
of new R&D-intensive industries. For example, the initial location of star scientists played a key role in determining 
the localization of the three main biotech clusters in the United States (Zucker, Darby, and Brewer 1998). Similar 
patterns have been documented for semiconductors, computer science, and nanotech (Zucker and Darby 2006). 
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We find a similar elasticity for state corporate income tax as well as the invest-
ment tax credit (in the opposite direction), while the elasticity for the R&D credit 
rate is smaller and statistically insignificant in some specifications. In all, our esti-
mates suggest that both the supply of, and the demand for, star scientists are highly 
sensitive to state taxes.

These estimates capture the long-run effect of taxes on mobility. When we look 
at the dynamics of the effects, we find that the effect is smaller in the year after a tax 
change, and tends to grow over time, presumably because it takes time for firms and 
workers to relocate.4

We can’t completely rule out the possibility that our estimates are biased by the 
presence of unobserved shocks to demand or supply of scientists, but the weight of 
the available evidence lends credibility to our estimates. First, we find no evidence 
of pretrends: changes in mobility follow changes in taxes and do not precede them.

Second, we find no evidence that changes in state taxes are correlated with 
changes in the fortunes of local firms in the innovation sector in the years leading 
up to the tax change, suggesting that states do not strategically change taxes to help 
local patenters at times when they are struggling (or thriving). In particular, when 
we regress changes in state taxes on lagged changes in the market value of the top 
five patenting companies in the state, we find no relationship.

It is still possible that there are changes in other state policies that could be cor-
related with taxes. For example, a pro-business state legislature could both cut taxes 
and relax state-level regulations on labor and the environment. It is also possible that 
states tend to raise personal income taxes during local recessions, and that mobility 
may be affected by the recession. Our estimated elasticities, however, don’t change 
when we control nonparametrically for time-varying shocks to the origin state or 
destination state. These models fully absorb differences in local business cycles and 
differences in time-varying policies across origin or destination state.5

We present a number of specification tests to further probe the validity of our 
estimates.

First, corporate taxes should have a larger effect on the demand for private sector 
scientists than the demand for academic or government scientists. We find that the 
effect of changes in corporate income taxes is concentrated among private sector 
inventors. We uncover no effect on academic and government researchers.6 In addi-
tion, while individual inventors are not subject to corporate taxes, they can typically 

4 In interpreting the estimates, two additional points need to be highlighted. First, our estimated elasticities 
are reduced-form parameters reflecting the underlying elasticities of labor demand and labor supply. Changes in 
personal (corporate) income taxes shift the supply (demand) of scientists to a specific state and therefore involve a 
movement along the labor demand (supply) curve. For example, if labor demand is inelastic, the change in number 
of scientist will be small—not because taxes don’t matter, but because with fixed demand the only effect of the 
policy change is higher wages. A second point to keep in mind is that variation in taxes may be associated with 
variation in public services and local public goods. Our estimates need to be interpreted as measuring the effect of 
taxes on scientist mobility after allowing for endogenous changes in the supply of public services. 

5 The fact that the local business cycle is not an important issue is not too surprising, given that the overwhelm-
ing majority of star scientists work in the traded sector, so that changes to their labor demand reflects national and 
global shocks, rather than local shocks. 

6 Interestingly, while mobility of corporate scientists is sensitive to changes in personal taxes, mobility of 
academic scientists is not, possibly reflecting the fact that academic scientists are not entirely driven by pecu-
niary motives and that their mobility decisions depend on presence of colleagues, academic prestige, and other 
 nonmonetary factors. 
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take advantage of R&D credits. Empirically, we find that individual inventors are 
not sensitive to corporate taxes but they are sensitive to R&D tax credits.

Second, and most important, corporate taxes should only matter in states where a 
firm’s wage bill has a positive weight in the state’s statutory formula for apportion-
ing multistate income. Empirically, corporate taxes have no effect on the migration 
flow of stars in states that apportion a corporation’s income based only on sales, in 
which case how much labor the corporation employs in the state has no effect on its 
tax bill.

Third, we conduct a firm-level analysis in which we focus on firms with research 
operations in multiple states, like GE or Microsoft. We estimate within-firm models 
to test whether a given firm changes its share of scientists in each state when relative 
state taxes change—a potentially important channel that could explain part of the 
overall effect of taxes uncovered above. We find that taxes do indeed affect firms’ 
geographical allocation of scientists. A 10 percent increase in a state’s corporate 
income net-of-tax rate results in an increase in the average firm’s share of star sci-
entists in that state of 0.7 percentage points. Investment tax credits and R&D credits 
have similar effects, while the personal ATR has no effect. Combined with our ear-
lier findings, this implies that within-firm geographical reallocation is an import-
ant channel explaining the overall effect of business taxes on state employment, 
although it does not explain the effect of personal taxes.

Overall, we conclude that state taxes have a significant effect of the geographical 
location of star scientists. While there are many other factors that determine where 
innovative individuals and innovative companies decide to locate, there are enough 
firms and workers on the margin that relative taxes matter. This cost of higher state 
tax rates should be taken into consideration by local policymakers when deciding 
whom to tax and how much to tax.

Our paper is part of a small group of papers on the sensitivity of employment to 
local taxes. Existing studies for the United States uncover generally mixed results. 
Cohen, Lai, and Steindel (2011) find mixed evidence of tax-induced migration of 
the general population. Young and Varner (2011) and Varner and Young (2012) find 
no evidence of tax-induced migration in the case of millionaires taxes in California 
and New Jersey. Suárez Serrato and Zidar (2014) focus on corporate taxes and find 
moderate effects on wages, total employment, and land prices. Giroud and Rauh 
(2015) find an effect of business taxes on the number of establishments and estab-
lishment size. Bakija and Slemrod (2004) find a moderate effect of state personal 
income tax on the number of federal estate tax returns. There is also a small, related 
literature on taxes and international mobility. The paper closest to ours is contempo-
raneous work by Akcigit, Baslandze, and Stantcheva (2015), who, like us, focus on 
scientists and find lower elasticities of the number of domestic and foreign inventors 
with respect to the personal income tax rate. Kleven, Landais, and Saez (2013) focus 
on European soccer players, while Kleven et al. (2014) study a specific tax change 
in Denmark and find elasticities similar to ours.7

7 See also Kirchgassner and Pommerehne (1996); Schmidheiny (2006); and Liebig, Puhani, and Sousa-Poza 
(2007). 
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I. Data and Basic Facts

A. Scientists

We use a unique dataset obtained by combining data on top scientists to data 
on state taxes. Specifically, to identify the location of top scientists, we use the 
COMETS patent database (Zucker, Darby, and Fong 2011). Each patent lists all 
inventors on that patent as well as their address of residence. Exact addresses are 
frequently not reported, but state of residence nearly always is. We define star inven-
tors, in a given year, as those who are at or above the ninety-fifth percentile in 
number of patents over the past ten years. In other words, stars are exceptionally 
prolific patenters. The ninety-fifth cutoff is arbitrary, but our empirical results are 
not sensitive to it. In some models we use star measures where patents are weighted 
by number of citations and obtain similar results.8

One advantage of our data is that our information on geographical location is 
likely to reflect the state where a scientist actually lives and works (as opposed to tax 
avoidance). Patenters must report their home address on their patent application and 
have no economic incentive to misreport it. There is no legal link between where a 
patent’s inventor(s) lives and the taxation of any income generated by the patent for 
the patent assignee/owner. 9

The sample of inventors consists of roughly 260,000 star-scientist × year obser-
vations over the period from 1977 to 2010. Year is defined as year of the patent 
application, not the year when the patent is granted. For each scientist observed 
in two consecutive years, we identify their state of residence in year t, which we 
call their origin state, and their state of residence in year t + 1, which we call their 
destination state.10 For each origin-destination pair of states (including those where 
the origin and destination are the same) and year in our sample, we then compute 
the number of star scientists moving from origin state to destination state. From this 
we form our primary outcome of interest, the probability of a star scientist moving 
from a given origin state to a given destination state relative to the probability of not 
moving at all. This measure is known as the outmigration odds-ratio.

Not every star scientist applies for a patent every year, so we don’t observe the 
location of every star in every year. We are therefore likely to underestimate the 
overall amount of geographical mobility of star scientists, as our data miss the moves 
that occur between patent applications. This problem is unlikely to be quantitatively 
very large. Our population of star scientists is, by construction, comprised of prolific 
patenters and the typical individual is observed patenting in most years (over the 
period in which they patent at all). The mean number of patents per star scientist 

8 If a patent has multiple inventors, we assign fractions of the patent to each of its inventors. For example, if a 
patent has four inventors, each inventor gets credited with one-quarter of a patent. 

9 In our analysis we use patents simply to locate the taxpayers, irrespective of where the R&D activity takes 
place. Consider a computer scientist who patents software. It is conceivable that one year he may apply for a patent 
while living in California, then the next year apply for a patent in Texas, the year of a tax increase in California. 
The fact that he may have been working on the technology he patented in Texas while living in California seems 
irrelevant. Separately, we note that a small but growing share of patents is made of defensive patents. To the extent 
such patenting yields some misidentification of stars, this causes measurement error in the dependent variable and 
should reduce the precision of our estimates, but not bias our estimates. Moreover, when we alternatively define 
stars based on citations, which should downweight defensive patents, we find very similar results. 

10 If the inventor has multiple patents with multiple state addresses in a single year, we use the modal state. 
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in the decade between 1997 and 2006 is 15.7. Thus, star scientists in our sample 
patent an average of 1.5 patents per year. The twenty-fifth percentile, median, and 
seventy-fifth percentiles over the decade are 4, 10, and 19 respectively. As a check, 
we have tested whether our estimates are sensitive to including all years in between 
patents, assuming that the scientist location in a year reflects the state where the 
most recent patent was filed. Our estimates are not sensitive to this change.

While we might underestimate overall mobility, our estimates of the effect of 
taxes remain valid if the measurement error in the dependent variable is not system-
atically associated with changes in taxes. Intuitively, we underestimate the amount 
of mobility in states that change taxes and in states that do not change taxes by 
the same amount. One concern is the possibility that moving lowers the probabil-
ity of patenting—either because it is distracting and time consuming or because it 
coincides with a job spell with a new employer, and the scientist may be restricted 
from using intellectual property created while working for a previous employer. 
This could lead us to underestimate mobility following tax increases and therefore 
it could lead us to underestimate the effect of taxes. In practice, we expect this bias 
to be relatively minor. As we mention, most of our scientists patent very frequently. 
Moreover, in many fields the timing of patent application and of measured formal 
R&D is close, often contemporaneous (Griliches 1998). One exception, of course, 
is pharmaceuticals. There is also anecdotal evidence on patents being applied for at 
a relatively early stage of the R&D process (see Cohen 2010). A similar bias would 
occur if taxes are systematically associated with selection in and out of the labor 
force. For example, if high state taxes induce some star scientists to exit the labor 
force and stop patenting, we underestimate the true effect.

Online Appendix Figure 2 shows where top scientists were located in 2006. 
Online Appendix Table A1 shows these levels along with their changes over the 
sample period. Star scientists are a mobile group; not unlike top academic econo-
mists, they face a national labor market and intense competition among employers. 
Indeed, the vast majority of star scientists either work in the private sector (90 per-
cent) or academia (4 percent), with the remainder working in government, other 
nonprofit institutions, or for themselves.

Despite the labs and fixed capital associated with some fields, star scientists on 
the whole manage to have high rates of cross-state mobility. In particular, the gross 
state-to-state migration rate for star scientists was 6.5 percent in 2006. By compar-
ison, the rates in the entire US adult population and the population of individuals 
with professional/graduate degree were 1.7 percent and 2.3 percent, respectively 
(Schulhofer-Wohl 2013). Overall, 6 percent of stars move at least once; the average 
moves per star is 0.33; and the average moves per star, conditional on moving at 
least once, is 2.6.

In Table 1, we show the bilateral outflows among the ten largest states in terms 
of population of star scientists on average over the recent decade, 1997–2006. The 
state pair with the most bilateral flows over this decade was California–Texas; 26 
star scientists per year moved from Texas to California and 25 per year moved from 
California to Texas. Close behind was California–Massachusetts, with 25 per year 
moving from Massachusetts to California and 24 moving in the opposite direction.

The sample that we use in the empirical analysis has the bilateral migration flows 
for every pair of states (plus District of Columbia) (51 × 51) for every year from  
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t = 1977 to 2009 (measuring the number of star scientists that report residing in the 
origin state in year t and the destination state in year t + 1). Out of the potential 
84,150 origin × destination × year cells,11 15,247 have positive migration flows. 
Because the log odds-ratio is undefined when the migration flow is 0, 15,247 is the 
number of observations used in our baseline regressions. We come back to the impli-
cations of this point in Section IVD.

B. State Taxes

We combine this patenter data with a rich comprehensive panel dataset that we 
compiled on personal and business tax and credit rates at the state-year level.12

For Personal Taxes.—We focus on state-level variation in the individual income 
average tax rate (ATR) faced by a hypothetical taxpayer at the ninety-ninth  per-
centile of the national income distribution. We stress that we don’t observe scientist 
income; we assume that their salary and capital gain income is in the top 1  percent. 
Given how productive these scientists are, this assumption is realistic; it is also con-
sistent with confidential IRS data analyzed by Bell et al. (2015). We find generally 
similar results if we assume an income level at the 99.9 percent or 95 percent per-
centiles of the distribution.

ATR is not a statutory rate. Rather, it is the individual income tax liability as a 
share of gross income for a given taxpayer. For our baseline analysis, we use the 
ATR—rather than statutory marginal tax rates (MTR)—because workers deciding 
on where to locate should in principle focus on average tax rates, not marginal tax 
rates. In practice, the ATR is monotonically increasing in the MTR and the two are 
highly correlated. For star scientists, this correlation is even higher: because star sci-
entists are highly paid, their average rate is well approximated by the top marginal 

11 Total number of potential origin × destination × year cells, excluding cells where origin = destination, is 
[(51 × 51) – 51] × (2009 − 1977) = 84,150. 

