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NOTES AND COMMENTS

THE OPTIMAL INCOME TAXATION OF COUPLES

BY HENRIK JACOBSEN KLEVEN, CLAUS THUSTRUP KREINER, AND
EMMANUEL SAEZ1

This paper analyzes the general nonlinear optimal income tax for couples, a multi-
dimensional screening problem. Each couple consists of a primary earner who always
participates in the labor market, but makes an hours-of-work choice, and a secondary
earner who chooses whether or not to work. If second-earner participation is a signal of
the couple being better (worse) off, we prove that optimal tax schemes display a positive
tax (subsidy) on secondary earnings and that the tax (subsidy) on secondary earnings
decreases with primary earnings and converges to zero asymptotically. We present cali-
brated microsimulations for the United Kingdom showing that decreasing tax rates on
secondary earnings is quantitatively significant and consistent with actual income tax
and transfer programs.

KEYWORDS: Optimal income tax, multidimensional screening.

1. INTRODUCTION

THIS PAPER EXPLORES the optimal income taxation of couples. Each couple is
modelled as a unitary agent supplying labor along two dimensions: the labor
supply of a primary earner and the labor supply of a secondary earner. Primary
earners differ in ability and make a continuous labor supply decision as in the
Mirrlees (1971) model. Secondary earners differ in opportunity costs of work
and make a binary labor supply decision (work or not work). We consider a
fully general nonlinear tax system allowing us to study the central question of
couple taxation: how should the tax rate on one individual vary with the earn-
ings of the spouse. This creates a multidimensional screening problem. We
show that if second-earner labor force participation is a signal of the couple
being better off (as when second-earner entry reflects high labor market op-
portunities), optimal tax schemes display positive tax rates on secondary earn-
ings along with negative jointness whereby the tax rate on one person decreases
with the earnings of the spouse. Conversely, if second-earner participation is a
signal of the couple being worse off (as when second-earner entry reflects low
home production ability), we obtain a negative tax rate on the secondary earner
along with positive jointness: the second-earner subsidy is being phased out with
primary earnings. These results imply that, in either case, the tax distortion on
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ence participants for very helpful comments and discussions. Financial support from NSF Grant
SES-0134946 and an Economic Policy Research Network (EPRN) Grant is gratefully acknowl-
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the secondary earner is declining in primary earnings, which is therefore a gen-
eral property of an optimum. We also prove that the second-earner tax distor-
tion tends to zero asymptotically as primary earnings become large. Although
this result may seem reminiscent of the classic no-distortion-at-the-top result,
our result rests on a completely different reasoning and proof.

Previous work on couple taxation assumed separability in the tax function
and, hence, could not address the optimal form of jointness, which we view as
central to the optimal couple tax problem.2 The separability assumption also
sidesteps the complexities associated with multidimensional screening. In fact,
very few studies in the optimal tax literature have attempted to deal with mul-
tidimensional screening problems.3 The nonlinear pricing literature in indus-
trial organization has analyzed such problems extensively. A central complica-
tion of multidimensional screening problems is that first-order conditions are
often not sufficient to characterize the optimal solution. The reason is that
solutions usually display “bunching” at the bottom (Armstrong (1996), Ro-
chet and Choné (1998)), whereby agents with different types are making the
same choices. Our framework with a binary labor supply outcome for the sec-
ondary earner along with continuous earnings for the primary earner avoids
the bunching complexities and offers a simple understanding of the shape of
optimal taxes based on graphical exposition.

Our key results are obtained under a number of strong simplifying assump-
tions:4 (i) We adopt the unitary model of family decision making. (ii) We as-
sume that the government knows a priori the identity of the primary and sec-
ondary earner in the couple. (iii) We consider only couples and do not model
the marriage decision. (iv) We assume uncorrelated abilities between spouses.
(v) We assume no income effects on labor supply and separability in the disutil-
ity of working for the two members of the household, implying that there is no
jointness in the family utility function. Instead, jointness in our model arises
solely because the social welfare function depends on family utilities rather
than individual utilities. Our assumptions allow us to zoom in on the role of
equity concerns for the jointness of the tax system.

2Boskin and Sheshinski (1983) considered linear taxation of couples, allowing for different
marginal tax rates on husband and wife. The linearity assumption effectively implies separa-
ble and hence individual-based (albeit gender-specific) tax treatment. More recently, Schroyen
(2003) extended the Boskin–Sheshinski framework to the case of nonlinear taxation but kept the
assumption of separability in the tax treatment.

3Mirrlees (1976, 1986) set out a general framework to study such problems and derived first-
order optimality conditions. More recently, Cremer, Pestieau, and Rochet (2001) revisited the
issue of commodity versus income taxation in a multidimensional screening model assuming a
discrete number of types. Brett (2006) and Cremer, Lozachmeur, and Pestieau (2007) consid-
ered the issue of couple taxation in discrete-type models. They showed that, in general, incentive
compatibility constraints bind in complex ways, making it difficult to obtain general properties.

4We refer to Kleven, Kreiner, and Saez (2006) for a discussion of robustness and generaliza-
tions.
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Section 2 sets out our model and Section 3 derives our theoretical results.
Section 4 presents a numerically calibrated illustrative simulation based on
U.K. micro data. Some proofs are presented in Appendices A and B, while
some supplemental material is available on the journal’s website (Kleven,
Kreiner, and Saez (2009)).

2. THE MODEL

2.1. Family Labor Supply Choice

We consider a population of couples, the size of which is normalized to 1.
In each couple, there is a primary earner who always participates in the labor
market and makes a choice about the size of labor earnings z. The primary
earner is characterized by a scalar ability parameter n distributed on (n� n̄) in
the population. The cost of earning z for a primary earner with ability n is given
by n · h(z/n), where h(·) is an increasing and convex function of class C2 and
normalized so that h(0)= 0 and h′(1)= 1. Secondary earners choose whether
or not to participate in the labor market, l= 0�1, but hours worked conditional
on working are fixed. Their labor income is given by w · l, where w is a uniform
wage rate, and they face a fixed cost of participation q, which is heterogeneous
across the secondary earners.

The government cannot observe n and q, and redistributes based on ob-
served earnings using a nonlinear tax T(z�wl). Because l is binary and w is
uniform, this tax system simplifies to a pair of schedules, T0(z) and T1(z), de-
pending on whether the spouse works or not.5

The tax system is separable iff T0 and T1 differ by a constant. Net-of-tax
income for a couple with earnings (z�wl) is given by c = z+w · l− Tl(z).

