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Abstract

We study optimal labor and savings distortions in a lifecycle model with

idiosyncratic shocks. We show a tight connection between its recursive for-

mulation and a static Mirrlees model with two goods, which allows us to

derive elasticity-based expressions for the dynamic optimal distortions. We

derive a generalization of a savings distortion for non-separable preferences

and show that, under certain conditions, the labor wedge tends to zero for

su¢ ciently high skills. We estimate skill distributions using individual data

on the U.S. taxes and labor incomes. Computed optimal distortions decrease

for su¢ ciently high incomes and increase with age.
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A sizeable New Dynamic Public Finance (NDPF) literature studies optimal

taxation in dynamic settings1. The models in this literature extend the classic

Mirrlees equity-e¢ ciency trade-o¤s to dynamic settings in which agents�skills

change stochastically over time. A key theoretical insight of our paper is to

show a connection of the dynamic model with a static optimal taxation model

with two goods. A recursive formulation of the optimal problem allows us

to think of the dynamic problem as one in which an agent each period de-

rives utility from two goods, consumption today and a suitably de�ned future

promises, as well as labor. This allows us to derive formulas that facilitate

interpretation of the forces behind the optimal income taxation results in dy-

namic settings and to generalize the analysis of the savings distortion to the

non-separable preferences as well as to show the conditions under which the

labor wedges for the high skilled agents tend to zero.

In the static model Diamond (1998) derived the expressions for the optimal

labor distortions and showed that they are determined by three key paramet-

ers: the shape of the income distribution, the redistributionary objectives of

the government, and labor elasticity. The dynamic model introduces three

signi�cant di¤erences: (i) the use of dynamic incentives adds a force lower-

ing labor wedges; (ii) conditional rather than unconditional distributions of

skills are key determinants of wedges; (iii) persistence of shocks acts as a

more redistributionary motive for the planner. We then show that, under

certain conditions, the labor wedge tends to zero for su¢ ciently high skills.

Importantly, this result relies on understanding the forces and their interac-

tions behind the savings distortion and the labor distortions and highlights the

usefulness of the formulas that we derive. Our results on the wedge tending to

1See, for example, Golosov, Kocherlakota, and Tsyvinski (2003) or reviews in Golosov,

Tsyvinski, and Werning (2006) and Kocherlakota (2010).
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zero for the high skills is in sharp contrast to the static case with the Pareto

tail of the skills distribution of Diamond (1998) and Saez (2001), who show

that the taxes on the high skill agents are increasing and tend to high levels

(50-70%) depending on the chosen elasticity of labor supply.

The theoretical analysis points to empirical skill distributions as a crucial

input for a quantitative analysis. We construct a dataset of individual skills

and their evolution over lifetime implied by the observed micro level data for

the U.S. The main di¢ culty in estimating skills from the data is that skills

are unobservable. One can use wages as a proxy for skills but it does not

necessarily correspond to skills which measure the return to e¤ort. We use

the data on the actual U.S. tax code and labor income choices to infer the

unobservable skill level. Since the details of the actual U.S. system of taxes

and transfers are observable, we compute the implied individual skills from

the necessary conditions for the individual optimum. The methodology is a

dynamic extension of that of Saez (2001) who used a similar approach to infer

cross-sectional distribution of skills in the population.

We then numerically simulate the optimal labor and savings wedges in a

realistically calibrated economy based on the empirical income distributions.

The dynamic wedges are signi�cantly di¤erent from the static taxes, emphas-

izing the importance of the theoretical forces we study. We �nd that the labor

distortion for the early periods are smaller than for the later periods. Import-

antly, the labor wedges for the high skilled agents tend to zero in our dynamic

model while in calibrated static models of Diamond (1998) and Saez (2001)

they typically reach 50-70%. We provide simulations of the savings wedge

and �nd it numerically signi�cant and increasing with the labor income. The

consideration of conditional rather than the unconditional empirical distribu-

tions of income and skills signi�cantly alters the pattern of wedges compared
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to the static (or the i.i.d.) case. Agents face very di¤erent labor distortions

conditional on the previous shocks. This is due to the di¤erences among the

conditional distributions and also due to the increase of the planner�s redistri-

butionary objectives to deter earlier deviations.