12 From the NBER’s TaxSim calculator, we obtained both marginal and average individual income tax rates by 
state and year for a hypothetical scientist whose salary and capital gains income are at a specific national income 
percentile for that year (50th, 95th, 99th, or 99.9th percentile). The national income percentiles are obtained from 
the World Top Incomes Database (Alvaredo et al. 2013). We obtain statutory rates by state and year for corporate 
income taxes, investment tax credits, and research and development tax credits from Chirinko and Wilson (2008); 
Wilson (2009); and Moretti and Wilson (2014). See the online Data Appendix for more details. 

Table 1—Average Annual Outflow of Star Scientists, 1997–2006

Destination state

Origin state California Illinois Massachusetts Michigan Minnesota New Jersey New York Ohio Pennsylvania Texas

California 4,767 13 24 10 9 17 21 8 12 25
Illinois 14 649 4 2 2 2 4 2 2 5
Massachusetts 25 3 873 2 3 4 5 2 4 4
Michigan 12 2 3 654 2 2 3 2 2 4
Minnesota 13 3 2 3 768 2 2 2 1 4
New Jersey 23 2 7 2 1 879 8 2 6 4
New York 25 3 6 4 3 10 1,629 4 3 7
Ohio 8 2 2 3 1 2 2 600 3 3
Pennsylvania 13 2 4 1 1 5 4 3 679 3
Texas 26 3 5 5 4 5 7 3 3 1,166
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rate in many states. Empirically, our results based on ATR and MTR are generally 
similar. (We report estimates based on the MTR in the online Appendix).

We use total ATR, inclusive of both federal and state taxes. The reason for using 
total ATR instead of just the component due solely to state income tax (i.e., the 
individual’s state tax liability divided by their income) is to account for interac-
tions between state and federal tax rates. While the vast majority of the geograph-
ical variation in ATR is driven by differences in statutory tax rates across states, 
states also vary in how they treat federal taxes. In some states, federal taxes can be 
deducted from state taxes, while in other states they cannot. In addition, state indi-
vidual income taxes can affect whether someone is subject to the federal alternative 
minimum tax. Our ATR measure takes into account the interactions between state 
and federal tax rates, as well as other complicated features of state and federal per-
sonal income taxes. See the online Data Appendix for more details.

For some specifications, we also use data on state sales tax rates from Fajgelbaum 
et al. (2015) and on property taxes as a share of state income from the US Census 
Bureau’s Survey of State and Local Government Finances.

For Business Taxes.—We focus our analysis primarily on the corporate tax rate, 
which is the primary business tax faced by corporations at the state level. Since 
states generally have only a single corporate income tax rate, marginal and average 
rates are the same. We also consider the effects of the investment tax credit rate and 
the R&D tax credit rate, as most states offer one or both of these credits. The invest-
ment tax credit typically is a credit against corporate income tax proportional to the 
value of capital expenditures the company puts in place in that state. Similarly, an 
R&D tax credit is proportional to the amount of research and development spending 
done in that state. In many states, the R&D credit is available both to corporations 
(against corporate income tax) and noncorporations (against individual income tax).

Figure 3 and online Appendix Figure 1 show how top individual income tax 
rates and CIT rates have evolved over time. Two points emerge. First, changes in 
taxes do not appear very systematic. We see examples of blue states with high taxes 
lowering their rates, and examples of red states with low taxes raising their rates. 
Second, while in the cross-section personal taxes and business taxes are positively 
correlated, changes over time in personal taxes and business taxes are either not 
correlated or slightly negatively correlated. For example, online Appendix Figure 3 
shows a scatter-plot of the five-year change in the CIT against the five-year change 
in the ninety-ninth percentile ATR for the five-year intervals from 1980 to 2010. 
The estimated slope of this relationship is far from 1, at −0.064. The correlations 
between changes in ninety-ninth percentile ATRs and changes in ITC or R&D are 
also slightly negative. This suggests that any source of endogeneity applying to one 
of these tax policies is unlikely to apply to the other.

It is important to clarify exactly why corporate taxes might be expected to affect 
employer location decisions. As we note above, state taxation of income generated 
by patents (e.g., royalties) is independent of where the patents’ inventors reside. 
For instance, suppose a patent’s inventors live in California and work for a mul-
tistate corporation, the patent owner. California has no more claim to taxing the 
corporate income generated by that patent than any other state in which the corpora-
tion  operates. The patent income becomes part of the corporate taxpayer’s national 
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 business income, which is apportioned to states based on each state’s apportionment 
formula (described below). Hence, to the extent that labor demand for star scientists 
in a state is affected by that state’s corporate tax rate, it is because star scientists and 
the associated R&D operations account for part of the company’s payroll in that 
state, not because the patenting income is disproportionately taxed by that state.

Each state has an apportionment formula to determine what share of a corpora-
tion’s national taxable business income is to be apportioned to the state. Prior to the 
1970s, virtually all states had the same formula: the share of a company’s income in 
the state was determined by an equal-weighted average of the state’s shares of the 
company’s national payroll, property, and sales. Over the past few decades, many 
states have increased the weight on sales in this formula as a means of incentivizing 
firms to locate property and payroll in their state. Today, many states have a sales-
only apportionment formula. In such states, a corporate taxpayer’s tax liability is 
independent of the level of employment or payroll in the state. Therefore, the effect 
of changes in corporate tax rates should be small in states with a sales-only formu-
la—a hypothesis we test in Section IVE.13

Note that what matters for an employer is not just the part of the company’s pay-
roll associated with a given star scientist, or set of star scientists, directly. Even more 
relevant is the part of the payroll associated with the entire R&D operation (lab, 
research center, etc.) tied to them. In most cases, payroll for the entire R&D activity 
is much larger than the scientist payroll. In other words, a scientist location affects 
corporate taxes not simply because her salary directly affects the amount of corpo-
rate income taxes in that location, but because the presence of all the other R&D 
personnel affects the amount of corporate income taxes in that location (through the 
payroll factor in formulary apportionment of income).

II. Framework and Econometric Specification

In this section, we present a simple model of scientist and firm location designed 
to guide our empirical analysis. We use the model to derive our econometric 
specification.

A. Location of Scientists and Firms

We model personal income taxes as shifters of the supply of scientist labor supply 
to a state: higher taxes lower labor supply to a state, all else equal. We model busi-
ness taxes and credits as shifters of the demand for scientists in a state: higher taxes 
lower the labor demand for scientists in a state, all else equal.

13 Even for states with zero apportionment weight on payroll, we expect some sensitivity to the corporate tax rate 
because of single-state corporations and the potential effect of corporate taxes on new business start-ups. In most 
states, R&D tax credits can be claimed on either corporate or individual income tax forms (but not both), so they 
could potentially affect locational outcomes of all scientists, not just those working for corporations. Investment 
tax credits (ITCs), on the other hand, generally can only be taken against corporate income taxes. ITCs and the 
corporate income tax itself, of course, we would expect to affect only locational outcomes of scientists working for 
corporations. We test this hypothesis below. 
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Scientist Location.—In each period, scientists choose the state that maximizes 
their utility. The utility of a scientist in a given state depends on local after-tax earn-
ings, cost of living, local amenities, and the worker’s idiosyncratic preferences for 
the state. Mobility is costly, and for each pair of states o (origin) and d (destination), 
the utility of individual i who lived in state o in the previous year and moves to state 
d at time t is

   U  iodt    = α log(1 −   τ dt   ) + α log   w  dt    +   Z  d    +   e  iodt    –   C  od     ,

where   w  dt    is the wage in the current state of residence before taxes;   τ dt    is personal 
income taxes in the state of residence; α is the marginal utility of income;   Z  d    cap-
tures amenities specific to the state of residence and cost of living;   e  iodt    represents 
time-varying idiosyncratic preferences for location, and measures how much worker 
i likes state d net of the after-tax wage, amenities, and cost of living; and   C  od    is the 
utility cost of moving from o to d, which does not need to be symmetric and is 
assumed to be 0 for stayers (  C  oo    = 0).14

The utility gain (or loss) experienced by scientist i if she moves from state o to 
state d in year t is a function on the difference in taxes, wages, amenities, and any 
other factors that affect the utility of living in the two states, as well as moving costs,

   U  iodt    −   U  ioot    = α[log(1 −   τ dt   ) − log(1 −   τ ot   )] + α[log (  w  dt   /  w  ot   )] 

 + [  Z    d    −   Z    o   ] −   C  od    + [  e  iodt    −   e  ioot   ].

Individual i currently living in state o chooses to move to state d if and only if the 
utility in d net of the cost of moving is larger than the utility in o and larger than the 
utility in all other 48 states:   U  iodt    > max(  U  io d   ′ t   ) for each d ≠ d ′. Thus, in this model, 
scientists move for systematic reasons (after-tax wage and amenities) and idiosyn-
cratic reasons. A realistic feature of this setting is that it generates migration in every 
period, even when taxes, wages, and amenities don’t change. This idiosyncratic 
migration is driven by the realization of the random variable   e  iodt    . Intuitively, work-
ers experience shocks that affect individual locational decisions over and above after 
tax-wages and amenities. Examples of these shocks could include family shocks or 
taste shocks.

Consider the case of an unexpected and permanent change in taxes occurring 
between t − 1 and t. We are interested in how the change in taxes affects the prob-
ability that a scientist chooses to relocate from state o to d. The magnitude of the 
effect of a tax increase depends on how many marginal scientists are in that state, 
and therefore on the distribution of the term e. If   e  iodt    follows an i.i.d. Extreme Value 

14 Our models is kept deliberately simple, and ignores some important determinants of utility. For example, 
we assume that each scientist works and ignore labor supply reactions. We also ignore utility from nonpecuniary 
aspects of the job, and we ignore any household considerations. As it will become clear below, these simplifying 
assumptions do not affect our estimation strategy or the interpretation of our estimates. 
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Type I distribution (McFadden 1978), the log odds ratio is linear in the difference in 
utility levels in the origin and destination state:

(1) log(  P  odt   /  P  oot   ) = α[log(1 −   τ dt   ) − log(1 −   τ ot   )] + α[log (  w  dt   /  w  ot   )] 

 + [  Z    d    −   Z    o   ]  −    C  od    ,

where   P  odt   /  P  oot    is the scientist population share that moves from one state to another 
(  P  odt   ) relative to the population share that does not move (  P  oot   ).

This equation can be interpreted as the labor supply of scientists to state d. 
Intuitively, in each moment in time, residents of a state have a distribution of prefer-
ences: while some have strong idiosyncratic preferences for the state (large e), oth-
ers have weak idiosyncratic preferences for the state (small e). A tax increase in the 
origin state induces residents with marginal attachment to move away. Similarly, a 
tax decrease in a potential destination state induces residents in other states that have 
marginal attachment to those states to move to the destination state. By contrast, 
inframarginal residents—those with stronger preferences for the origin state—don’t 
move: they optimally decide to stay and to take a utility loss. Of course, both movers 
and stayers are made worse off by the tax. The marginal movers are made worse 
off because they need to pay the moving costs. The inframarginal stayers are made 
worse off because the tax reduces some of the rent that they derive from the state.

Our setting differs from the standard random utility model of location choice 
where individuals decide every period where to locate, irrespective of where they 
were last period. By contrast, in our model the utility of being in any location at 
time t + 1 is always conditional on the state of origin in year t. We consider this 
assumption plausible, because it implies that the cost of moving is not a constant, 
but can be different for different pairs of states. Moving from, say, California to 
Massachusetts probably involves different costs than moving from Rhode Island to 
Massachusetts.15

An implication of this assumption is the existence of nonrandom permanent 
migration flows across states that do not come from changes in relative wages or 
amenities. This prediction is consistent with the evidence. Data on star scientist 
migration show long-run differences in outflows across states. By contrast, in the 
standard model, individuals do move across states in equilibrium, but these move-
ments are random because they are only driven by the realization of the idiosyn-
cratic component of utility   e  odt   .

Firm Location.—The location of star scientists is not only a reflection of where 
scientists would like to live, but also where firms who employ scientists decide 
to locate. Hence, migration flows may well be sensitive not only to the individual 
income tax rates faced by star scientists, but also to the business tax rates faced by 
employers.

15 We do not constrain these costs to be symmetric. 
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In each period, firms choose the state that maximizes their profits.16 Assume that 
firm j located in state d uses one star scientist and the state productive amenities to 
produce a nationally traded output Y with price equal to 1,

   Y  jdt    = f (  Z  d  ′    ,   v  jdt   ),

where   Z  d  ′    represents productive amenities available in state d. In each potential 
state and year, a firm enjoys a time-varying productivity draw   v  jdt    that captures the 
idiosyncratic productivity match between a firm and a state. Some firms are more 
productive in a state because of agglomeration economies, location of clients, infra-
structure, local legislation, etc. For instance, in the presence of agglomeration econ-
omies, the existence of a biotech cluster in a state might increase the productivity of 
biotech firms in that state but have no effect on the productivity of software firms. 
The term   v  jdt    is important because it allows firm owners to make economic profits 
in equilibrium, so that the elasticity of location choice with respect to taxes is not 
infinite (Suárez Serrato and Zidar 2014). It is possible to generalize this technology 
to include other types of labor and capital.

If a firm relocates to state d, its profits are equal to revenues net of labor costs 
and corporate taxes in d and net of moving costs to d. Assume in particular that the 
profits of a firm that relocates from state o to state d can be approximated as

 log   π jodt    =   Z  d  ′    +   v  iodt    − log   w  dt    + β log (1 −   τ    dt  ′   ) −   C  od  ′    ,

where   τ    dt  ′    is the corporate income tax rate; and   C  od  ′    is the cost for firms of moving 
from o to d, assumed to be 0 for stayers and potentially different from the cost faced 
by individuals. Firm j moves to state d if and only if   π iodt    > max(  π io d   ′ t   ) for each  
d ≠ d′. If   v  iodt    follows an i.i.d. Extreme Value Type I distribution, the log odds ratio 
takes the form

(2) log (  P  odt  ′   /  P  oot  ′   ) = β[log(1 −   τ    dt  ′   ) − log(1 −   τ    ot  ′   )] − [log(  w  dt   /  w  ot   )] 

 + [  Z  d  ′    −   Z  o  ′   ] −   C  od  ′    ,

where (  P  odt  ′   /  P  oot  ′   ) is the population share of firms starting in o that move to d between 
t and t + 1, divided by the population share of firms initially in state o that do not 
move. Since each firm employs one star scientist, this equation can be interpreted as 
the labor demand for scientists in state d.