We consider two sources of heterogeneity across secondary earners, differ-
ences in market opportunities and differences in home production abilities, as
reflected in the utility function

u(c� z� l)= c− n · h
(
z

n

)
− qw · l+ qh · (1 − l)�(1)

where qw +qh ≡ q is the total cost of second-earner participation, the sum of a
direct work cost qw and an opportunity cost of lost home production qh. Het-

5Like the rest of the literature, we assume that the government observes the identity of the
primary and secondary earner in each couple, and is allowed to use this information in the tax sys-
tem. If identity could not be used in the calculation of taxes (a so-called anonymous tax system),
a symmetry constraint T(z�w)= T(w�z) would have to be added to the problem. However, this
symmetry constraint can be ignored if the secondary earner is always the lower-earnings spouse in
the couple. In the context of our simple model (wherew is uniform), this assumption is equivalent
to w< z(n). When identity is perfectly aligned with earnings, an earnings-based and anonymous
tax can be made dependent on identity de facto without being identity-specific de jure. This is
important in countries where an identity-specific (e.g., gender-specific) tax system would be un-
constitutional.
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erogeneity in qw creates differences in household utility across couples with
l = 1 (heterogeneity in market opportunities), whereas heterogeneity in qh

generates differences in household utility across couples with l = 0 (hetero-
geneity in home production abilities).

As we shall see, the two types of heterogeneity pull optimal redistribution
policy in opposite directions. To isolate the impact of each type of heterogene-
ity, we consider them in turn. In the work cost model (q = qw > 0, qh = 0),
at a given primary earner ability n, two-earner couples will be those with low
work costs and hence they will be better off than one-earner couples. This cre-
ates a motive for the government to tax the income of the secondary earner so
as to redistribute from two-earner to one-earner couples. By contrast, in the
home production model (qw = 0, q= qh > 0), two-earner couples will be those
with low home production abilities and therefore they will be worse off than
one-earner couples, creating the reverse redistributive motive.

The work cost model is more consonant with the tradition in applied wel-
fare and poverty measurement, which assumes that secondary earnings con-
tribute positively to family well-being, and with the underlying notion in the
existing optimal tax literature that higher income is a signal of higher well-
being.6 On the other hand, the existing literature did not consider two-person
households where home production (including child-bearing and child-caring)
is more important. We therefore analyze both models symmetrically. The on-
line supplemental material has a discussion of the general case with both types
of heterogeneity.

If T0 and T1 are differentiable, the first-order condition for z (conditional on
l = 0�1) is h′(zl/n) = 1 − T ′

l (z).
7 In the case of no tax distortion, T ′

l (z) = 0,
our normalization h′(1) = 1 implies z = n. Hence, it is natural to interpret n
as potential earnings.8 Positive marginal tax rates depress actual earnings z
below potential earnings n. If the tax system is nonseparable such that T ′

0 �= T ′
1,

primary earnings z depend on the labor force participation decision l of the
spouse. We denote by zl the optimal choice of z at a given l. We define the

6It is this notion that drives the result in the Mirrlees model that optimal marginal tax rates
are positive. If differences in market earnings were driven by home production ability instead of
market ability, the Mirrlees model would generate negative optimal tax rates as high-earnings
individuals are those with low ability and utility. Ramey (2008) showed that primary earners pro-
vide significant home production but the main question is whether this effect is strong enough to
make the poor better off than the rich, and thereby reverse the traditional results.

7If the tax system is not differentiable, we can still define the implicit marginal tax rate T ′
l (with

slight abuse of notation) as 1 − h′(zl/n), where zl is the utility maximizing choice of earnings
conditional on l.

8Typically, economists consider models where n is a wage rate and utility is specified as u =
c − h(z/n), leading to a first-order condition n · (1 − T ′(z))= h′(z/n). Our results carry over to
this case but n would no longer reflect potential earnings and the interpretation of optimal tax
formulas would be less transparent (Saez (2001)).



OPTIMAL INCOME TAXATION OF COUPLES 541

elasticity of primary earnings with respect to the net-of-tax rate 1 − T ′
l as

εl ≡ 1 − T ′
l

zl

∂zl

∂(1 − T ′
l )

= h′(zl/n)
(zl/n)h′′(zl/n)

�

Under separable taxation where T ′
0 = T ′

1, we have z0 = z1 and ε0 = ε1.
Secondary earners work if the utility from participation is greater than or

equal to the utility from nonparticipation. Let us denote by

Vl(n)= zl − Tl(zl)− nh
(
zl

n

)
+w · l(2)

the indirect utility of the couple (exclusive of the fixed cost q) at a given l.
Differentiating with respect to n (denoted by an upper dot from now on) and
using the envelope theorem, we obtain

V̇l(n)= −h
(
zl

n

)
+ zl

n
· h′

(
zl

n

)
≥ 0�(3)

The inequality follows from the fact that x→ −h(x)+ x · h′(x) is increasing
(as h′′ > 0) and null at x= 0. The inequality is strict if zl > 0, that is, if T ′

l < 1.
The participation constraint for secondary earners is given by

q≤ V1(n)− V0(n)≡ q̄(n)�(4)

where q̄(n) is the net gain from working exclusive of the fixed cost q. For fam-
ilies with a fixed cost below (above) the threshold value q̄(n), the secondary
earner works (does not work).

The couple characteristics (n�q) are distributed according to a continuous
density distribution defined over [n� n̄] × [0�∞). We denote by P(q|n) the cu-
mulative distribution function of q conditional on n, by p(q|n) the density
function of q conditional on n, and by f (n) the unconditional density of n.
The probability of labor force participation for the secondary earner at a given
ability level n of the primary earner is P(q̄|n). We define the participation elas-
ticity with respect to the net gain from working q̄ as η= q̄ ·p(q̄|n)/P(q̄|n).

Sincew is the gross gain from working, and q̄ has been defined as the (money
metric) net utility gain from working, we can define the tax rate on secondary
earnings as τ = (w − q̄)/w. Notice that if taxation is separate so that T ′

0 = T ′
1

and z0 = z1, we have τ = (T1 − T0)/w. If taxation is nonseparate, then T1 − T0

reflects the total tax change for the family when the secondary earner starts
working and the primary earner makes an associated earnings adjustment,
whereas w− q̄ reflects the tax burden on second-earner participation per se.

The central optimal couple tax question we want to tackle is whether the
tax rate on one person should depend on the earnings of the spouse. We may
define the possible forms of couple taxation as follows:
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DEFINITION 1: At any point n, we have either (i) positive jointness, T ′
1 > T

′
0

and τ̇ > 0, (ii) separability, T ′
0 = T ′

1 and τ̇ = 0, or (iii) negative jointness, T ′
1 < T

′
0

and τ̇ < 0.9

Finally, notice that double-deviation issues are taken care of in our model,
because we consider earnings at a given n and allow z to adapt optimally when l
changes. If the secondary earner starts working, optimal primary earnings shift
from z0(n) to z1(n) but the key first-order condition (3) continues to apply. As
in the Mirrlees model, a given path for (z0(n)� z1(n)) can be implemented via
a truthful mechanism or, equivalently, by a nonlinear tax system if and only
if z0(n) and z1(n) are nonnegative and nondecreasing in n (a formal proof is
provided in the online supplemental material).