We then compute the welfare gains of using the optimal policy. First, we

follow an important insight of Farhi and Werning (2010) to compare the con-

strained e¢ cient optimum to that with the optimal linear taxes, and con�rm

their �ndings in our setup. The optimal age-dependent linear labor wedges

yield a welfare loss of 0:9% of consumption compared to the constrained op-

timum. The optimal age-independent labor distortion yields a welfare loss

of 1:6%. While these magnitudes are non-trivial, linear taxes can still yield

reasonably good policies as in Farhi and Werning (2010). Then, we consider a

case of a more redistributive social planner. The analysis of the static Mirrlees

problems (e.g., Mirrlees (1971), Atkinson and Stiglitz (1976), Tuomala (1990))

also points out that if the planner is more redistributive than utilitarian plan-

ner, the tax policy is substantially di¤erent from linear, and nonlinear taxes

may yield large welfare gains. We calculate welfare gains of using optimal

policies when the social planner is more redistributive, in particular Rawlsian.

The optimal age-dependent linear labor wedges yield a welfare loss of 4:6%

compared to the constrained optimum. The optimal age-independent labor

distortion yields a welfare loss of 5:1%. We conclude that the welfare gains of

using optimal nonlinear policies are signi�cant.

There are several papers related to our work. The �rst-order approach for

persistent shocks is developed in Kapiµcka (2010) and Pavan, Segal, and Toikka

(2010). In our numerical simulations we verify its su¢ ciency.

An important contribution of Farhi and Werning (2010) derives a formula

describing a dynamic behavior of the labor income tax rate in both continu-
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ous and discrete case, provides a simulation of a lifecycle economy, and derives

additional insights using a continuous time approach. Our work focuses on

a study of cross-sectional properties of optimal wedges, on deriving elasticity

based formulas, and on numerical simulations based on calibrated skill distri-

bution that we estimate from the U.S. data extending the analysis of Diamond

(1998) and Saez (2001) to dynamic settings.

Numerical simulations in our paper are also related to Weinzierl (2011).

He derives theoretically and analyzes numerically an elasticity-based formula

with which he studies optimal age-dependent taxation, in a dynamic Mirrlees

setting. Albanesi and Sleet (2006) is a comprehensive numerical and theoret-

ical study of optimal capital and labor taxes in a dynamic economy with i.i.d.

shocks. Kocherlakota and Pistaferri (2007) and Kocherlakota and Pistaferri

(2009) use micro level data to evaluate predictions of dynamic optimal policy

models. Golosov and Tsyvinski (2006) study a disability insurance model

with fully persistent shocks. Golosov, Tsyvinski, and Werning (2006) is a

two-period numerical study of the determinants of dynamic optimal taxation

in the spirit of Tuomala (1990). Ales and Maziero (2007) numerically solve

a version of a life cycle economy with i.i.d. shocks drawn from a discrete,

two-type distribution, and �nd that the labor distortions are lower earlier in

life. Fukushima (2010) simulates a policy reform which replaces an optimal

�at tax with an optimal non-linear tax that is age and history dependent and

�nds sizeable welfare gains in a model where the welfare function places zero

Pareto weight on any �nite number of cohorts. Battaglini and Coate (2008)

provide a complete characterization of the optimal program with Markovian

agents. While incorporating persistence in abilities, most of their analysis for

tractability assumes only two ability types and risk neutral individuals.
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1 Environment

We consider an economy that lasts T periods, denoted by t = 1; :::; T (T <

1)2. Each agent�s preferences are described by a time separable utility func-

tion over consumption good ct � 0 and labor lt � 0,

E1
TX
t=1

�t�1U(ct; lt); (1)

where � 2 (0; 1) is a discount factor, E1 is a period 1 expectations operator,

and U : R2+ ! R.

In period t = 1, agents draw their initial type (skill), �1, from a distribution

F1(�). For t � 2, skills follow aMarkov process Ft (�j�t�1), where �t�1 is agent�s

skill realization in period t� 1:We denote the probability density function by

ft(�j�t�1) and assume that ft is di¤erentiable in both arguments. We assume

that, in each period t, skills are non-negative: �t 2 � = R+. The set of

possible histories up to period t is denoted by �t.

An agent of type �t who supplies lt units of labor produces yt = �tlt units

of output. The skill shocks and the history of shocks are privately observed by

the agent. Output yt = �tlt and consumption ct are observed by the planner.