In our setting, taxes and credits matter for individual and firm location choice, 
although the elasticity is not necessarily infinite as it would be in the case of homo-
geneous individuals and firms (Moretti 2011; Suárez Serrato and Zidar 2014).

16 We use the term firm here for exposition, but the model would also apply to a unit within a multistate firm. 
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B. Econometric Model

Equation (1) expresses the probability that a star scientist relocates from state o 
to state d as a function of the wage difference between o and d and the personal tax 
difference. Equation (2) expresses the probability that a firm employing a star scien-
tist relocates from state o to state d as a function of the wage difference between o 
and d and the corporate tax difference. In equilibrium, labor demand needs to equal 
labor supply in each state and year. Equating log(  P  odt   /  P  oot   ) in (1) to log (  P  odt  ′   /  P  oot  ′   ) 
in (2) yields an expression for the equilibrium number of scientists who move as a 
function of tax differentials,

(3) log(  P  odt   /  P  oot   ) = η[log(1 −   τ dt   ) − log(1 −   τ ot   )]

 + η′ [log(1 −   τ    dt  ′   ) − log(1 −   τ    ot  ′   )] +   γ d    +   γ o    +   γ od    +   u  odt    ,

where η = α/(1 + α) is the effect of personal taxes; η′ = β α/(1 + α) is the effect 
of corporate taxes;   γ d     = [α/(1 + α)] [  Z    d    +   Z  d  ′   ] is a vector of state fixed effects 
that captures both consumption and production amenities in the state of origin;  
  γ o    = [α/(1 + α)][  Z    o    +   Z  o  ′   ] is a vector of state fixed effects that captures 
both consumption and production amenities in the state of destination; and  
  γ od    = −(  C  od    +   C  od  ′   ) is a vector of state-pair fixed effects that captures the cost of 
moving for individuals and firms for each state pair; and we have added an error 
term   u  odt   .

Equation (3) represents our baseline econometric specification, although in 
some models, we include additional controls. (To control for time-varying regional 
shocks, we augment equation (3) by including region-pair × year effects. To control 
for time-varying state specific shocks, in some models we augment it by including 
state-of-origin × year effects or state-of-destination × year effects.)

In interpreting our estimates of the parameters η and η′, three important points 
need to be considered. First, the parameters η and η′ are the reduced-form effect of 
taxes on employment. As such, their magnitude depends on labor demand and sup-
ply elasticities, which in turn are a function of β and α. Changes in personal income 
taxes shift the supply of scientists to a specific state and therefore involve a move-
ment along the labor demand curve. The ultimate impact on the equilibrium number 
of scientists depends on the slope of labor demand curve. If labor demand is highly 
elastic, the change in scientists will be large. If demand is inelastic, the change in 
number of scientist will be small—not because taxes don’t matter, but because with 
fixed demand the only effect of the policy change is higher wages.

Similarly, changes in business taxes affect the demand of scientists in a given 
state and therefore involve a movement along the supply curve. The ultimate impact 
on the equilibrium number of scientists depends on the slope of labor supply curve. 
For a given shift in demand, the change in number of scientists will be larger the 
more elastic is labor supply. Empirically, we expect labor demand faced by a state 
to be elastic in the long run. Since in the long run, firms can locate in many states, 
local labor demand is likely to be significantly more elastic than labor demand at 
the national level.
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Although our estimates of η and η′ are reduced-form estimates, they are the 
parameters of interest for policymakers interested in quantifying employment losses 
that higher taxes might cause.17

A second point to consider is that our empirical models capture the long-run effect 
of taxes. The long-run effects are likely to be larger than the immediate effect, because 
it takes time for people and firms to move. In addition, some of the tax changes are 
temporary. Permanent tax changes are likely to have stronger effects than temporary 
changes. Moreover, our models measure not only the direct effect of taxes, but also 
any indirect effect operating through agglomeration economies, if they exist. For 
example, consider the case where a tax cut results in an increases in the number of 
biotech scientists in a state; and such exogenous increases makes that state endoge-
nously more attractive to other biotech scientists. Our estimates will reflect both the 
direct (exogenous) effect and the indirect (endogenous) agglomeration effect.

A third point to keep in mind in interpreting our estimates is that variation in taxes 
may be associated with variation in public services and local public goods. Our esti-
mates need to be interpreted as measuring the effect of taxes on scientist mobility 
after allowing for endogenous changes in the supply of public services. If higher 
taxes translate into better public services, our estimates are a lower bound of the 
effect of taxes holding constant the amount of public services. Consider for example 
the case where a state raises taxes in order to improve schools, parks, and safety. 
If star scientists and their families value these services, the disincentive effect of 
higher taxes will be offset to some extent by the improved amenities. In the extreme 
case where the value of the new public services is equal to the tax increase, the dis-
incentive effect disappears.

In general, however, the cost of taxation to high income taxpayers is unlikely to 
be identical to the benefits of public services enjoyed by high-income individuals. 
First, a significant part of state taxation is progressive and redistributive in nature. 
High-income individuals tend to pay higher tax rates and receive less redistribution 
than low-income individuals. Second, it is realistic to assume that high-income indi-
viduals are likely to consume less public services than low-income individuals. For 
example, high-income individuals are more likely to send their children to private 
schools than are low-income individuals. Finally, due to deadweight loss of taxa-
tion, and overall inefficiency of the public sector, the disincentive effect will still 
exist, but it will be lower than the pure monetary value of the tax increase.

With estimates of the parameters η and η′, it is straightforward to calculate the 
average elasticity of the probability of moving with respect to the net-of-tax rate. 
For example, for personal taxes the elasticity is

(4) e = E  [  
d log  P  odt   __________  

d log(1 −  τ ot  )
  ]   = η (1 − P),

17 Scientists often receive complicated compensation contracts. It is in principle possible that the importance of 
forms of nonmonetary compensation change in reaction to changes in state taxes. This affects the way our estimates 
are to be interpreted, not their validity because our models capture the reduced-form effect of taxes including any 
offsetting effect that might come from the endogenous adjustment of contracts. 
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where P is the weighted average of   P  odt    over all (d, o, t) observations, weighting each 
combination by the number of individuals in that observation cell. In our sample, 
P = 0.06, so the elasticities will be very close to η.

C. Inference

In estimating standard errors, we face two issues that need to be accounted for.

 (i) First, errors might be correlated, within a given year, across pair × year 
observations sharing the same origin state because the origin tax rates are 
constant across the 51 observations involving that origin state in that year. 
Likewise, errors could be correlated across observations within a given year 
that share the same destination state. This gives rise the classic clustering 
concern addressed in Moulton (1990).

 (ii) Second, errors might be correlated over time within the panel dimension 
(Bertrand, Duflo, and Mullainathan 2004).

Throughout the paper, we show standard errors that are robust to heteroske-
dasticity and allow for three-way clustering by origin × year, destination × year, 
and  origin-destination pair. Our three-way clustering deals with the first problem 
because it has clustering by origin-state × year and destination-state × year. It deals 
with the second problem by allowing unrestricted serial correlation over time within 
each origin-destination pair, which is the cross-sectional unit in our panel. To be 
clear: it rules out correlation in the residual between an origin-destination pair in 
year t and a different pair in a different year.

Formally, if   e  odt    is the residual for origin state o, destination state d in year t, we 
allow for unrestricted serial correlation within the o–d pair: corr(  e  odt   ,   e  odt+k   ) can dif-
fer from 0, for any k; but we assume that corr(  e  odt   ,   e  pqt+k   ) = 0 if p ≠ o or q ≠ d. 
In words, we require that the unobserved determinants of migration flows between 
a pair of states in a given year are uncorrelated with unobserved determinants of 
migration flows between a different pair of states in a different year. For example, 
take California, Texas, Massachusetts, and Washington. We allow for the residual 
for the California–Texas pair in year t to be correlated with the residual in any other 
year, however distant. But, we assume that the residual for the California–Texas pair 
in year t is uncorrelated with the residual for the Massachusetts–Washington pair 
in a different year. Keep in mind that our preferred specification conditions on pair 
fixed effects and region-pair × year effects.

Empirically, this assumption seems consistent with the data. We tested for 
and rejected first-order autocorrelation between the residual for a given origin- 
destination pair in year t and the residual for each other pair in year t − 1 (even if 
they share a common origin state or a common destination state.) A regression of the 
former residual on the latter residual yielded a statistically insignificant coefficient 
of −0.002 ( p-value −0.649).

We also present standard errors based on an alternative estimator proposed by 
Driscoll and Kraay (1998). Recall that our three-way clustering approach allows 
for general correlation of errors across time within a state pair. The Driscoll-Kraay 
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of the variance-covariance (VC) matrix estimator addresses the concern that there 
could be correlation over time between observations for different pairs. In our con-
text, this could occur because different pairs could share the same origin state or 
share the same destination state. The Driscoll-Kraay VC estimator generalizes the 
standard panel Newey-West VC estimator to additionally allow for cross-sectional 
dependence in the error term.18 This approach allows cross-sectional correlation 
not only within the same time period but also across time periods up to an assumed 
maximum autocorrelation lag.

In our context, Driscoll-Kraay assumptions on cross-sectional correlation are 
more general than three-way clustering because they allow for correlation between 
two pairs sharing the same origin (or destination) not only within the same year but 
also across years up to the assumed maximum lag. However, the Driscoll-Kraay 
assumptions on within-pair serial correlation are less general because three-way 
clustering makes no assumptions on the structure or length of serial correlation. 
Despite relying on a different set of assumptions, three-way clustering and Driscoll 
and Kraay yield estimated standard errors that are remarkably similar.

III. Identification, Threats to Validity, and Nonrandom Selection

A. Omitted Variables

Taxes are set by state legislatures, certainly not in random ways. The key concern 
is that there are omitted determinants of scientist migration decisions that may be 
correlated with changes in personal or corporate taxes.

Our identification relies on the assumption that, absent tax changes, differences 
in migration flows of scientists across pairs of states are fixed over time (after con-
trolling for regional shocks) or, if they vary, they vary for reasons that are not cor-
related with tax changes. A plausible alternative assumption would be that, absent 
tax changes, differences in stocks of scientists across states are fixed over time (after 
controlling for regional shocks) or, if they vary, they vary for reasons that are not 
correlated with tax changes. We consider our identifying assumption more likely to 
be valid because it relies on weaker assumptions. By estimating how bilateral flows 
react to changes in origin-destination tax differentials, we are differencing out all 
the permanent factors that might affect stocks of scientists and might be possibly 
correlated with tax changes.

Put differently, our models control for permanent heterogeneity in migration 
flows, not just at the state level, but at the state pair level. Thus, we account not 
only for the fact that in our sample period some states tend to lose scientists and 
other states tend to gain scientists, but also for the typical migration flow between 
every pair of states during our period. For example, if star scientists tend to move to 
California from Midwestern states because they value local amenities like weather 

18 The resulting standard errors are robust to “heteroskedasticity, serial correlation, and spatial correlation” 
(Vogelsang 2012, p. 303). The only requirement for consistency is that the time dimension (T ) is large (which is 
also required for consistency of the cluster-robust estimator) and that the data are covariance stationary in the time 
dimension (the same requirement of the standard Newey-West estimator), which essentially means that autocor-
relation decays with lag length. Vogelsang develops asymptotically valid Driscoll and Kraay standard errors and 
p-values for the case of panel and time fixed effects. We use Vogelsang’s Stata code. 
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or because California has historically important clusters of innovation-driven 
 industries (e.g., Silicon Valley), state pair effects will account for these factors, to 
the extent that they are permanent.

Of course, there may be omitted determinants of changes in migration flows 
that are correlated with changes in taxes. Consider the business cycle, for example, 
which in many states is an important determinant of changes in taxes. If states tend 
to increase personal income taxes during recessions, and scientists tend to leave 
the state during recessions, then our estimates overestimate the true effect of taxes 
because they attribute to taxes some of the effect of recessions. 19 On the other hand, 
if states are reluctant to impose higher taxes during recessions, when local employ-
ers are struggling, then we underestimate the effect of taxes.

The possibility of unobserved labor demand shocks driven by local business cycle 
is probably not a major issue because the overwhelming majority of star scientists 
work in the traded sector. Shocks to the demand of star scientists are likely to reflect 
shocks that are national or global in scope, and unlikely to reflect state-specific 
shocks. For example, Google is based in California, but its customers are all over 
the country and the world. When demand for search engines and online advertising 
increases, Google hires more scientists and engineers; and when it declines Goggle 
hires fewer scientists and engineers. These shocks are unlikely to reflect the state 
of the California economy relative to other states. Rather, these shocks more likely 
reflect the general state of the national economy, interest rates, etc.20

In practice, our models control for region-of-origin × region-of- destination  
× year effects. Thus, the regional component of local business cycle is fully 
absorbed. In some of our models, we even control for state-of-origin × year effects 
or state-of-destination × year effects. Thus, the state component of local business 
cycle is partially absorbed. In addition, we show that the estimated effect of taxes 
on star migration is robust to conditioning on the contemporaneous unemployment 
rates and the population growth rate in both the origin and destination states.