2.2. Government Objective

The government sets T0(z) and T1(z) to maximize social welfare

W =
∫ n̄

n=n

∫ ∞

q=0
Ψ(Vl(n)− qw · l+ qh · (1 − l))p(q|n)f (n)dqdn�(5)

where Ψ(·) is an increasing and concave transformation (representing either
the government redistributive preferences or individual concave utilities) sub-
ject to the budget constraint∫ n̄

n=n

∫ ∞

q=0
Tl(zl)p(q|n)f (n)dqdn≥ 0(6)

and subject to V̇0(n) and V̇1(n) in equation (3).
Let λ > 0 be the multiplier associated with the budget constraint (6).

The government’s redistributive tastes may be represented by social mar-
ginal welfare weights on different couples. We denote by gl(n) the (aver-
age) social marginal welfare weight for couples with primary-earner abil-
ity n and secondary-earner participation status l. For the work cost model
(qw > 0, qh = 0), we have g1(n) = ∫ q̄

0 Ψ
′(V1(n) − qw)p(q|n)dq/(P(q̄|n) · λ)

and g0(n) = Ψ ′(V0(n))/λ. For the home production model (qw = 0, qh > 0),
we have g1(n)=Ψ ′(V1(n))/λ and g0(n)= ∫ ∞

q̄
Ψ ′(V0(n)+ qh)p(q|n)dq/((1 −

P(q̄|n)) · λ).
Optimal redistribution depends crucially on the evolution of weights g0(n)

and g1(n) through the ability distribution. In particular, we will show that the

9Using equations (2)–(4), it is easy to prove that sign(T ′
1 −T ′

0)= sign(τ̇). This is simply another
way of stating the theorem of equality of cross-partial derivatives. Notice that T ′

0 and T ′
1 are

evaluated at the same ability level n but not at the same earnings level when T ′
0 �= T ′

1 because this
implies z0(n) �= z1(n).
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optimal tax scheme depends on properties of g0(n)− g1(n), which reflects the
preferences for redistribution between one- and two-earner couples. At this
stage, notice that the sign of g0(n)− g1(n) depends on whether second-earner
heterogeneity is driven by work costs or by home production ability. In the
work cost model, we have V1(n) − qw > V0(n), which implies (as Ψ is con-
cave) that g0(n)− g1(n) > 0. By contrast, in the home production model, we
have V0(n)+qh > V1(n) and hence g0(n)− g1(n) < 0. As we shall see, whether
g0(n) − g1(n) is positive or negative determines whether the optimal tax on
secondary earners is positive or negative.

3. CHARACTERIZATION OF THE OPTIMAL INCOME TAX SCHEDULE

3.1. Optimal Tax Formulas and Their Relation to Mirlees (1971)

The simple model described above makes it possible to derive explicit opti-
mal tax formulas as in the individualistic Mirrlees (1971) model. We introduce
the following assumption:

ASSUMPTION 1: The function x−→ (1 − h′(x))/(x · h′′(x)) is decreasing.

Assumption 1 ensures that the marginal deadweight loss ε · T ′
1−T ′ = 1−h′(z/n)

(z/n)h′′(z/n)
is increasing in T ′. When Assumption 1 fails, ε falls so quickly with T ′ that
the marginal deadweight loss falls with T ′, and such a point can never be op-
timum.10 Assumption 1 is satisfied, for example, for isoelastic utilities h(x) =
x1+1/ε/(1 + 1/ε) or any utility function such that the elasticity ε= h′/(x · h′′) is
decreasing in x. We prove the following proposition in Appendix A:

PROPOSITION 1: Under Assumption 1, an optimal solution exists such that
(z0� z1�T

′
0�T

′
1) is continuous in n and satisfies

T ′
0

1 − T ′
0

= 1
ε0

· 1
nf (n)(1 − P(q̄|n))(7)

·
∫ n̄

n

{
(1 − g0)(1 − P(q̄|n′))+ [T1 − T0]p(q̄|n′)

}
f (n′)dn′�

T ′
1

1 − T ′
1

= 1
ε1

· 1
nf (n)P(q̄|n)(8)

·
∫ n̄

n

{(1 − g1)P(q̄|n′)− [T1 − T0]p(q̄|n′)}f (n′)dn′�

10Mathematically, Assumption 1 is required to ensure that the first-order condition of the
government problem generates a maximum (instead of a minimum); see Appendix A.
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where all the terms outside the integrals are evaluated at ability level n and all
the terms inside the integrals are evaluated at n′. These conditions apply at any
point n where there is no bunching, that is, where zl(n) is strictly increasing in n.
If the conditions generate segments over which z0(n) or z1(n) are decreasing, then
there is bunching and z0(n) or z1(n) are constant over a segment.

Kleven, Kreiner, and Saez (2006) presented a detailed discussion of these
formulas. Let us here remark on just two aspects. First, the (weighted) average
marginal tax rate faced by primary earners in one- and two-earner couples
equals

(1 − P(q̄|n)) · ε0 · T ′
0

1 − T ′
0

+ P(q̄|n) · ε1 · T ′
1

1 − T ′
1

(9)

= 1
nf(n)

·
∫ n̄

n

(1 − ḡ(n′))f (n′)dn′�

where ḡ(n′)= (1−P(q̄|n′))g0(n
′)+P(q̄|n′)g1(n

′) is the average social marginal
welfare weight for couples with ability n′. This result is identical to the Mirrlees
formula (without income effects), implying that redistribution across couples
with different primary earners follows the standard logic in the literature. The
introduction of a secondary earner in the household creates a potential dif-
ference in the marginal tax rates faced by primary earners with working and
nonworking spouses, which we explore in detail below.

Second, the famous results that optimal marginal tax rates are zero at the
bottom and at the top carry over to the couple model from the transversality
conditions (see Appendix A).11

3.2. Asymptotic Properties of the Optimal Schedule

Let the ability distribution of primary earners f (n) have an infinite tail
(n̄ = ∞). As top tails of income distributions are well approximated by the
Pareto distribution (Saez (2001)), we assume that f (n) has a Pareto tail with
parameter a > 1 (f (n)= C/n1+a). We also assume that the distribution of work
costs P(q|n) converges to P∞(q). We can then show the next proposition:

PROPOSITION 2: Suppose T1 − T0, T ′
0, T ′

1, and q̄ converge to 
T∞, T ′∞
0 < 1,

T ′∞
1 < 1, and q̄∞ as n → ∞. Then (i) g0 and g1 converge to the same value

g∞ ≥ 0, (ii) the second-earner tax converges to zero, 
T∞ = τ∞ = 0, and (iii) the
marginal tax rates on primary earners converge to T ′∞

0 = T ′∞
1 = (1 − g∞)/(1 −

g∞ + a · ε∞) > 0, where ε∞ is the asymptotic elasticity.

11As is well known, these results have limited relevance because (i) the bottom result does not
apply when there is an atom of nonworkers, and (ii) the top rate drops to zero only for the single
topmost earner (Saez (2001)).
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PROOF: V0(n) and V1(n) are increasing in n without bound (as T ′
0�T

′
1 con-

verge to values below 1). As Ψ ′ > 0 is decreasing, it must converge to ψ̄ ≥ 0.
Therefore, in the work cost model, g0 = Ψ ′(V0)/λ and g1 = ∫ q̄

0 Ψ
′(V0 + q̄ −

q)p(q|n)dq/[λ · P(q̄|n)] both converge to g∞ = ψ̄/λ ≥ 0.12 Because T1 − T0

converges, it must be the case that T ′∞
0 = T ′∞

1 = T ′∞. Hence, as h′(zl/n) =
1 − T ′

l , zl/n converge for both l = 0�1 and εl = h′(zl/n)/(h′′(zl/n)zl/n) also
converges to ε∞.

Because P(·|n) and q̄ converge, P(q̄|n) and p(q̄|n) converge to P∞(q̄∞)
and p∞(q̄∞). The Pareto assumption implies that (1 − F(n))/(nf (n)) = 1/a
for large n. Taking the limit of (7) and (8) as n → ∞, we obtain, respec-
tively, T ′∞/(1−T ′∞)= (1/ε∞)(1/a)[1−g∞ +
T∞p∞/(1−P∞)] and T ′∞/(1−
T ′∞)= (1/ε∞)(1/a)[1−g∞ −
T∞p∞/(1−P∞)]. Hence, we must have 
T∞ =
0, and the formula for T ′∞ then follows. Q.E.D.

It is quite striking that the spouses of very high earners should be exempted
from taxation as n tends to infinity, even in the case where the government tries
to extract as much tax revenue as possible from high-income couples (g∞ = 0).
Although this result may seem similar to the classic no-distortion-at-the-top
result reviewed above, the logic behind our result is completely different. In
fact, in the present case with an infinite tail for n, Proposition 2 shows that the
marginal tax rate on primary earners does not converge to zero. Instead, the
marginal tax rates converges to the positive constant (1 −g∞)/(1 −g∞ +aε∞),
exactly as in the individualistic Mirrlees model when n→ ∞ (Saez (2001)).13

To grasp the intuition behind the zero second-earner tax at the top, consider
a situation where T1 − T0 does not converge to zero but instead converges to

T∞ > 0 as illustrated on Figure 1. Consider then a reform that increases the
tax on one-earner couples and decreases the tax on two-earner couples above
some high n, and in such a way that the net mechanical effect on government
revenue is zero.14 These tax burden changes are achieved by increasing the
marginal tax rate for one-earner couples in a small band (n�n+ dn) and low-
ering the marginal tax rate for two-earner couples in this band.

What are the welfare effects of the reform? First, there are direct welfare
effects as the reform redistributes income from one-earner couples (who lose
dW0) to two-earner couples (who gain dW1). However, because g0 and g1 have
converged to g∞, these direct welfare effects cancel out. Second, there are
fiscal effects due to earnings responses of primary earners in the small band
where marginal tax rates have been changed (dH0 and dH1). Because T1 − T0

has converged to a constant for large n, the marginal tax rates on one- and

12In the home production model, we also have ψ̄/λ≤ g0 < g1 =Ψ ′(V1)/λ→ ψ̄/λ.
13Conversely, in the case of a bounded ability distribution, the top marginal tax rate on primary

earnings would be zero, but then the tax on the secondary earner would be positive.
14Because q̄ and hence P(q̄|n) have converged, revenue neutrality requires that the tax changes

on one- and two-earner couples are dT0 = dT/(1 − P(q̄)) and dT1 = −dT/P(q̄), respectively.
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FIGURE 1.—Zero second-earner tax at the top.

two-earner couples are identical, T ′∞
0 = T ′∞

1 , which implies z0/n = z1/n and
hence identical primary-earner elasticities ε0 = ε1. Thus, the negative fiscal
effect dH0 exactly offsets the positive fiscal effect dH1. Third, there is a par-
ticipation effect as some secondary earners are induced to join the labor force
in response to the lower T1 − T0. Because T1 − T0 is initially positive, this re-
sponse generates a positive fiscal effect, dP > 0. Since all other effects were
zero, dP > 0 is the net total welfare effect of the reform, implying that the
original schedule with 
T∞ > 0 cannot be optimal.15

3.3. Optimal Jointness

To analyze the optimal form of jointness, we introduce two additional as-
sumptions.

ASSUMPTION 2: The function V −→Ψ ′(V ) is strictly convex.

This is satisfied for standard CRRA or CARA social welfare functions. In
consumer theory, convexity of marginal utility of consumption is a common

15The opposite situation with 
T∞ < 0 cannot be optimal either, because the reverse reform
would then improve welfare.
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assumption, because it captures the notion of prudence and generates precau-
tionary savings. As shown below, this assumption captures the central idea that
secondary earnings matter less and less for social marginal welfare as primary
earnings increase.

ASSUMPTION 3: q and n are independently distributed.

Abstracting from correlation in spouse characteristics (assortative match-
ing) allows us to isolate the implications of the spousal interaction occurring
through the social welfare function. In Section 4, we examine numerically how
assortative matching affects our results.

To establish an intuition on the optimal form of jointness, let us consider
a tax reform introducing a little bit of jointness around the optimal separable
tax system. For the work cost model, we will argue that the optimal separable
schedule can be improved by introducing a little bit of negative jointness.16

A separable schedule is one where T ′
0 = T ′

1, implying that T1 − T0, q̄, and
P(q̄) are constant in n. In the work cost model, we would have T1 −T0 > 0 due
to the property g0 − g1 > 0. As discussed above, this property follows from the
fact that, at a given n, being a two-earner couple is a signal of low work costs
and being better off than one-earner couples. Moreover, under Assumptions 2
and 3, and starting from a separable tax system, g0 − g1 is decreasing in n.
Intuitively, as primary-earner ability increases, the contribution of secondary
earnings to couple utility is declining in relative terms, and therefore the value
of redistribution from two- to one-earner couples is declining. Formally, under
separable taxation and Assumption 3, we have that q̄=w−(T1 −T0), P(q̄|n)=
P(q̄), and p(q|n)= p(q) are constant in n. Then, from the definitions of g0(n)
and g1(n), we obtain

d[g0(n)− g1(n)]
dn

=
[
Ψ ′′(V0)

λ
−

∫ q̄

0
Ψ ′′(V0 + q̄− q)p(q)dq

λ · P(q̄)

]
· V̇0 < 0�(10)

where we have used V1 = V0 + q̄ from equation (4). Since Ψ ′′(·) is increasing
(by Assumption 2) and V0 is increasing in n, it follows that the expression in
(10) is negative.