Another concern is the possibility that state legislatures change tax policies to 
help local patenters. Our models yield inconsistent estimates if state governments 
tend to change their tax policies based on criteria that are correlated with unob-
served determinants of the economic fortunes of local employers—and in particular 
if they target local patenters. This may happen, for example, if state governments 
tend to use tax policy to help local patent-intensive industries that are struggling 
and are experiencing declines in employment over and above those experienced in 
other states. A similar concern arises in the opposite scenario, if state governments 
tend to use tax policy to help employers that are thriving, and experiencing increases 
employment over and above those experienced in other states. In either case, ordi-
nary least squares (OLS) estimates will be biased. The sign of the bias is a priori 
undetermined. If states help winners, the correlation between taxes and unobserved 
labor demand shocks is negative. If states help losers (compensatory policies), the 
correlation is positive. Note that for this to be a problem it is not enough that states 

19 Diamond (2014), for example, argues that local governments are more likely to extract rents during good 
times. 

20 If anything, the weakness of the local economy may help retain Google scientists because of lower cost of 
housing. 
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change taxes to help local employers. They also need to specifically target local 
patenters.

Empirically, changes in taxes do not appear to be systematically associated with 
the fortunes of local patenters. We identify the top publicly traded patenting com-
panies in each state and then test whether personal and corporate state tax rates in 
a given year are a function of local patenter stock returns in the same year or in 
previous years. If states change their taxes to help struggling local patenters, we 
should observe that tax changes systematically occur when local patenters’ stock 
are underperforming. If states change their taxes to help thriving local patenters, we 
should observe that tax change systematically occur when local patenters’ stock are 
underperforming.

We first identify the top five patent assignees (in terms of patent counts over the 
full 1977–2010 sample) in each state. The majority of these assignees are publicly 
traded companies; for those, we match by company name to the Compustat financial 
database. We then calculate the sum of market capitalization over these top patent-
ing companies, by state and by year. Finally, in a state-by-year panel, we regress 
state tax rates (for each of our four tax variables) on contemporaneous and lagged 
values of the percentage change in market capitalization of these companies, along 
with state and year fixed effects.

The results are shown in online Appendix Tables A2–A5. We find no evidence 
that any of these state tax policies is systematically associated with the recent for-
tunes of local patenting companies.

Another potential concern is the possibility that changes in economic policies 
other than taxes are correlated with taxes. For example, a pro-business state legisla-
ture could both cut taxes and relax state-level regulations on labor and the environ-
ment. In this case, our models would likely overestimate the true effect of taxes. In 
this respect, models that control for state of origin × year effects or state of destina-
tion × year effects are informative of the amount of bias. For example, if an origin 
state both cut taxes and regulations, a model that includes origin × year effects will 
account for it.

Of course, we can’t rule out with certainty that there are other omitted determi-
nants of changes in migration flows that are correlated with changes in taxes. We 
provide indirect evidence on the validity of our estimates with four specification 
tests.

First, we exploit the exact timing of tax changes and we test for pretrends.
Second, we provide a specification test based on the fact that corporate taxes 

should affect some scientists more than others.

 (i) On the most obvious level, changes in corporate taxes and the ITC should 
affect scientists in the corporate sector but should have a more limited effect 
on scientists employed by universities, government agencies, and other non-
profit research institutions which are not subject to corporate taxation.21

21 It is in principle possible that academic scientists may hope to commercialize their inventions and may prefer 
to do so in a place with low corporate taxes. Even so, it is reasonable to expect that the effect of corporate taxes is 
significantly stronger for corporate scientists whose employers are directly subject to such taxes. 
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 (ii) Noncorporate inventors provide an even sharper test: they should not be sen-
sitive to corporate taxes and ITC but they should be sensitive to the ATR and 
possibly R&D tax credits.

 (iii) Moreover, we exploit variation in the apportionment formula. A testable 
hypothesis is that corporations’ demand for labor, including star scientists, 
should be sensitive to corporate tax rates in states where payroll is one of the 
primary apportionment factors and should be less sensitive in other states.

Third, we estimate models that exploit the longitudinal nature of our data and 
include firm fixed effects. These models focus on firms that have a presence in mul-
tiple states. We test whether a given firm with operations in multiple states changes 
the share of scientists it employs in each state when relative state taxes change. Thus, 
these models absorb all permanent unobserved differences across firms. Finally, in an 
effort to investigate whether individual heterogeneity might play a role, we estimate 
an individual-level destination choice model that includes scientist fixed effects.

B. Nonrandom Selection

 In our data, not all origin-destination state pairs exhibit positive migration flows 
in every year and some state pairs never exhibit a positive flow. Origin × desti-
nation × year cells with a zero flow are necessarily dropped from the estimation 
because their outmigration log odds-ratio is undefined. A concern is that our param-
eters are being estimated only for the sample of state pairs that are similar enough 
to have some marginal scientists close to being indifferent between the two states. 
State pairs that are so different that all the scientists are inframarginal (and hence 
never move between them) do not contribute to the estimation. Even if the parameter 
estimates are unbiased for the selected sample of cells with nonzero frequencies, 
they may not be representative if the missing cells are not random.

Put differently, the reported coefficients might describe well the effects of tax dif-
ferentials across states that are sufficiently similar to have top scientists indifferent at 
the margin, but might not describe well the effects of tax differentials across states 
that are very different. For example, consider two origin-destination pairs: California-
Washington, which has a large flow of star scientists every year, and Nevada-Vermont, 
which has some years with zero flow. If Washington and Vermont increase their 
net-of-tax rates in a given year, the California-Washington flow may rise while the 
Nevada-Vermont flow remains at zero. This latter zero effect will not be reflected in 
our estimates because the Nevada-Vermont log odds ratio is undefined in that year, 
leading to an upward bias in the tax elasticity. Of course, there is no reason to expect 
that missing cells are necessarily only associated with tax cuts. If Washington and 
Vermont decrease their net-of-tax rates, the California-Washington flow may fall 
while the Nevada-Vermont flow remains at zero; the latter zero effect of a tax increase 
also will not be reflected in our estimates, leading to a downward bias.

To see graphically the potential for bias, consider online Appendix Figure 4. As in 
the right panel of Figure 4, each panel plots the log odds ratio on the y-axis against 
the net of tax differential on the x-axis, but for a hypothetical dataset. Each dot 
 represents a hypothetical origin-destination-year cell. Assume that the four dots on 
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the x-axis are not in the estimation sample, as in the Nevada-Vermont example. Dots 
to the right (left) of the y-axis represent cases of an increase (decrease) in the net 
of tax rate in the destination state relative to the origin state. For each hypothetical 
dataset, the line has slope equal to the true effect of tax differentials on mobility in 
the population, η. By contrast, the slope of the line is the estimated effect. It differs 
from the true slope because it ignores the dots. In the top panel, the estimated slope 
is lower than the true one (downward bias). In the bottom panel, the opposite is 
true (upward bias). Thus, the figure illustrates that the bias can be either positive or 
negative. The bias depends on the relationship between residual (vertical distance 
between dots and the line) and net-of-tax rates (conditional on controls such as pair 
and year fixed effects).

To see under what conditions cells might be missing, assume for simplicity that 
there are only two states, o and d. The log odds-ratio log(  P  odt   /  P  oot   ) is nonmissing 
only if there is at least one scientist moving from state o to state d in year t. Utility 
in state d is higher than state o for at least one scientist if

(5) max[  e  iodt    −   e  ioot   ] + α[log(1 −   τ dt   ) − log(1 −   τ ot   )] + α[log(  w  dt   /  w  ot   )] 

   + [  Z    d     −   Z    o   ] >   C  od    ,
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Figure 4. Outmigration versus Net-of-Tax Rates

Notes: The two left-most figures show outmigration between a given origin-destination pair versus the indicated 
net-of-tax rate in the origin state. If taxes affect the migration decisions of scientists, one would expect the relation-
ship between origin net-of-tax rate and outmigration to be negative, as higher net-of-tax rates in the origin state (i.e., 
lower taxes in origin state) result in less outmigration. The two center figures use the destination state’s tax rate on 
the x-axis. One would expect the effect of destination net-of-tax rates to be positive, as higher net-of-tax rates in 
the destination state (i.e., lower taxes in destination state) result in more migration to the state. The two right-most 
panels show the same type of bin scatter-plots except that the measure on the x-axis is now the difference between 
the destination state’s log net-of-tax rate and the origin state’s log net-of-tax rate. This specification is equivalent 
to those in the first four panels, but it forces the effect of tax changes in the origin and destination state to be the 
same but of opposite sign. Points represent within-bin averages (across pair × year observations) of x and y using 
bins defined by 40 quantiles sorted on x. The underlying x and y variables are demeaned of their state-pair and year 
means. Outmigration is measured by the log odds-ratio.
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where max is defined over all scientists i who live in state o. Intuitively, a 
 origin-destination-year cell is nonmissing if the utility gains from moving from o 
to d for the individual with the strongest idiosyncratic taste for state d compared to 
state o exceed the cost of moving. The utility gains from moving are the sum of the 
elements on the left-hand side of equation (5): namely the gains stemming from 
idiosyncratic preference, tax, wage, and amenity differences. The individual with 
the strongest idiosyncratic taste for state d compared to state o is the one with the 
largest [  e  iodt    −   e  ioot   ] difference.

Similarly, the log odds-ratio log(  P  odt   /  P  oot   ) is also nonmissing if there is at least 
one firm moving from state o to state d in year t. In turn this requires that

(6) max[  v  iodt    −   v  ioot   ] + β[log(1 −   τ    dt  ′   ) − log(1 −   τ    ot  ′   )] − β[log (  w  dt   /  w  ot   )]

   + [  Z  d  ′    −   Z  o  ′   ] >   C  od  ′    ,

where max is defined over all firms located in state o. This requires that the profit 
gains from moving from o to d for the firm with the strongest productivity match in 
state d compared to state o exceed the cost of moving. The profit gains from moving 
are the sum of the elements on the left hand side of equation (6): namely the gains 
stemming from the productivity match, tax, wage (with minus in front), and produc-
tive amenity differences.

In estimating equation (3), the magnitude of the bias generated by missing cells  
depends on E{  u  odt      T  odt    |   T  odt   [log(1−   τ dt   ) − log(1−   τ ot   )],   T  odt   [log(1−   τ    dt  ′   ) − log(1−   τ    ot  ′   )],  
  T  odt      γ d   ,   T  odt      γ o   ,   T  odt      γ od   }, where   T  odt    is an indicator for whether (5) or (6) hold. In 
Section IVE below, we provide evidence suggesting that there is no systematic rela-
tionship in our data between the net-of-tax rate differentials and the probability of a 
potential cell being missing.

IV. Main Empirical Results

A. Graphical Evidence: Scatter-Plots

In Figure 4 we show a series of bin scatter-plots of the log odds-ratio against the 
log net-of-tax rate after conditioning on state-pair and year fixed effects. In other 
words, we demean the log odds-ratio and the log net-of-tax rate by their within-pair 
and within-year sample means. The two panels on the far left show outmigration 
between a given origin-destination pair versus the indicated net-of-tax rate in the 
origin state. The two panels in the center use the destination state’s tax rate on the 
x-axis. If taxes affect the migration decisions of scientists, one would expect the 
relationship between origin net-of-tax rates and outmigration to be negative, as 
higher net-of-tax rates in the origin state (i.e., lower taxes in origin state) result in 
less outmigration. Similarly, one would expect the effect of destination net-of-tax 
rates to be positive, as higher net-of-tax rates in the destination state (i.e., lower 
taxes in destination state) result in more migration to that state. Empirically, this is 
what we observe.

The two panels on the far right of Figure 4 show the same type of bin scatter-plots 
except that the measure on the x-axis is now the difference between the destination 
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state’s log net-of-tax rate and the origin state’s log net-of-tax rate. This specifica-
tion is equivalent to those in the first four panels, but it is more parsimonious in 
that it forces the effect of tax changes in the origin and destination state to be the 
same but of opposite sign. The plots shows that higher destination-origin net-of-tax 
rate (after-tax income) differentials are associated with higher  origin-to-destination 
migration.

B. Graphical Evidence: Timing

In Figure 5, we present evidence on the timing of the effect and the existence of 
pretrends with a simple nonparametric graph. Each panel shows the difference in 
star scientist outmigration (relative to the year (0) prior to the tax change) between 
observations in which the destination-origin tax differential changes and those in 
which it does not. We plot this difference for a number of years before and after the 
tax change event. Panel A is for personal income taxes (ATR at ninety-ninth percen-
tile); panel B is for corporate taxes.

As discussed above, our key identifying assumption is that the migration flows 
of scientists for state pairs in which their tax differential changes would be, if not 
for the tax change, similar to those for pairs in which the tax differential did not 
change. An obvious starting point for probing the validity of this assumption is to 
see whether migration flows for these two groups is similar in the years before a tax 
differential change.

For parsimony, we impose symmetry in the graph. That is, we restrict the 
migration response to a tax differential decrease to be equal, but of opposite 
sign, to the response to a tax increase. Specifically, the graph plots the estimated 
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Figure 5. Outmigration before and after Tax Change Event

Notes: A tax event is a tax change that takes place between 0 and 1. The graph plots the effect of the event in a 
balanced panel from five years before event to ten years after. For tax increases, the graph shows the effect on the 
number of star scientists moving from origin state o to destination state d in year t. For tax decreases, it shows the 
negative of the effect on the number of star scientists moving from origin state o to destination state d in year t. 
Tax increases and decreases are assumed to have equal and opposite effect. Specifically, the graph plots the coef-
ficient   β h    from the regressions: log(  P  odt+h   /  P  oot+h   ) − log(  P  odt   /  P  oot   ) =   β h      D  odt    +   ϵ odt    , where   P  odt    is the number of 
star scientists moving from o to d in year t;   D  odt    is an event indicator that takes the value 1 if the destination- 
origin differential in the net-of-tax rate increases between t and t + 1, −1 if the differential decreases between t 
and t + 1, and 0 if the differential does not change. The dashed black line indicates the average coefficient over the 
pretreatment period. Only permanent tax changes are included (defined as changes that are not reversed in the next 
five years).
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 coefficients   β h    from a series of regressions—one for each horizon, h—of the out-
migration log odds-ratio in t + h relative to the its value in the year prior to the tax 
change (t) on an event indicator   D  odt   :

 log(  P  odt+h   /  P  oot+h   ) − log(  P  odt   /  P  oot   ) =   β h      D  odt    +   e  odt     ,

where   D  odt    takes the value 1 if the destination-origin differential in the net-of-tax 
rate increases between t and t + 1, −1 if the differential decreases between t and 
t + 1, and 0 if the differential does not change.