Now, consider a tax reform introducing a little bit of negative jointness as
shown in Figure 2. The tax reform has two components. Above ability level n,
we increase the tax on one-earner couples and decrease the tax on two-earner
couples. Below ability level n, we decrease the tax on one-earner couples and
increase the tax on two-earner couples. These tax burden changes are associ-
ated with changes in the marginal tax rates on primary earners around n.

16In the home production model, reversed arguments show that some positive jointness is
welfare improving.
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FIGURE 2.—Desirability of negative jointness.

To ensure that the reform is revenue-neutral (absent any behavioral re-
sponses), let the size of the tax change on each segment be inversely pro-
portional to the number of couples on the segment. That is, above n, the tax
change for one-earner couples is dTa0 = dT/[(1 − F(n))(1 − P(q̄))] and the
tax change for two-earner couples is dTa1 = −dT/[(1 − F(n))P(q̄)]. Below n,
the tax change for one-earner couples is dTb0 = dT/[F(n)(1 − P(q̄))] and the
tax change for two-earner couples is dTb1 = dT/[F(n)P(q̄)]. There are three
effects.

First, there is a direct welfare effect created by the redistribution across cou-
ples at each n′:

dW = dT

F(n)
·
∫ n

n

[g0(n
′)− g1(n

′)]f (n′)dn′(11)

− dT

1 − F(n) ·
∫ n̄

n

[g0(n
′)− g1(n

′)]f (n′)dn′ > 0�

The first term reflects the gain created at the bottom by redistributing from
two-earner to one-earner couples, and the second term reflects the loss created
at the top from the opposite redistribution. Equation (10) implies that the gain
dominates the loss at the top, so that dW > 0.
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Second, there are fiscal effects associated with earnings responses by pri-
mary earners induced by the changes in T ′

0 and T ′
1 around n. Since the reform

increases the marginal tax rate for one-earner couples around n and reduces it
for two-earner couples, the earnings responses are opposite. As we start from
separable taxation, T ′

0 = T ′
1, and hence identical primary-earner elasticities,

ε0 = ε1, the fiscal effects of primary earner responses cancel out exactly.
Third, the reform creates participation responses by secondary earners.

Above n, nonworking spouses will be induced to join the labor force. Below
n, working spouses have an incentive to drop out. Because spouse characteris-
tics q and n are independent, and since we start from a separable tax system,
the participation elasticity η= q̄ ·p(q̄)/P(q̄) and T1 −T0 are initially constant.
Therefore, the fiscal implications of these responses also cancel out exactly.

Therefore, dW > 0 is the net total welfare effect of the reform. Hence, under
Assumptions 1–3, introducing a little bit of negative jointness increases welfare.
This perturbation argument suggests that, for the work cost model, the opti-
mal incentive scheme will be associated with negative jointness, a point we will
prove formally after introducing a final technical assumption:

ASSUMPTION 4: The function x−→ x ·p(w−x)/[P(w−x) · (1−P(w−x))]
is increasing and p(q)/P(q)≤ P(q)/ ∫ q

0 P(q
′)dq′ for all q.

This assumption is satisfied for isoelastic work cost distributions, P(q) =
(q/qmax)

η, where the participation elasticity of secondary earners is constant
and equal to η.17

PROPOSITION 3: Under Assumptions 1–4 and if the optimal solution is not
associated with bunching, the tax system is characterized by the following models:

Work Cost Model: 1a. Positive tax on secondary-earner income, τ > 0 for all
n ∈ [n� n̄]. 1b. Negative jointness, T ′

1 ≤ T ′
0 and τ̇ ≤ 0 for all n ∈ [n� n̄].

Home Production Model: 2a. Negative tax on secondary-earner income, τ < 0
for all n ∈ [n� n̄]. 2b. Positive jointness, T ′

1 ≥ T ′
0 and τ̇ ≥ 0 for all n ∈ [n� n̄].

PROOF: We consider the work cost model.18 Suppose by contradiction that
T ′

1 > T
′
0 for some n. Then, because T ′

0 and T ′
1 are continuous in n and because

T ′
1 = T ′

0 at the top and bottom skills, there exists an interval (na�nb) where
T ′

1 > T
′
0 and where T ′

1 = T ′
0 at the end points na and nb. This implies that z1 < z0

17Assumption 4 can be seen as a counterpart to Assumption 1 for the participation margin. It
ensures that the participation response does not decrease too fast with the tax rate. It was not
needed for the small reform argument, because in that case the efficiency effects from participa-
tion responses cancel out to the first order.

18Results 2a and 2b may be established by reversing all inequalities in the proof below.
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on (na�nb) with equality at the end points. Assumption 1 implies

ε1T
′
1/(1 − T ′

1)=
(

1 − h′
(
z1

n

))/((
z0

n

)
h′′

(
z1

n

))

>

(
1 − h′

(
z0

n

))/((
z1

n

)
h′′

(
z0

n

))

= ε0T
′
0/(1 − T ′

0)

on (na�nb). Then, because of our no bunching assumption, (7) and (8) imply

Ω0(n)≡ 1
1 − P

∫ n̄

n

[(1 − g0)(1 − P)+
T ·p]f (n′)dn′

<
1
P

∫ n̄

n

[(1 − g1)P −
T ·p]f (n′)dn′ ≡Ω1(n)

on (na�nb) with equality at the end points. This implies that the derivatives of
the above expressions with respect to n, at the end points, obey the inequalities
Ω̇0(na) ≤ Ω̇1(na) and Ω̇0(nb) ≥ Ω̇1(nb). At the end points, we have T ′

1 = T ′
0,

z0 = z1, and V̇0 = V̇1, which implies ˙̄q= 0 and Ṗ = 0. Hence, the inequalities in
derivatives can be written as

1 − g0 +
T ·p/(1 − P)
{≥ 1 − g1 −
T ·p/P at na,

≤ 1 − g1 −
T ·p/P at nb.

Combining these inequalities, we obtain


T ·p
P(1 − P)

∣∣∣∣
na

≥ g0(na)− g1(na) > g0(nb)− g1(nb)≥ 
T ·p
P(1 − P)

∣∣∣∣
nb

�

From our small reform argument, the middle inequality is intuitive and we
prove it formally in Appendix B. Using that q̄ = w − 
T at na and nb, along
with the first part of Assumption 4, we obtain 
T(na) > 
T(nb). However,
given T ′

1 > T
′
0 and hence z1 < z0, we have ˙̄q < 0 on the interval (na�nb). This

implies q̄(na)≥ q̄(nb) and thus 
T(na)≤ 
T(nb). This generates a contradic-
tion, which proves that T ′

1 ≤ T ′
0 for all n.

Property 1a follows easily from 1b. Since we now have T ′
1 ≤ T ′

0 on (n� n̄) with
equality at the end points, we obtain Ω0(n) ≥ Ω1(n) on (n� n̄) with equality
at the end points. Then we have that Ω̇0(n̄) ≤ Ω̇1(n̄), which implies 1 − g0 +

T · p/(1 − P)≥ 1 − g1 − 
T · p/P at n̄. Because g0(n̄)− g1(n̄) > 0, we have

T(n̄) > 0. Finally, T ′

1 ≤ T ′
0 and hence z1 ≥ z0 implies ˙̄q = V̇1 − V̇0 ≥ 0 from

equation (3). Hence, τ(n) = (w − q̄(n))/w ≥ (w − q̄(n̄))/w = 
T(n̄)/w > 0
for all n, where the last equality follows from T ′

1 = T ′
0 = 0 at n̄. Q.E.D.
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We may summarize our findings as follows. In the work cost model, second-
earner participation is a signal of low work costs and hence being better off
than one-earner couples. This implies g0(n) > g1(n), which makes it optimal
to tax secondary earnings, τ > 0. In the home production model, second-earner
participation is a signal of low ability in home production and hence being
worse off than one-earner couples. In this model, it is therefore optimal to
subsidize secondary earnings, τ < 0.19

In either model, the redistribution between one- and two-earner couples gives
rise to a distortion in the entry–exit decision of secondary earners, creating
an equity–efficiency trade-off. The size of the efficiency cost does not depend
on the ability of the primary earner, because spousal characteristics q and n
are independently distributed. An increase in n therefore influences the op-
timal second-earner distortion only through its impact on the equity gain as
reflected by g0(n)− g1(n). Because the contribution of the secondary earner
to couple utility is declining in relative terms, the value of redistribution be-
tween one- and two-earner couples is declining in n, that is, g0(n) − g1(n)
is decreasing in n. Therefore, the second-earner distortion is declining with
primary earnings. As shown in Proposition 2, if the ability distribution of pri-
mary earners is unbounded, the secondary-earner distortion tends to zero at
the top.20

Instead of working with a social welfare function Ψ(·), if we assume exoge-
nous Pareto weights (λ0(n)�λ1(n)), then the social marginal welfare weights
g0(n) = λ0(n)/λ and g1 = λ1(n)/λ would be fixed a priori. Optimal tax for-
mulas (7) and (8) would carry over. Positive versus negative second-earner tax
rates would depend on the sign of λ0(n) − λ1(n), and positive versus nega-
tive jointness would depend on the profile of λ0(n)− λ1(n) with respect to n.
The asymptotic zero tax result would be true iff λ0(n)− λ1(n)→ 0 as n→ ∞.
Hence, all results would depend on the assumptions made on the exogenous
Pareto weights.

Unlike our reform argument, the negative jointness result in Proposition 3
relies on an assumption of no bunching. As we discuss in the online supplemen-
tal material, when redistributive tastes are weak, the optimal solution is close
to the no-tax situation and therefore should display no bunching.21 For strong
redistributive tastes, our numerical simulations show that there is no bunching
in a wide set of cases.

19In a more general model with both costs of work and home production, there should be a tax
(subsidy) on secondary earnings if there is more (less) heterogeneity in work costs than in home
production abilities (see the online supplemental material for a discussion).

20If Ψ is quadratic, then g0 − g1 is constant in n and the optimal tax system is separable. If Ψ ′

is concave, then g0 − g1 increases in n and the distortion on spouses actually increases with n.
As discussed above, the case Ψ ′ convex (Assumption 2) fits best with the intuition that secondary
earnings affect marginal social utility less when primary earnings are higher.

21This is also true in the one-dimensional model. We provide a simple formal proof of this in
the online supplemental material.
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4. NUMERICAL CALIBRATION FOR THE UNITED KINGDOM

Numerical simulations are conceptually important (i) to assess whether our
no bunching assumption in Proposition 3 is reasonable, (ii) to assess how
quickly the second-earner tax rate decreases to zero (scope of Proposition 2),
and (iii) to analyze if and to what extent optimal schedules resemble real-world
schedules.

We focus on the more realistic and traditional work cost model and make the
following parametric assumptions: (a) h(x)= ε/(1 + ε)x1+1/ε so that the elas-
ticity of primary earnings ε is constant; (b) q is distributed as a power function
on the interval [0� qmax] with distribution function P(q) = (q/qmax)

η, implying
a constant second-earner participation elasticity η; (c) the social welfare func-
tion is CRRA, Ψ(V ) = V 1−γ/(1 − γ), where γ > 0 measures preferences for
equity.

We calibrate the ability distribution F(n) and qmax using the British Family
Resource Survey for 2004/5 linked to the tax-benefit microsimulation model
TAXBEN at the Institute for Fiscal Studies. We define the primary earner as
the husband and the secondary earner as the wife. Figure 3A depicts the ac-

FIGURE 3.—Numerical simulations: current system. Computations are based on the British
Family Resource Survey for 2004/05 and TAXBEN tax/transfer calculator.



OPTIMAL INCOME TAXATION OF COUPLES 553

tual tax rates T ′
0, T ′

1, and τ faced by couples in the United Kingdom. As in
Saez (2001), f (n) is calibrated such that, at the actual marginal tax rates, the
resulting distribution of primary earnings matches the empirical earnings dis-
tribution for married men. The top quintile of the distribution (n≥ £46�000) is
approximated by a Pareto distribution with coefficient a= 2, a good approxi-
mation according to Brewer, Saez, and Shephard (2008). Figure 3B depicts the
calibrated density distribution f (n). The dashed line is the raw density distrib-
ution and the solid line is the smoothed density that we use to obtain smooth
optimal schedules.