Consider the case of a tax hike in the origin state or, equivalently, a tax cut in the 
destination state, so that   D  odt    = 1. The coefficients plotted in the figures measure 
how much outmigration from origin to destination increases in state pairs where 
the tax differential changes relative to state pairs where the tax differential does not 
change. For example, a positive coefficient in period h = 3 means that outmigra-
tion three years after the tax change has increased relative to outmigration in the 
year just before the tax change in state pairs where the tax change took place com-
pared to state pairs where the tax change did not take place.

Essentially, this is a difference in difference specification for each year since 
the tax change. The coefficient is set equal to 0 at h = 0 (i.e., the year just before 
the tax change) by construction. A similar interpretation applies to the case of a 
tax cut in the origin state or a tax increase in the destination state in year t, so that  
  D  odt    = −1. To minimize noise, we focus on a balanced panel of pairs with data from 
five years before an event to ten years after, and we focus permanent tax changes—
defined as changes that are not reversed for at least the next five years. 22

The plot for personal taxes in panel A of Figure 5 shows three important features 
of the data. First, we uncover no obvious pretrend. In the five years leading up to 
the tax change, scientist mobility is not trending upward or downward in any visible 
way relative to other states. Second, in the years after the tax change, outmigration 
increases: scientists appear more likely to move from one state to another when 
taxes in the destination state fall relative to the origin state. The dashed horizontal 
line indicates the average coefficient over the pretreatment period. Thus, the dif-
ference between the dashed line and the dots in the years after the tax change is a 
measure of the average effect of the tax change on mobility. Third, the full effect of 
the tax change does not manifest itself immediately after the tax change; it tends to 
grow over time.

We see similar patterns for business taxes. Our main variable of interest for busi-
ness taxes is CIT, shown in panel B of Figure 5. Here too we see no pretrend and an 
increase in outmigration after the tax change. This increase is partially reversed after 
five years. While the effect appears visually smaller for CIT than ATR, we cannot 
directly compare the magnitudes of their effects yet, since for now we are using 

22 To further reduce noise, for the ATR, we exclude very small tax differential changes by keeping only changes 
of at least 1 percentage point in absolute value. Unlike for our other three tax variables—CIT, ITC, and R&D 
credit—the exact value of the ATR in any given state changes nearly every year in our data both because of the 
nominal income of our hypothetical taxpayer changes every year and because of minor changes to federal tax 
exemptions and deductibility. These small changes are not a problem for our main models because, in those models, 
we focus on slope parameters, and therefore make full use of information on the magnitude of the change. But, tiny 
tax changes add significant noise in models with dummy variables, like the one used here. 
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an indicator for tax change events, and therefore ignoring the magnitude of the tax 
change. The average tax change could be different for ATR and CIT.23

Investment tax credits also present clear evidence of the timing of the effect 
(online Appendix Figure 5, left panel). The picture that emerges from the R&D tax 
credits graph is somewhat more mixed. Unlike the other three, it visually seems to 
suggest that it might display a small positive pretrend. (Online Appendix Figure 5, 
right panel). We can’t reject that the pretrend is statistically equal to 0. For com-
pleteness, in online Appendix Figures 6–7, we also show analogous graphs based 
on the stock of scientists in a given state before and after a tax change in that state.

Figure 5 is intended to present simple, nonparametric evidence on the evolution of 
mobility. Since in this figure we use a dummy variable to measure tax changes, the 
figure does not exploit information on the magnitude of tax changes. In Section IVH 
below, we will come back to the timing of the effect and show analogous figures 
that are more tightly linked to our econometric model in Section II. Those graphs 
differ from the ones above because they make full use of information on the mag-
nitude of the effect and because they also include all the controls that we use in the 
regressions.

C. Baseline Regressions

The baseline regression results are shown in Table 2A. The table shows vari-
ants of equation (3). Each column represents a regression of the outmigration log 
odds-ratio on the log differential of the net-of-tax rate between the destination and 

23 Adding controls to Figure 5 does not change the results. Specifically, adding for the full vector of controls 
that we use in our baseline regression (column 6 of Table 2A) results in a graph that is almost identical to the one 
shown here and has tighter confidence intervals. 

Table 2A—The Effect of Net-of-Tax Rates on Outmigration of Star Scientists: Baseline Models

(1) (2) (3) (4) (5) (6) (7) (8)

ATR, 99th perc. (1 − ATR) 2.7805 2.0938 1.8950 1.8046 2.0697 1.8895 0.8027 2.8686
(0.8332) (0.6324) (0.6564) (0.5696) (0.6527) (0.6160) (0.6499) (1.0557)

State CIT rate (1 − CIT) −4.0473 1.9865 1.8802 1.4655 1.1897 1.9286 2.1107 1.9095
(0.9367) (0.7036) (0.7037) (0.6081) (0.7320) (0.6615) (0.6801) (1.1785)

State ITC (1 + ITC) 5.6643 1.8245 1.7198 1.6948 1.8006 1.7253 2.2891 1.5642
(1.4646) (0.4683) (0.5498) (0.5674) (0.5079) (0.5825) (0.7705) (0.7760)

R&D credit (1 + cred) 3.3101 0.3428 0.3621 −0.0349 0.0734 0.3978 1.0309 −0.4218
(0.7070) (0.2021) (0.2196) (0.2179) (0.2117) (0.2301) (0.2869) (0.3335)

Origin, destination state FE No Yes No No No No No No
Origin × destination pair FE No No Yes Yes Yes Yes Yes Yes
Origin region × year FE No No No Yes No No No No
Destination region × year FE No No No No Yes No No No
Origin and destination pair  
 region × year FE

No No No No No Yes No No

Origin state × year FE No No No No No No Yes No
Destination state × year FE No No No No No No No Yes

Notes: Each column is from a separate regression. Coefficients are estimates of η or η′ from equation (3). Standard 
errors in parentheses, with three-way clustering by origin-state × year, destination-state × year, and state-pair. All 
regressions include year fixed effects, and have 15,247 observations.
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origin states, for each of our four tax variables. In this and all the other tables, we 
simultaneously include all four tax variables: personal income tax variable along 
with the three business tax variables jointly in the same regression.

All regressions contain year fixed effects. The regression underlying column 1 
does not condition on state or state-pair fixed effects and therefore is based on 
cross-sectional variation. The estimated coefficient on the net-of-tax rate on cor-
porate taxes is negative, contrary to expectations of a positive effect from  after-tax 
income. Column 2 adds state of origin and state of destination fixed effects, while 
column 3 adds state-pair fixed effects. Now the coefficients on all net-of-tax rate 
variables becomes positive and statistically different from 0 at conventional levels. 
Column 3 is equivalent to the fit lines shown in the two right-most panels of Figure 4. 
Next, we add a year-specific fixed effect for the region of the origin state, using the 
US Census Bureau’s nine-region categorization (column 4), a year-specific fixed 
effect for the region of the destination state (column 5), and a year-specific fixed 
effect for the pair defined by the origin region and destination region (column 6).

Our preferred specification is that of column 6, which absorbs both state-pair per-
manent characteristics as well as time-varying year-specific shocks that are specific 
to each region-pair. The coefficients on the ninety-ninth ATR and CIT net-of-tax 
rate are 1.89 and 1.93, respectively. Both are significant at the 1 percent level. The 
 coefficients on the investment credit is 1.73. The coefficient for the R&D credit is 
much smaller (only 0.40) and significant only at the 10 percent level.

Given the average probability of moving in our sample, the implied elasticities 
of the moving probability with respect to the ninety-ninth ATR and CIT net-of-tax 
rate are 1.76 and 1.85, respectively (equation (4)). To get a sense of the magnitude 
of our estimated elasticity, we estimate the implied increase in star scientists in New 
York following that state’s 2006 cut in its personal income tax rate. New York cut its 
statutory rate for the top tax bracket from 7.5 percent to 6.8 percent, which resulted 
in a decline in our measure of the ninety-ninth percentile ATR (federal plus state) 
from 32.4 percent to 32.0 percent, or a 0.6 percent increase in the net-of-tax rate. 
An elasticity of 1.76 implies that the long-run effect of this tax cut will be a decline 
in New York’s outmigration rate of star scientists by 1.1 percentage points. It also 
implies an increase in New York’s inmigration rate of 1.1 percentage points, so an 
increase in net migration rate of 2.2 percentage points. New York’s outmigration 
rate and inmigration rate were each about 5.9 percent in 2005 (66 stars coming and 
66 stars going from a stock of 1,118 stars). Thus, the effect of this tax change is to 
increase New York’s net inflow of star scientists by about 3.0 per year.24

Of course, these elasticities are naturally large due to the small base of scientists 
who move in each year. The elasticities of the stock of scientists with respect to taxes 
are necessarily smaller, because the base is much larger. These are the relevant elas-
ticities from the point of view of a revenue maximizing state planner. We  calculate 

24 Our estimated elasticities for personal income taxes are in line with those by Kleven et al. (2014). They find 
that the elasticity of the number of top earners who move to Denmark with respect to taxes is between 1.5 and 2. 
Our estimates are larger than the ones by Akcigit, Baslandze, and Stantcheva (2015). They find an elasticity of the 
number of domestic and foreign inventors with respect to the personal income tax rate equal to 0.03 and 1, respec-
tively, significantly lower than ours. We note that estimates based on within-country mobility and estimates based 
on international mobility do not necessarily need to be similar, since moving across international borders entails 
larger costs than moving across US states. Moreover, our estimates reflect the long-term effect of taxes, which are 
larger than the short-run effects. 
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that the implied elasticities of the stock of scientists with respect to the ninety-ninth 
ATR and CIT net-of-tax rate are 0.40 and 0.42, respectively. To be precise, the way 
to interpret these elasticities is: if after-tax income in a state increases by 1 per-
cent because the personal income average tax rate or the corporate tax permanently 
declines, the stock of scientists in the state experiences a percentage increase of 0.4 
or 0.42 percent per year forever, everything else constant.25 In our New York exam-
ple, the 0.4 stock elasticity implies a 0.26 percent change per year in New York’s 
stock of star scientists. Over time, these effects can be large. For instance, over 
10 years, the increase net inflow of star scientists of 3 per year means 30 additional 
star scientists living in New York, a 2.6 percent increase in its stock. In practice, of 
course, everything else in the state economy rarely remains constant, and relative tax 
changes are almost never permanent.

For completeness, in the last two columns, we add a year-specific fixed effect 
for the origin state (column 7), and a year-specific fixed effect for the destination 
state (column 8). These models are almost fully saturated. They generally confirm 
the qualitative picture that emerges from column 6. While precision declines, the 
 net-of-tax rate effects on outmigration remains positive except those involving ATR 
in column 7 and R&D tax credit in column 8.

We also repeat the regressions in Table 2A using two alternative measures of the 
personal tax rate. First, we use an alternative measure of the ATR using a different 
approach to constructing the hypothetical taxpayer used for eliciting federal and state 
tax liabilities from the NBER’s TaxSim tax simulator. As described in Section I, our 
baseline approach to eliciting the ATR for a given income percentile from TaxSim 
requires only data on primary-taxpayer wage earnings and long-term capital gains 
for that percentile. As an alternative approach, we use the NBER’s yearly samples of 
federal tax returns from the IRS statistics on income. These returns do not identify 
state of residence, so they cannot be used to obtain state-specific inputs, but they 
can be used to calculate national averages of other TaxSim inputs such as number of 
dependent exemptions, charitable donations, mortgage interest payments, and rental 
income (Bakija and Gentry 2014). See the online Data Appendix for full details. The 
results using this alternative measure of the ATR are shown in Table 2B. The results 
are quite similar to those in Table 2A, though the estimated elasticity of the outmi-
gration odds-ratio for the ATR net-of-tax rate generally is slightly lower. Standard 
errors are also lower.

Second, online Appendix Table A6 shows models where personal income taxes 
are measured based on the marginal tax rate for taxpayers in the top 1 percent of 
the distribution, instead of their average tax rate. As we argue above, ATR is the 
variable that a rational fully informed taxpayer should consider when deciding 
where to locate, but the MTR is more visible and salient. The results are generally 
similar. This is not surprising given that the within-state correlation between the 
 ninety-ninth percentile ATR and the ninety-ninth MTR is high: a regression of the 

25 The stock elasticity is the flow elasticity times the gross flow (flow(o to d ) + flow(d to o)) divided by the 
base stock of scientists. The average ratio of the gross flow to the stock in our sample is 0.238. 
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former on the latter, with state and year fixed effects, yields a slope coefficient of 
0.41 with a t-statistic of 39.26

Next, we relax the assumption that destination and origin taxes have symmetric 
effects on pairwise migration. We repeat the regressions underlying Table 2A but 
allow the coefficient on log net-of-tax rate in the destination state to be different 
than that in the origin state. The results are shown in Table 3.27 Column 1 shows 
the results of a specification including state-pair fixed effects while column 2 adds 
region-pair × year fixed effects. These models are somewhat less precise, because 
they do not impose the symmetry assumption, but still informative.

For individual and corporate net-of-tax rates, we find evidence of a negative and 
significant effect from the origin state net-of-tax rate. That is, fewer star scientists 
move out of their current state of residence as net-of-tax rates, and hence after-tax 
incomes, rise there. Moreover, we find that migration of star scientists into a given 
state tends to rise as its net-of-tax rate increases, though the magnitude of this effect 
is smaller and not significant for the ATR. The finding that the effect of net-of-tax 
changes in the origin state is larger than the effect in the destination state might indi-
cate that individuals have more information on taxes in their state of residence—after 
all, there are 50 potential destination states, and they frequently change their rates.

For the two tax credit variables, the relative importance of destination and ori-
gin state taxes is reversed, with the origin state effect smaller. The fact that tax 
incentives have a stronger pull effect is probably not too surprising: tax credits 
are specifically designed to attract and targeted to out-of-state businesses doing 

26 We have also estimated models where we include one tax variable at a time (available on request). The point 
estimates are generally similar to those found in Table 2A. There is little correlation in changes in different taxes 
over time. For ATR and CIT, the correlation between mean-differences is around 0.01 and is not different from 0. 