Figure 3C shows that the participation rate of wives conditional on husbands’
earnings is fairly constant across the earnings distribution and equal to 75% on
average. Figure 3D shows that average female earnings, conditional on partic-
ipation, are slightly increasing in husbands’ earnings. Our model with homoge-
nous secondary earnings does not capture this feature. We therefore assume
(except when we explore the effects of assortative matching below) that qmax

(and hence q) is independent of n. We calibrate qmax so that the average par-
ticipation rate (under the current tax system) matches the empirical rate. The
w parameter is set equal to average female earnings conditional on participa-
tion.22

Based on the empirical labor supply literature for the United Kingdom
(see Brewer, Saez, and Shephard (2008)), we assume ε = 0�25 and η = 0�5
in our benchmark case. Based on estimates of the curvature of utility func-
tions consistent with labor supply responses, we set γ equal to 1 (see, e.g.,
Chetty (2006)). Finally, we assume that the simulated optimal tax system
(net of transfers) must collect as much tax revenue (net of transfers) as the
actual U.K. tax system, which we compute using TAXBEN and the empir-
ical data. In all simulations, we check that the implementation conditions
(zl(n) increasing in n) are satisfied so that there is no bunching. All techni-
cal details of the simulations are described in the online supplemental mater-
ial.

Figure 4A plots the optimal T ′
0, T ′

1, and τ as a function of n in our benchmark
case. Consistent with the theoretical results, we have T ′

1 < T
′
0 and τ declin-

ing in n. Consistent with earlier work on the single-earner model (e.g., Saez
(2001)), optimal marginal tax rates on primary earners follow a U-shape, with
very high marginal rates at the bottom corresponding to the phasing out of
welfare benefits, lower rates at the middle, and increasing rates at the top con-
verging to 66�7% = 1/(1 + a · ε). The difference between T ′

1 and T ′
0 is about

8 percentage points on average, and τ is almost 40% at the bottom and then
declines toward zero fairly quickly. This suggests that the negative jointness
property as well as the zero second-earner tax at the top are quantitatively

22Positive correlation in abilities across spouses with income effects could also generate those
empirical patterns. Analyzing a calibrated case with income effects is beyond the scope of this
paper and is left for future work.
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FIGURE 4.—Optimal tax simulations. Computations are based on the British Family Resource
Survey for 2004/05 and TAXBEN tax/transfer calculator.

significant results and not just theoretical curiosities. Finally, notice that tax
rates on primary earners are substantially higher than on secondary earners
because the primary-earner elasticity is smaller than the secondary-earner elas-
ticity.

Figure 4B introduces a positive correlation in spousal abilities by letting
qmax depend on n, so that the fraction of working spouses (under the cur-
rent tax system) increases smoothly from 55% to 80% across the distri-
bution of n. This captures indirectly the positive correlation in earnings
shown in Figure 3D. Figure 4B shows that introducing this amount of cor-
relation has minimal effects on optimal tax rates. Compared to no corre-
lation, the second-earner tax is slightly higher at the bottom, which rein-
forces the declining profile for τ. Figure 4C explores the effects of increas-
ing redistributive tastes γ from 1 to 2. Not surprisingly, this increases tax
rates across the board. Figure 4D considers a higher primary-earner elastic-
ity (ε= 0�5). As expected, this reduces primary-earner tax rates (especially at
the top).
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Importantly, none of our simulations displays bunching, which suggests that
there is no bunching in a wide set of cases and hence that Proposition 3 applies
broadly.

Comparing the simulations with the empirical tax rates in Figure 3A is il-
luminating. The actual tax-transfer system also features negative jointness,
with the second-earner tax rate falling from about 40% at the bottom to
about 20% at the middle and upper parts of the primary earnings distrib-
ution. This may seem surprising at first glance given that the United King-
dom operates an individual income tax. However, income transfers in the
United Kingdom (as in virtually all Organization for Economic Coopera-
tion and Development countries) are means tested based on family income.
The combination of an individual income tax and a family-based, means-
tested welfare system generates negative jointness: a wife married to a low-
income husband will be in the phase-out range of welfare programs and hence
faces a high tax rate, whereas a wife married to a high-income husband is
beyond benefit phase-out and hence faces a low tax rate because the in-
come tax is individual. Thus, our theoretical and numerical findings of neg-
ative jointness may provide a justification for the current practice in many
countries of combining family-based transfers with individual income taxa-
tion.23�24

Clearly, our calibration abstracts from several potentially important aspects
such as income effects, heterogeneity in secondary earnings, and endogenous
marriage. Hence, our simulations should be seen as an illustration of our the-
ory rather than actual policy recommendation. More complex and comprehen-
sive numerical calibrations are left for future work.

APPENDIX A: PROOF OF PROPOSITION 1

The government maximizes

W =
∫ n̄

n

{∫ q̄

0
Ψ(V1 − qw)p(q|n)dq

+
∫ ∞

q̄

Ψ (V0 + qh)p(q|n)dq
}
f (n)dn�

23Indeed, Immervoll, Kleven, Kreiner, and Verdelin (2008) showed that most European Union
countries feature negative jointness at the bottom driven by family-based transfers.

24As for the size and profile of primary-earner tax rates, the current U.K. schedule displays
lower rates at the very bottom (below £6–7K) than the simulations. This might be justified by
participation responses for low-income primary earners (Saez (2002)), not incorporated in our
model. Above £6–7K, the current U.K. tax system does display a weak U-shape with the highest
marginal rates at the bottom and modest increases above £40K.
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where q̄ = V1 − V0, q = qw + qh and either qw = 0 or qh = 0. The objective is
maximized subject to the budget constraint∫ n̄

n

{[
z1 +w− nh

(
z1

n

)
− V1

]
P(q̄|n)

+
[
z0 − nh

(
z0

n

)
− V0

]
(1 − P(q̄|n))

}
f (n)dn≥ 0

and the constraints from household optimization, V̇l = −h(zl/n)+zl/nh′(zl/n)
for l = 0�1. Let λ, μ0(n), and μ1(n) be the associated multipliers, and let
H(z0� z1� V0� V1�μ0�μ1�λ�n) be the Hamiltonian.

We demonstrate the existence of a measurable solution n→ z(n) in the on-
line supplemental material. The Pontryagin maximum principle then provides
necessary conditions that hold at the optimum:

(i) There exist absolutely continuous multipliers (μ0(n)�μ1(n)) such that
on (n� n̄), μ̇l(n)= −∂H/∂Vl almost everywhere in n with transversality condi-
tions μl(n)= μl(n̄)= 0 for l= 0�1.