27 For these specifications we cannot include either origin-state × year fixed effects or destination-state × year 
fixed effects as that would leave no variation with which to identify the coefficients of interest. 

Table 2B—Alternative Measure of ATR

(1) (2) (3) (4) (5) (6) (7) (8)

ATR, 99th perc. (1 − ATR) 0.5966 1.4434 1.4474 1.3798 1.4695 1.4587 0.9918 1.9562
(0.5035) (0.3450) (0.3551) (0.3013) (0.3565) (0.3360) (0.3377) (0.5574)

State CIT rate (1 − CIT) −3.3335 1.7035 1.6012 1.2030 0.9290 1.6459 1.8578 1.5620
(0.9443) (0.7062) (0.7007) (0.5957) (0.7316) (0.6564) (0.6545) (1.1861)

State ITC (1 + ITC) 5.0209 1.9334 1.8381 1.7932 1.8935 1.8461 2.4058 1.7122 
(1.4752) (0.4695) (0.5502) (0.5646) (0.5069) (0.5818) (0.7655) (0.7760)

R&D credit (1 + cred) 3.1642 0.2917 0.3100 −0.0772 0.0280 0.3454 1.0008 −0.4843
(0.6996) (0.2019) (0.2201) (0.2188) (0.2117) (0.2307) (0.2894) (0.3309)

Origin, destination state FE No Yes No No No No No No
Origin × destination pair FE No No Yes Yes Yes Yes Yes Yes
Origin region × year FE No No No Yes No No No No
Destination region × year FE No No No No Yes No No No
Origin and destination pair  
 region × year FE

No No No No No Yes No No

Origin state × year FE No No No No No No Yes No
Destination state × year FE No No No No No No No Yes

Notes: Each entry is from a separate regression. Coefficients are estimates of η or η′ from equation (3). Standard 
errors in parentheses, with three-way clustering by origin-state × year, destination-state × year, and state-pair. All 
regressions include year fixed effects, and have 15,247 observations.
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site selection searches and are often advertised to specific industries and even 
specific firms. Results based on the MTR are generally similar (online Appendix 
Table A6.)

D. Nonrandom Selection

In our data, all states have at least one star in virtually every year. But, not all 
origin-destination state pairs exhibit positive flows in all years. Overall, only 18 per-
cent of all possible origin × destination × year triplets have a positive flow, and this 
fraction varies somewhat over time. Online Appendix Table A8 shows for each year 
the number of state pairs with no migration flow. Online Appendix Table A9 shows 
for each origin-destination pair the number of years with no migration flow. Not 
surprisingly, state pairs involving sparsely populated states such as Alaska, South 
Dakota, or Wyoming tend to exhibit few if any star scientist moves over the sample 
period.

As discussed in Section III, one potential concern is the possibility of bias. To 
better understand the implications of the missing cells, we turn to two pieces of evi-
dence. First, we test whether the presence of cells with zero mobility flows is system-
atically associated with tax increases or tax cuts. In online Appendix Table A10, we 
regress the probability of a missing cell on net-of-tax rate differentials, conditioning 
on our baseline controls. The estimated coefficients are both individually and jointly 
not distinguishable from 0, indicating that there is no systematic correlation. This 
lack of correlation is reassuring, because it indicates that whatever selection there is 
in the data is not systematically correlated with tax changes, suggesting any bias is 
likely to be minimal.

Table 3—Asymmetric Effects for Origin and Destination Taxes

(1) (2)

ATR, 99th percentile, origin (1 − ATR) −2.9871 −2.7239
(1.0713) (0.9911)

ATR, 99th percentile, destination (1 − ATR) 0.7397 1.0213
(0.7744) (0.8295)

State CIT rate, origin (1 − CIT) −2.0873 −2.2472
(1.1889) (1.1031)

State CIT rate, destination (1 − CIT) 1.6249 1.5514
(0.7994) (0.7970)

State ITC, origin (1 + ITC) −1.5895 −1.4324
(0.7702) (0.7235)

State ITC, destination (1 + ITC) 1.8690 2.0410
(0.7423) (0.8580)

R&D credit, origin (1 + cred) 0.2483 0.4130
(0.3337) (0.3279)

R&D credit, destination (1 + cred) 0.9543 1.1913
(0.3023) (0.3404)

Origin × destination pair FE Yes Yes
Origin and destination pair region × year FE No Yes

Notes: Each column is from a separate regression. Standard errors in parentheses, with 
 three-way clustering by origin-state × year, destination-state × year, and state-pair. All regres-
sions include year fixed effects, and have 15,247 observations. 
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As a second piece of evidence, in Table 4 we estimate models based on cells with 
an increasingly small number of scientist moves. Entries show that estimates based 
on our full sample (column 1) are generally similar to estimates based on the sample 
of cells where only one scientist moves (column 2). For example, the coefficients on 
ATR and CIT net-of-tax rates change from 1.89 and 1.93, respectively, to 1.92 and 
2.10. The same is true for models based on the sample of pairs for which we have no 
more than 2, 4, 6, 8, or 10 scientists (columns 3 to 10). Overall, there appears to be 
little relationship between number of observed moves in a cell and the magnitude of 
the estimated tax elasticity. The stability of the coefficients in the table is reassuring.

Of course we do not know what our estimates would be if we included the cells 
that are missing due to the absence of any move. But, based on these two pieces 
of evidence, we conclude that in practice the magnitude of the problem might be 
limited.

E. Specifications Tests

The results in Table 2A indicate a strong effect from the personal ATR, the cor-
porate income tax rate, and the investment tax credit rate and a more modest effect 
from the R&D tax credit. To mitigate concerns that these results reflect some spuri-
ous correlation, we perform several additional tests.

Specification Tests for Business Taxes.—We now consider several specification 
tests based on business taxes. First, we exploit the fact that states vary in whether, 
and how much, employment location matters for corporate taxation of companies 
generating income in more than one state. As we described in Section IB, a cor-
poration in a given state must determine what share of its national taxable income 
to apportion to that state based on the state’s apportionment formula, which is a 

Table 4  —Estimates for Cells with Small Number of Movers

Number of movers: in cell = all in cell = 1 in cell ≤ 2 in cell ≤ 3 in cell ≤ 4 in cell ≤ 7 in cell ≤ 10
(1) (2) (3) (4) (5) (6) (7) 

ATR, 99th perc. (1 − ATR) 1.8895 1.9154 1.9030 2.2173 2.0132 2.0073 2.0396
(0.6160) (0.5545) (0.5840) (0.5746) (0.5679) (0.5737) (0.5914)

State CIT rate (1 − CIT) 1.9286 2.1043 2.1033 1.7877 2.0505 1.8644 1.8995
(0.6615) (0.6687) (0.6659) (0.6372) (0.6410) (0.6341) (0.6484)

State ITC (1 + ITC) 1.7253 0.8551 1.3433 1.4210 1.4016 1.3639 1.5133
(0.5825) (0.4439) (0.4360) (0.4308) (0.4637) (0.4602) (0.4803)

R&D credit (1 + cred) 0.3978 0.2283 0.2171 0.2993 0.3695 0.3512 0.3578 
(0.2301) (0.1889) (0.1872) (0.1851) (0.1919) (0.1927) (0.1978)

Observations 15,247 9,085 12,012 13,318 14,372 14,756 14,974

Origin × destination  
 pair FE

Yes Yes Yes Yes Yes Yes Yes

Origin and destination  
 pair region × year FE

Yes Yes Yes Yes Yes Yes Yes

Notes: Each column is from a separate regression. Coefficients are estimates of η or η′ from equation (3). Column 1 
reproduces our baseline estimates from Table 2 column 6. Column 2 is only based on state pair-years with only one 
mover. Column 3–7 are based on state pair-years with the specified range of movers. Standard errors in parentheses, 
with three-way clustering by origin-state × year, destination-state × year, and state-pair. All regressions include 
year fixed effects.
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weighted average of the state’s shares of the company’s national payroll, property, 
and sales. The weight on employment (payroll) varies across states and over time, 
and ranges from zero to one-third. With a zero weight, a corporation’s tax liability 
in a given state is independent of its level of employment in that state (conditional 
on having a tax liability in that state at all). Therefore, a testable hypothesis is that 
corporations’ demand for labor, including star scientists, should be more sensitive to 
corporate tax rates in states with larger apportionment weights on payroll.

To test this hypothesis, we construct an indicator variable that equals 1 if the 
origin state, in that year, has a payroll weight equal to the traditional formula’s 
one-third weight and that equals 0 otherwise. (About one-half of our sample have 
a one-third payroll weight; the other half generally have either 0 or 0.1.) We con-
struct an analogous variable for destination states. We then estimate models that 
include these two indicator variables as well as their interactions with the origin 
and destination CIT net-of-tax rates. The results are shown in Table 5. The neg-
ative coefficient on the interaction between the payroll dummy and origin state 
CIT indicates that the origin state’s net-of-tax corporate rate reduces outmigration 
significantly more in origin states with a relatively high apportionment weight 
on payroll. Similarly, the positive coefficient on the interaction between payroll 
dummy and destination state CIT indicates that the destination state’s net-of-tax 
corporate rate increases migration to that state significantly more when the des-
tination state has a high payroll weight. The results are robust to conditioning on 
non-CIT rates (see column 2).

At the bottom of the table we show the implied origin CIT effect, which is the 
sum of the coefficients in rows 1 and 3, as well as the implied destination CIT effect, 
which is the sum of the coefficients in rows 2 and 4. The implied overall effect of 
CIT on mobility for states with positive payroll weight is quite large. By compar-
ison, the overall effect of CIT on mobility for states with states with zero payroll 
weight—shown in the top two rows—is indistinguishable from 0. Thus, the CIT has 
a strong effect on employment only in states where the tax liability is a function of 
firm employment, and has a smaller, possibly zero, effect in other states.

We now investigate whether migration of star scientists who work in the private 
sector are more sensitive to business taxes than are scientists who work for not-for-
profit organizations, like academia and government. The COMETS patent database 
classifies the organization type of the patent owner into the following categories: Firm, 
Academic Institution, Government, or Other. Furthermore, it identifies the actual 
name of the organization. This allows us to additionally screen out firms that appear 
to be pass-through entities (such as S corporations) and not standard C corporations, 
and therefore are not subject to the corporate income tax. Specifically, we screen out 
organizations (patent assignees) whose name in the patent record contains “limited 
liability corporation,” “limited liability partnership,” and related abbreviations.

The results are shown in Table 6. We find that corporate income taxes and the 
investment tax credit significantly affect migration for star scientists working for 
corporations (after excluding clear pass-through organizations; column 2) but have 
no significant effect on migration of stars working for academic or governmental 
institutions (column 3). This likely reflects the fact that universities and govern-
ment agencies are not subject to corporate income taxes and cannot benefit from the 
investment tax credit.
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Interestingly, mobility of academic and government scientists also appears insen-
sitive to changes personal income taxes. This stands in contrast to mobility of cor-
porate scientists, which has a coefficient of 2.43. While we can’t be certain, it is 
possible that academic and government scientists are less affected by pecuniary 
motives than their corporate counterparts who, after all, self-selected into a form of 
employment than typically offers higher pay.28

In column 4, we look at migration of individual inventors—that is, patenters who 
own their own patent rather than assigning it to some organization. Consistent with 
the fact that these inventors would not be subject to the corporate income tax rate, 

28 It is also possible that higher state income taxes may be associated with higher funding for publicly funded 
universities. 

Table 5—Effect of Payroll Apportionment Formula Weight  
on Sensitivity to Corporate Tax

(1) (2)

State CIT rate − origin −1.8507 −1.1985
(1.3103) (1.2828)

State CIT rate − destination 0.4892 0.2877
(0.8544) (0.8759)

Payroll dummy × state CIT rate − origin −0.9667 −1.5664 
(0.9382) (0.9009)

Payroll dummy × state CIT rate − destination 2.9753 2.6523
(0.9196) (0.8438)

Payroll dummy − origin −0.1516 −1.5664
(0.0765) (0.9009)

Payroll dummy − destination 0.1871 2.6523
(0.0737) (0.8438)

ATR, 99th percentile origin −0.1935
(0.0746)

ATR, 99th percentile destination 0.1800  
(0.0707)

State ITC − origin −2.8435
(1.0775)

State ITC − destination 1.1845
(0.7414)

R&D credit − origin −1.8352  
(0.7804)

R&D credit − destination 0.6772  
(0.2724)

Implied origin CIT effect when dummy = 1 −2.8175 −2.7649
(1.2780) (1.2095)

Implied destination CIT effect when dummy = 1 3.4644 2.9400
(0.9398) (0.8838)

Origin × destination pair FE Yes Yes
Origin and destination pair region × year FE Yes Yes

Notes: Each column is from a separate regression. Payroll dummy = 1 if state apportionment 
formula puts positive weight on firm payroll. Standard errors in parentheses, with  three-way 
clustering by origin-state × year, destination-state × year, and state-pair. Implied Origin CIT 
effect is the sum of the coefficients in row 1 and 3. Implied Destination CIT effect is the 
sum of the coefficients in row 2 and 4. All regressions include year fixed effects, and have  
15,247 observations.
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their migration appears to be insensitive to the corporate income tax rate.29 In most 
states, both individual and corporate income taxpayers can claim R&D tax credits for 
qualified expenditures. Many individual inventors may have nontrivial R&D expen-
ditures (especially given that R&D includes their own labor expenses) and hence 
could be sensitive to the R&D tax credit. The results in column 4 suggest this is the 
case: the coefficient on the investment net-of-tax credit rate is insignificant while 
the coefficient on the R&D net-of-tax credit rate is relatively small but statistically 
significant.30

We attempted to identify pass-through entities based on the name of the firm 
reported on the patent application. Unfortunately, the pass-through sample is too 
small to allow meaningful estimates. The small sample size reflects the fact that we 
are only able to identify pass-throughs if they have an obvious identifier like Limited 
Liability, LLP, or LLC in their organization name listed on the patent (under patent 
assignee). Moreover, pass-through entities, while common for professional services 
(doctor, lawyers, etc.), are not very common in high tech fields. We also miss all 
pass-through subsidiaries of large firms, if patents are filed under the parent firm.

F. Property and Sales Taxes

Business and personal income taxes are not the only taxes that vary by state. It 
is in principle possible that property or sales taxes might play a role in mobility 

29 The only case in which CIT would matter for an individual inventor is the case where the inventor plans to 
create a firm in the future and is forward-looking enough to take future CIT into consideration. 

30 While not shown in these tables, we also estimated the effect of the individual income net-of-tax rate, for the 
ninety-ninth percentile, on migration of individual inventors. This net-of-tax rate has a coefficient of 2.08 (with a 
standard error of 0.67), roughly similar to the coefficients on the individual ATR from the full sample. 

Table 6—The Effects of Net-of-Tax Rates on Outmigration of Star Scientists: Selected Subsamples

Baseline
Corporate 
scientists

Academic and 
gov. scientists

Individual 
inventors

(1) (2) (3) (4)

Average tax rate 1.8895 2.4348 0.4544 −0.9877
(0.6160) (0.6825) (1.6091) (0.6359)

State CIT rate 1.9286 1.9803 0.1109 −0.4956
(0.6615) (0.7520) (1.5054) (0.9013)

State ITC 1.7253 1.8127 −0.7212 1.4812
(0.5825) (0.6554) (0.7883) (0.6499)

R&D credit 0.3978 0.3843 0.8454 0.8625
(0.2301) (0.2518) (0.3679) (0.2575)

Observations 15,247 12,564 2,011 4,081

Origin × destination pair FE Yes Yes Yes Yes
Origin and destination pair region × year FE Yes Yes Yes Yes

Notes: Each column is from a separate regression. Coefficients are estimates of η or η′ from equation (3). Column 1 
includes all scientists, and reproduces our baseline estimate from Table 2 column 6. Column 2 includes only sci-
entists working at a for-profit firm. Column 3 includes only scientists working for universities, governments, and 
nonprofit entities. Column 4 only includes unaffiliated scientists. Standard errors in parentheses, with three-way 
clustering by origin-state × year, destination-state × year, and state-pair. All regressions include year fixed effects.
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 decisions. If states that change personal income or business taxes also tend to sys-
tematically change property or sales taxes, our estimates would be biased.

In Table 7 we show models that include personal income taxes and business 
taxes as well as property and sales taxes. To our knowledge, there is no com-
prehensive state panel data on effective property taxes, likely due to the com-
plexity and wide variety of property tax systems across the United States (e.g., 
in how the property tax base is defined). Thus, we simply use the ratio of state 
and local government property tax revenues to aggregate personal income, in a 
given state and year, as a crude measure of the effective property tax rate. We 
obtained data on state sales tax rates from Fajgelbaum et al. (2015). These data 
cover sales taxes levied by state governments, but not by local governments within 
the state (which are not uncommon). A limitation to keep in mind is that, unlike 
our data on personal income and business taxes, which are of good quality, the 
quality of available data on property taxes and sales taxes is not ideal. It would 
be better to separate out personal and business property taxes, and get something 
closer to an effective sales tax burden (accounting, for example, for the fraction of  
state consumption subject to sales taxes and for local sales taxes) instead of a 
statutory rate.

With these limitations in mind, Table 7 indicates that our baseline estimates are 
not very sensitive to conditioning on sales and property net-of-tax rates. For exam-
ple, a model that conditions on property taxes in column 2 yield coefficients for 
ATR, CIT, ITC, and R&D net-of-tax rates of 1.38, 2.03, 1.53, and 0.40, respectively. 
A comparison with our baseline estimates (reproduced in column 1) suggests that 

Table 7—Models That Include Property and Sales Taxes

(1) (2) (3) (4) (5) (6)

ATR, 99th perc. (1 − ATR) 1.8895 1.3781 1.6622 1.1529 1.3952
(0.6160) (0.6177) (0.6092) (0.6185) (0.6178)

State CIT rate (1 − CIT) 1.9286 2.0307 2.3595 2.4734 2.0086 2.1962
(0.6615) (0.6547) (0.6923) (0.6923) (0.6544) (0.6559)

State ITC (1 + ITC) 1.7253 1.5286 1.6293 1.4537 1.5317 1.4903
(0.5825) (0.5697) (0.5680) (0.5572) (0.5703) (0.5629)

R&D credit (1 + cred) 0.3978 0.3983 0.3674 0.3633 0.4001 0.4152
(0.2301) (0.2309) (0.2250) (0.2254) (0.2311) (0.2307)

Prop tax revenues/income (1 − PTSHR) 0.5586 0.5653
(0.1489) (0.1486)

Sales tax rate (1 − STR) −3.1153 −3.2259
(1.2743) (1.2863)

Effective consumption tax rate 0.5398
 (1 − ECTR) (0.1463)
Effective personal tax rate (1 − EPTR) 0.2933

(0.0716)

Origin × destination pair FE Yes Yes Yes Yes Yes Yes
Origin and destination pair region  
 × year FE

Yes Yes Yes Yes Yes Yes

Notes: Each column is from a separate regression. Coefficients are estimates of η or η′ from equation (3). Column 1 
reproduces our baseline estimates from Table 2 column 6. Effective consumption tax rate in column 4 is defined as 
0.3 × (sales tax rate) × (1 − ATR) + property tax rate. Effective personal tax rate in column 5 is defined as effec-
tive consumption tax rate + ATR. Standard errors in parentheses, with three-way clustering by origin-state × year, 
destination-state × year, and state-pair. All regressions include year fixed effects, and have 15,247 observations.
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our estimates appear generally robust. Models that condition on both property and 
sales taxes are even closer to the baseline (see column 3).

In principle, the effect of property taxes is not necessarily identical to the effect 
of income taxes. For one, property taxes are probably in part capitalized into prop-
erty values. Thus, from the point of view of someone moving to a state in response 
to a tax change, a higher property tax is in part offset by a lower cost of housing. 
Moreover, only part of household income is spent on housing. Similarly, only some 
consumption expenditures are taxed: health, education, food consumed at home, 
rents, and mortgages are typically not subject to sales taxes.

In practice, the estimated coefficient on property taxes is positive, with an implied 
elasticity of 0.53—this is lower than other elasticities, possibly due to capitalization 
into land prices. By contrast, the estimated coefficient on the sales net-of-tax rate 
is negative—opposite of what one might expect. Taking it at face value, it would 
imply that holding personal income taxes, business taxes, and property taxes con-
stant, a higher sales tax rate in a state (relative to other states) makes that state more 
attractive to star scientists. We do not have a good explanation. We note, however, 
that unlike state income taxes—which are generally progressive—sales taxes are 
regressive. Thus, their effect on top earners may be different.

In column 5 of Table 7, we show estimates based on a specification where we 
combine property and sales tax data into a single effective tax rate. Specifically, 
we define the effective consumption tax rate (ECTR) based on the share of income 
spent (1) on consumption goods subject to sales taxes and (2) on housing (subject 
to property taxes): ECTR = (1 – ATR) × 0.3 × STR + PTSHR, where STR is the 
sales tax rate and PTSHR is property taxes as a share of income.31 The coefficient 
on the log of the ECTR net-of-tax rate is 0.54, similar to the one in column 2, and 
statistically significant, indicating that the combined effect of sales and property 
taxes has the expected sign. Finally, in column 6 we use an effective personal tax 
rate that combines ATR, property and sales taxes and is defined as ATR + ECTR. 
The coefficient drops to 0.29 and remains statistically significant.

G. Robustness

In this section, we assess whether our findings are robust to a number of alterna-
tive specifications and alternative samples.

We begin in Table 8 by probing the robustness of our baseline estimates of the 
standard errors to alternative assumptions regarding the correlation among residu-
als. Recall that our baseline model (reproduced in column 1) allows for residuals 
to be clustered, within origin-state × year, destination-state × year, and state-pair.

31 Define the share of income spent on goods subject to sales taxes and on housing, respectively as   w  sales    
and   w  housing   . The remaining share of income, 1 −   w  sales    −   w  housing   , is either saved or spent on nontaxed goods 
like education and health. Consider a worker who receives $1 in income. He first pays ATR in income taxes, 
leaving (1 − ATR) for consumption and saving. He spends (1 − ATR) ×   w  sales    on goods subject to sales taxes 
and (1 − ATR) ×   w  housing    on housing. We assume   w  sales    = 0.3 (based on evidence that high-income households 
typically spend about 30 percent of their income on housing (Moretti 2013 based on CEX data) and assum-
ing star scientists have a saving rate around 0.2 and spend 20 percent of their income on goods not subject to 
sales taxes). The total tax payment as a share of income then amounts to ATR + (1 − ATR) ×   w  sales    × STR +  
(1 − ATR) ×   w  property    × (property tax rate). Notice this last component, (1 − ATR) ×   w  property    × (property tax 
rate), is simply property tax revenues as a share of income (PTSHR).   
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Columns 2 to 7 are based on six variants of the Driscoll and Kraay (1998) estima-
tor described in Section IIC. In column 2, we use the Driscoll-Kraay estimator with 
autocorrelation up to 1 lag. In columns 3 to 7, we increase the number of lags for 
autocorrelation from 2 to 6. Although the assumptions on serial correlation of resid-
uals are different from those of the baseline model, the estimated standard errors are 
generally similar.

In column 8, we use two-way clustering by origin and by destination. This is 
an extremely broad level of clustering as it allows for any type of serial correla-
tion of errors across time (even among pairs that are not the same) in addition to 
the cross-sectional dependence across pairs. This results in about a doubling of the 
standard errors. We don’t use this specification as our baseline because in our view 
it depends on assumptions that might be overly general—it imposes little restriction 
on the possible correlation of residuals across pairs in different years. By contrast, 
three-way clustering by origin-state × year, destination-state × year, and state-pair 
imposes only a mild restriction on serial correlation. As we note in Section IIC, we 
cannot reject such a restriction. Thus, we think that in our setting three-way cluster-
ing by origin-state × year, destination-state × year, and state-pair probably gives a 
more appropriate characterization of the true precision of the estimates.

Next, we consider whether our baseline results are sensitive to the precise defini-
tion of stars. So far, we have defined stars as scientists in the top 5 percent of patent 
counts over the prior ten years. Online Appendix Table A11 repeat the same set of 
regressions as in Table 2A but using a sample where stars are defined as those in 
the top 1 percent or 10 percent of the distribution. The results are generally similar 
to the baseline results. We can also define stars based on citation counts instead of 
patent counts in order to include scientists that produce fewer but higher quality 
patents and exclude scientists that produce many but less influential patents. Online 

Table 8—Robustness: Standard Errors

Baseline

Driscoll-
Kraay 

Autocorr 
= 1

Driscoll-
Kraay 

Autocorr 
= 2

Driscoll-
Kraay 

Autocorr 
= 3

Driscoll-
Kraay 

Autocorr 
= 4

Driscoll-
Kraay 

Autocorr 
= 5

Driscoll-
Kraay 

Autocorr 
= 6

Two-way 
cluster by 

origin–
dest. pair

(1) (2) (3) (4) (5) (6) (7) (8)

ATR, 99th perc. 1.8895 1.8895 1.8895 1.8895 1.8895 1.8895 1.8895 1.8895 
 (1 − ATR) (0.6160) (0.5284) (0.5614) (0.5893) (0.5949) (0.5913) (0.5796) (1.0849)

State CIT rate (1 − CIT) 1.9286 1.9286 1.9286 1.9286 1.9286 1.9286 1.9286 1.9286
(0.6615) (0.6819) (0.7503) (0.7729) (0.7719) (0.7639) (0.7482) (1.3154)

State ITC (1 + ITC) 1.7253 1.7253 1.7253 1.7253 1.7253 1.7253 1.7253 1.7253
(0.5825) (0.6355) (0.7234) (0.7691) (0.7845) (0.7757) (0.7523) (1.1835)

R&D credit (1 + cred) 0.3978 0.3978 0.3978 0.3978 0.3978 0.3978 0.3978 0.3978
(0.2301) (0.1443) (0.1539) (0.1633) (0.1711) (0.1773) (0.1816) (0.5011)

Origin × destination 
 pair FE

Yes Yes Yes Yes Yes Yes Yes Yes

Origin and destination  
 pair region × year FE

Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Each column is from a separate regression. Coefficients are estimates of η or η ′ from equation (3). Column 1 
reproduces our baseline estimates from Table 2, column 6. Column 2 shows estimates of the standard errors from 
Driscoll-Kraay estimator based on maximum number of lags = 1. Columns 3–7 show estimates of the standard 
errors from Driscoll-Kraay estimator based on the stated maximum number of lags. All regressions include year 
fixed effects, and have 15,247 observations.
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Appendix Table A12 shows that the estimated effects are similar but slightly larger 
than the baseline results, possibly because these stars have higher average incomes 
than the baseline set of stars.

In online Appendix Table A13 we show how our estimates vary if we use ATR 
for different income levels. In the top panel we use the 95 percent percentile. In the 
bottom panel we use the 99.9 percent percentile. Compared to Table 2A, results are 
similar for 99.9 percent, and larger for the 95 percent.

In online Appendix Table A14 we focus on additional robustness checks. In 
column 2, we assess how the baseline results change if one gives more weight to 
observations from state-pairs with larger bilateral migration flows. Specifically, we 
weight each pair of states based on the average outflow of stars over the full sample. 
This weighting leads to somewhat larger estimated effects.