(ii) We have H(z(n)�V (n)�μ(n)�λ�n) ≥ H(z�V (n)�μ(n)�λ�n) for all z
almost everywhere in n. The first-order conditions associated with this maxi-
mization condition are

∂H

∂z0
= μ0

n
· z0

n
· h′′

(
z0

n

)
+ λ ·

(
1 − h′

(
z0

n

))
· (1 − P(q̄|n)) · f (n)(A1)

= 0�

∂H

∂z1
= μ1

n
· z1

n
· h′′

(
z1

n

)
+ λ ·

(
1 − h′

(
z1

n

))
· P(q̄|n) · f (n)= 0�(A2)

By Assumption 1, ϕ(x) ≡ (1 − h′(x))/(xh′′(x)) is decreasing in x. Rewriting
(A1) as ϕ(z0/n) = −μ0(n)/[λ(1 − P(q̄|n))nf (n)], Assumption 1 implies that
(A1) has a unique solution z0(n), and that ∂H/∂z0 > 0 for z0 < z0(n) and
∂H/∂z0 < 0 for z0 > z0(n). This ensures that z0(n) is indeed the global max-
imum for H as required in the Pontryagin maximum principle. Obviously, the
state variable V (n) is continuous in n. Thus, ϕ(z0(n)/n) = −μ0(n)/[λ(1 −
P(V1(n) − V0(n)|n))nf (n)] implies that z0(n) is continuous in n.25 Similarly,
z1(n) is continuous in n.26 By defining T ′

l ≡ 1 − h′(zl(n)/n), we have that
(T ′

0�T
′
1) is also continuous in n.27

25The assumption that n→ f (n) and x→ h′′(x) are continuous is required here.
26Those continuity results also apply to the one-dimensional case and were explicitly derived

by Mirrlees (1971) under a condition equivalent to our Assumption 1. The subsequent literature
almost always assumes continuity.

27Notice that we adopt this definition of T ′
l everywhere, including points where z→ T(z) has

a kink.
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The conditions μ̇l(n)= −∂H/∂Vl for l= 0�1 imply

−μ̇0(n)=
∫ ∞

q̄

Ψ ′(V0 + qh)p(q|n)f (n)dq− λ(1 − P(q̄|n))f (n)(A3)

− λ[T1 − T0]p(q̄|n)f (n)�
−μ̇1(n)=

∫ q̄

0
Ψ ′(V1 − qw)p(q|n)f (n)dq− λP(q̄|n)f (n)T1(A4)

+ λ[−T0]p(q̄|n)f (n)�
Using the definition of welfare weights, g0(n) and g1(n), we integrate (A3) and
(A4) using the upper transversality conditions so as to obtain

−μ0(n)

λ
=

∫ n̄

n

{[1 − g0(n
′)](1 − P(q̄|n′))f (n′)

+ [T1 − T0]p(q̄|n′)f (n′)
}
dn′�

−μ1(n)

λ
=

∫ n̄

n

{[1 − g1(n
′)]P(q̄|n′)f (n′)− [T1 − T0]p(q̄|n′)f (n′)

}
dn′�

Inserting these two equations into (A1) and (A2), noting that T ′
l = 1 − h′

l, and
using the elasticity definition εl = h′(zl/n)/[zl/nh′′(zl/n)], we obtain equa-
tions (7) and (8) in Proposition 1.

The transversality conditions μ0 = μ1 = 0 at n and n̄ combined with (A1)
and (A2) imply that h′(z0/n)= h′(z1/n)= 1 and hence T ′

1 = T ′
0 = 0 at n and n̄.

As shown in the online supplemental material, a necessary and sufficient
condition for implementability is that z0 and z1 are weakly increasing in n (ex-
actly as in the one-dimensional Mirrlees model). If (7) and (8) generate de-
creasing ranges for z0 or z1, there is bunching and the formulas do not apply on
the bunching portions. It is straightforward to include the constraints żl(n)≥ 0
in the maximization problem (as in Mirrlees (1986)).28 On a bunching portion,
zl(n) is constant (say equal to z∗) and hence T ′

l = 1 −h′(z∗/n) remains contin-
uous in n as stated in Proposition 1, but z→ T ′

l (z) jumps discontinuously at z∗

and z → Tl(z) displays a kink at z∗. Hence the optimal solution z → T(z) is
continuous and z→ T ′(z) is piecewise continuous.

We do not establish that the solution is unique, but uniqueness is not
required for our results. Uniqueness would follow from the concavity of
(z�V )→H(z�V �μ(n)�λ�n), but this is a very strong assumption. In the simu-
lations, we can check numerically that, under our parametric assumptions, the
stronger concavity assumptions required for uniqueness hold in the domain of
interest so that we are sure the numerical solution we find is indeed the global
optimum.

28We do not include such constraints formally so as to simplify the exposition and because our
main Proposition 3 assumes no bunching and our simulations never involve bunching.
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APPENDIX B: PROOF OF LEMMA IN PROPOSITION 3

LEMMA B1: Under Assumptions 1–4, if T ′
1 > T

′
0 on (na�nb) with equality at the

end points, then g0(na)− g1(na) > g0(nb)− g1(nb).

PROOF: We have q̄= V1 −V0 and g0 −g1 =Ψ ′(V0)/λ−∫ q̄

0 Ψ
′(V1 −q)p(q)dq/

(λ ·P(q̄)) > 0 (inequality follows from Ψ ′ decreasing). Differentiating with re-
spect to n, we obtain

ġ0 − ġ1 = V̇0 · Ψ
′′(V0)

λ
− V̇1 ·

∫ q̄

0
Ψ ′′(V1 − q)p(q)dq

λ · P(q̄)

+ p(q̄) ˙̄q
P(q̄)

·
[∫ q̄

0
Ψ ′(V1 − q)p(q)dq

λ · P(q̄) − Ψ ′(V0)

λ

]
�

which can be rewritten as

ġ0 − ġ1 = V̇1 ·
[
Ψ ′′(V0)

λ
−

∫ q̄

0
Ψ ′′(V0 + q̄− q)p(q)dq

λ · P(q̄)

]
(B1)

+ ˙̄q ·
[
−(g0 − g1) · p(q̄)

P(q̄)
− Ψ ′′(V0)

λ

]
�

The first term in (B1) is negative, because V̇1 > 0 and Ψ ′′ is increasing (by
Assumption 2) so that the term inside the first square brackets is negative. On
(na�nb), z1 < z0 and hence ˙̄q < 0. Moreover, convexity of Ψ ′ implies Ψ ′(V0)−
Ψ ′(V0 + q̄− q)≤ −Ψ ′′(V0) · (q̄− q) and hence

g0 − g1 =

∫ q̄

0
[Ψ ′(V0)−Ψ ′(V0 + q̄− q)]p(q)dq

λ · P(q̄)(B2)

≤ −Ψ ′′(V0) ·

∫ q̄

0
P(q)dq

λ · P(q̄) �

where we have used that
∫ q̄

0 (q̄−q)p(q)dq= ∫ q̄

0 P(q)dq by integration by parts
and P(0)= 0. Combining (B2) and the second part of Assumption 4, we have
(g0 − g1) ·p(q̄)/P(q̄)≤ −Ψ ′′(V0)/λ� Thus, the second term in square brackets
in (B1) is nonnegative, making the entire second term in (B1) nonpositive. As
a result, ġ0(n)− ġ1(n) < 0 on (na�nb) and the lemma is proven. Q.E.D.
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