Weighting is complicated when errors are spatially or serially correlated. Solon, 
Haider, and Wooldridge (2015) show that in this situation standard weighting like 
the one used above could make things worse instead of better, and propose an alter-
native weighting approach. We attempted to follow this approach but were unable 
to find appropriate weighting variables that were inversely related to the variance of 
our estimated residual.32

In column 3, we condition on current origin and destination state economic con-
ditions via the unemployment rate and the population in each state. We opt not to 
include these variables in our baseline regressions because they may well reflect 
endogenous responses of the state economy to changes in state taxes. Column 4 
shows that results do not change when we drop post-2006 observations from the 
sample, indicating that our estimates are not driven by the Great Recession.33 In 
column 5, we use an alternative patent database, constructed by Li et al. (2014), that 
applies a disambiguation algorithm to the reported patent inventor names to attempt 
to separately identify multiple inventors who share a common name and also unique 
inventors who report their name slightly differently on different patents.

One might be concerned that unobserved individual heterogeneity—like unob-
served scientist characteristics—might bias our estimates. Our data allow us to 
follow scientists over time. We have estimated models that control for individual 
scientist fixed effects. We were unable to estimate full multinomial logit models 
(including McFadden’s 1974 alternative-specific logit model), where the dependent 
variable is the locational choice among 51 possible states and the controls include 
dummies for each scientist, due to computational constraints and the extremely high 
number of observations (over 20 million scientist × year × potential-destination 
observations). However, we were able to estimate the analogous linear probability 
model (LPM). The estimates in online Appendix Table A15 confirm that  personal 
and business taxes affect mobility, even after conditioning on individual fixed effects.

32 We began by estimating the unweighted regression and obtained the residuals. We then regressed the squared 
residuals on the inverse of the average of outflow for the relevant state-pair over the whole sample period. We 
obtained predicted values from that regression and used the inverse of those predicted values. The coefficient turned 
out to be negative, not positive, implying a given observation’s variance is not inversely related to the size of the 
outflows for that pair. We found the same using stock of stars or state population as the regressor. 

33 Some eventually granted patents are missing in the COMETS patent database because at the time of its 
construction many patents applied for in 2007–2010 (and likely a small number from even earlier years) had not 
yet been granted and hence are not included in this database. This affects both the numerator and the denominator 
of the odds ratio that we use as our dependent variable, so it is expected to represent classical measurement error. 
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H. Impulse Response Functions

So far we have focused on a static model, equation (3). This baseline model is 
deliberately parsimonious, but it does not allow for any dynamics, nor does it dif-
ferentiate between short-run and long-run effects. Taken literally, the model would 
predict that a permanent increase in the net-of-tax rate in a state (a step function in 
the time series for the rate) would lead to an immediate and permanent increase in 
the net inflow of star scientists to the state (a step function in the time series for the 
inflow), all else equal.

However, it is unlikely that the effect takes place immediately, as it may take time 
for scientists and firms to relocate. Indeed, Figure 5 points to the fact that it may 
take some time for the effect of tax changes to manifest. Moreover, the effect may 
not last forever.

We now explore in more detail the timing of the migration responses to tax 
changes by tracing the impulse response of migration to tax changes. To do so, 
we shift from the mean-difference model considered in the previous section to a 
time-difference (e.g., first-difference) model.34

We use the direct projections estimator (Jordà 2005) to estimate the impulse 
response function of outmigration with respect to tax change treatments. Specifically, 
we estimate the model

   y o, d, t+h    −   y o, d, t−k    =   β   h  (  τ o, d, t    −   τ o, d, t−k   ) +   F t, R(o), R(d)    +   ϵ o, d, t+h    ,

where the dependent variable is the change in outmigration (log odds-ratio) from 
before the treatment, t − k, to h periods after the treatment. The term   F  t, R(o), R( j)    rep-
resents a year-specific fixed effect for each pair of regions defined by the origin 
state’s region and the destination state’s region. We estimate the regression separately 
for each horizon from h = 0 to 10. Here, k is the duration of the treatment period. 
To be consistent with our previous estimates, we condition on region-pair × year 
effects. To test for pretrends, we extend this estimator by looking at the association 
between the treatment (occurring from t − k to t) and changes in outmigration over 
intervals prior to when the treatment began (i.e., prior to t − k).

Long treatment durations are better suited for exploring the full dynamic responses 
to net-of-tax rate shocks. We focus on treatment duration of three or five years; we 
also report results for one year changes for completeness. First-differences are too 
high frequency to adequately capture the full effect of tax changes on outmigration.
Long-run effects are likely larger than short-run effects, as it takes time for scientists 
and firms to relocate (see Section IVB). In addition, short-differences, such as a 
 one-year first-difference, are more likely to reflect temporary tax changes or incre-
ments of a multiyear phased-in tax change, while long-differences are more likely 
to reflect permanent tax changes.

34 When short-run and long-run effects differ, fixed effects and first differences are not asymptotically equiv-
alent because they put different weights on observations with different values of the coefficients. In other words, 
migration in year t is a function of a distributed lag of tax rates, not just the contemporaneous tax rate; if we estimate 
an equation that includes only the contemporaneous tax rate, the asymptotic coefficient on the contemporaneous 
tax rate is related to the distributed lag coefficients in a way that depends on whether we use fixed effects or first 
differences. 
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Results for the top individual ATR and the CIT are in Figure 6. There are three 
figures in each panel, one where treatment duration is assumed to be one year, one 
where it is assumed to be three years, and one where it is assumed to be five years. 
Results for the R&D and investment credits are in online Appendix Figure 8.
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Figure 6. Impulse Response Functions

Notes: All regressions use the same sample, a balanced panel from five years before event to ten years after. Graph 
plots   β   h   from regression ln  P  odt+h    − ln  P  odt    =   β   h  (  η odt+x    −   η odt   ) +   F  odt    +   ϵ odt   , where lnP is the log odds-ratio of out-
migration and   η odt    is the destination-origin differential in the net-of-tax rate in year t, and x is 1, 3, or 5;   F  odt    is a year 
fixed effect specific to the region (o) × region (d ) pair.
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Our preferred specifications are those for three or five years. In these models, 
the years before treatment are the ones prior to t − 3 and t − 5, respectively. For 
all four tax variables, star outmigration shows no pretrends. For the individual ATR 
and CIT, outmigration begins to rise shortly after the treatment period, grows up to 
about two to three years after the end of the tax change, and then slightly declines 
through the end of the ten-year horizon. For investment tax credit, outmigration 
begins to rise shortly after the treatment period and then stabilizes. For R&D credit, 
the pattern is considerably more mixed, consistent with the weaker estimates uncov-
ered in Table 2A. In models where the treatments are defined by one-year changes, 
the estimated impulse response is generally positive, but, as expected, too noisy to 
be informative.

Focusing on the five-year tax-change models, we find that the dynamic responses 
to tax changes are not as simple as the step function effect implied by the static 
model. In particular, for the ATR, CIT, and ITC, a net-of-tax rate increase results in 
a more gradual increase, with the peak response occurring at least one or two years 
after the rate change. Also, there is some evidence that the effect, while long-lasting, 
is not permanent as we see the effect decline somewhat toward the end of the hori-
zon for all three of these taxes. This could reflect the fact that empirically tax rate 
changes in our data are not necessarily permanent; or it could reflect the fact that 
within a few years everyone who was at the margin of moving has already moved 
because of the tax change.

It is informative to consider what these dynamic results imply for the cumulative 
effect of a tax change over several subsequent years. Using the estimates underlying 
Figure 6 and online Appendix Figure 8, we can calculate the area under the impulse 
response function for posttreatment horizons to get an estimate of the cumulative 
effect through the end of the horizon window. If we cumulate the responses in 
the ATR five-year change panel in Figure 6 from t + 5 (end of treatment period) 
through t + 10, we obtain a cumulative elasticity of the stock of scientists to the  
net-of-tax rate of 6.0. In other words, these estimates imply that a permanent 1 per-
cent increase in the net-of-tax rate for personal income taking place between year t 
and t + 5 would lead to a 6.0 percent increase in the stock of scientists by the end of 
year t + 10. The cumulative effects for the CIT and ITC are smaller. For the CIT, the 
cumulative stock elasticity is about 3, and for the ITC the cumulative stock elasticity 
is a little under 5.

V. Within-Firm Evidence

Tax changes might affect firm localization through entry of new firms (either 
from births or relocation from a different state) or exit of exiting firms (either from 
deaths or relocation to a different state). For large, established firms with a presence 
in multiple states, an additional important margin of adjustment is a change in the 
spatial distribution of employees across establishments in different states. In our 
data, large patenters with star scientists in two or more states include large compa-
nies like GE, IBM, Google, and Microsoft. It is possible that changes in state taxes 
cause a shift in the relative share of scientists that the firm employs in each state.

In this section, we focus on multistate firms and study this margin of adjustment. 
Specifically, we test whether the firm-specific share of top scientists in a given state 
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changes in response to changes in state taxes. In addition to all previous controls, we 
also condition on firm fixed effects.

As a concrete example, consider a star scientist in our data named Hammam  
Elabd, employed by GE in the 1980s and 1990s. Our data allow us to follow 
Mr. Elabd over time. In the period 1983–1987, Elabd has patent applications for GE 
in New Jersey. But, in 1987, California cuts its corporate income tax, while New 
Jersey raises its corporate income tax. Possibly influenced by this change in relative 
taxes, starting in May 1988, Mr. Elabd has patent applications for GE in California. 
He continues to have patents in California until 2000.

Figure 7 shows the relationship across states between the 1980 to 2005 change 
in the state’s corporate tax rate and the change over the same period in the share of 
GE’s scientists it employs in the state. The relationship is negative, indicating that 
Mr. Elabd’s experience is hardly unique: over time GE seems to reallocate its scien-
tists toward states with lower relative business taxes.

Table 9 quantifies this geographical reallocation more systematically, using data 
for all corporate firms. The dependent variable in the regressions is a firm’s share 
of top scientists in a given state and year. The table shows the effect of taxes in a 
state on the share of top scientists employed by a given firm in that state, condition-
ing on firm fixed effects. Column 1, shown only for completeness, is for all firms. 
Column 2 is for multistate firms and is the relevant one. The results are interesting. 
We find that the share of scientists in a state is sensitive to state corporate taxes. 
For multistate firms, a 10 percent increase in the CIT net-of-tax rate results in a 
0.72 percentage point increase in the state share. ITC and R&D tax credits have 
somewhat smaller effects: 0.44 and 0.28 percentage points, respectively. While the 
effect of business taxes is both statistically and economically significant, the effect 
of personal taxes is neither.

Results in this table are to be interpreted as one of the channels through which 
state taxes affect employment. The table indicates that state corporate taxes affect 
within-firm labor demand in a state, but state personal taxes do not affect  within-firm 
labor supply to a state. In other words, conditional on having establishments in mul-
tiple states, firms shift the relative employment in response to changes in business 
tax rates toward lower-tax/higher-credit states. But, conditional on working for a 
given firm, workers are unwilling or unable to relocate in response to state personal 
income taxes.

Combined with our earlier findings in Table 2A, this indicates that an important 
channel for the documented effect of business taxes on employment is within-firm 
geographical reallocation. On the other hand, the documented effect of personal 
taxes on employment comes entirely from the effect of labor supply on entry and 
exit of single state firms.35

35 This finding is surprising. In theory, one might expect that a multistate firm’s decisions should depend on the 
cost of putting scientists in different places. A higher personal income tax raises the cost since part of the incidence 
of the higher personal tax might fall on the firm itself. If wages and productivity are not perfectly aligned within 
the firm—for example, if seniority wage profiles are not identical to productivity—then there might be rents and 
incidence is more complicated. 
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VI. Conclusions

We uncover large, stable, and precisely estimated effects of personal and corpo-
rate taxes on star scientists’ migration patterns. The long-run elasticity of mobility 
relative to taxes is 1.7 for personal income taxes, 1.8 for state corporate income 
tax, and 1.6 for the investment tax credit. In terms of stocks, our elasticities imply 
that if the net-of-tax rate increases in a state (holding other states’ rates constant), 
due to a cut in the personal income average tax rate or the corporate tax, the stock 
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Table 9—Effect of Taxes on Share of Scientists in State

All companies Multistate

(1) (2)

ATR, 99th percentile (1 − ATR) −0.0073 0.0013
(0.0109) (0.0103)

State CIT rate (1 − CIT) 0.0576 0.0724  
(0.0264) (0.0318)

State ITC (1 + ITC) 0.0470 0.0443  
(0.0196) (0.0199)

R&D credit (1 + cred) 0.0301 0.0275
(0.0075) (0.0080)

Observations 8,222,730 1,592,781

State fixed effects Yes Yes
Firm fixed effects Yes Yes

Notes: Level of observation is firm-state-year. Dependent variable is the share of the firm’s 
US-based star scientists who are in state s in year t. Tax variables are relevant tax rate in state 
s in year t. Sample in column 1 includes all private sector firms. Sample in column 2 includes 
only private sector firms with presence in multiple states. Standard errors in parentheses clus-
tering by origin-state × year. All regressions include year fixed effects.
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of  scientists in the state will rise by 0.4 or 0.42 percent per year for as long as the 
increase in the net-of-tax rate differential lasts.

These elasticities are economically large and significantly larger than the conven-
tional labor supply elasticity. The effect on mobility is small in the short run, and 
tends to grow over time.

While we can’t rule out that our estimates are biased by unobserved demand or 
supply shocks, a number of additional pieces of evidence lend credibility to a causal 
interpretation of our estimates. First, we find no evidence of pretrends: changes in 
mobility follow changes in taxes and do not to precede them. Second, the effect of 
corporate income taxes is concentrated among private sector inventors: no effect is 
found on academic and government researchers. Third, corporate taxes only matter 
in states where the wage bill enters the state’s formula for apportioning multistate 
income. No effect is found in states that apportion income based only on sales (in 
which case labor’s location has little or no effect on the tax bill). We also find no 
evidence that changes in state taxes are correlated with changes in the fortunes of 
local firms in the innovation sector in the years leading up to the tax change. Finally, 
within-firm evidence suggests that multistate firms adjust the share of employment 
in each state as a function of business taxes.

Overall, we conclude that state taxes have significant effect on the geographical 
location of star scientists and possibly other highly skilled workers. While there are 
many other factors that drive when innovative individual and innovative companies 
decide to locate, there are enough firms and workers on the margin that relative taxes 
matter.
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