In period t, the agent knows his skill realization only for the �rst t periods

�t = (�1; :::; �t). Denote by ct
�
�t
�
: �t ! R+ agent�s allocation of consumption

and by yt
�
�t
�
: �t ! R+ agent�s allocation of output in period t. Denote by

�t
�
�t
�
: �t ! �t agent�s report in period t. We denote the set of all such

reporting strategies in period t,
�
�1
�
�1
�
; :::; �t

�
�t
��
by �t. Resources can be

transferred between periods with a rate on savings � > 0. The observability of

consumption implies that all savings are publicly observable. Hence, without

2The recursive formulation of the problem that follows makes it easy to extend the

analysis to the case of in�nitely lived agents. In fact, the calibration and numerical analysis

is greatly simpli�ed in the case of in�nitely lived agents.

5



loss of generality, we can assume that the social planner controls all the savings.

We also assume that the social planner has a social welfare function de�ned

over lifetime utilities of the agents, G : R ! R, where G is increasing and

concave. Since the lifetime utility of the agent is given by (1), the social

welfare is given by
R
G
�
E1
PT

t=1 �
t�1U (ct; lt)

�
dF1(�).

We denote partial derivatives of U with respect to c and l as Uc and Ul

and de�ne all the second derivatives and cross-partials accordingly. Since

U(c; l) = U(c; y=�); we also use notation Uy = Ul
1
�
and U� = Uy

�
�y
�

�
to denote

derivatives with respect to y and �:We make the following assumptions on U:

Assumption 1. U is twice continuously di¤erentiable in both arguments, sat-

is�es Uc > 0; Ul < 0; Ucc < 0; Ull < 0; Ucl � 0; and

@

@�

Uy (c; y; �)

Uc (c; y; �)
� 0:

These assumptions are standard. The last restriction is the single crossing

property. The assumption that Ucl � 0 ensures that consumption and leisure

are substitutes, which is generally considered to be the empirically relevant

case.

In parts of our analysis we will need to use the notion of elasticity of labor

supply, holding current period consumption �xed, which is de�ned as3

1

"
� UyyUc � UcyUy

(Uc)
2 y

Uc
Uy
: (2)

By de�nition, when U is separable in c and y; " is a Frisch elasticity of

labor supply. When U has no income e¤ects then " is the uncompensated

elasticity of labor supply. We make the following assumption on ":

Assumption 2. The elasticity " is positive and bounded away from 0.

3It is easy to see that this is elasticity of labor supply by di¤erentiating the intratemporal

�rst order conditions for the household.
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For most of the analysis we assume that Ft is di¤erentiable with the p.d.f.

ft, for all t. We denote the partial derivative of ft with respect to the t � 1

period shock, ��, by f2;t. For some parts of the analysis we will need further

restrictions on f , in particular, the two assumptions that follow.

Assumption 3. For all t and for all ��, (1� Ft (�j��)) =�ft (�j��) is bounded

from above.

Assumption 4. For all t, Ft (�j��) �rst order stochastically dominates Ft
�
�j�̂�

�
if � > �̂ and f2;t(�j��)=ft(�j��) is increasing in � :

The �rst assumption is very weak, and most empirically relevant distribu-

tions satisfy it. The second assumption ensures that high � types get higher

expected utility and introduces a certain form of persistence. The second part

of the assumption is satis�ed if, for example, the distribution functions have

a property that if �H > �L then f (�j�L) =f (�j�H) is decreasing in �. This

assumption can be further relaxed for many results, but in its current form it

signi�cantly simpli�es the exposition.

The optimal allocations solve the dynamic mechanism design problem (see,

e.g., Golosov, Kocherlakota, and Tsyvinski (2003)):

max
fct(�t);yt(�t)g

�t2�t;t=1;::;T

Z
G

 
E1

TX
t=1

�t�1U
�
ct
�
�t
�
; yt
�
�t
�
=�t
�!

dF1(�) (3)

subject to the incentive compatibility constraint:

E0

(
TX
t=1

�t�1U
�
ct
�
�t
�
; yt
�
�t
�
=�t
�)

� E0

(
TX
t=1

�t�1U
�
ct
�
�t
�
�t
��
; yt
�
�t
�
�t
��
=�t
�)

;8�T 2 �T ; (4)

and the feasibility constraint:

E0

(
TX
t=1

�t�1ct
�
�t
�)

� E0

(
TX
t=1

�t�1yt
�
�t
�)

: (5)
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The expectation E0 above is taken over all possible realizations of histories.

Note that the expectation in the objective function is taken after the �rst

period shocks are realized.

We follow Fernandes and Phelan (2000) and Kapiµcka (2010) to brie�y de-

scribe the recursive formulation and refer to these two papers for the technical

details. Let !
�
~�j�
�
: �� �! R denote promised utility to an agent of skill

� who reports skill ~�. We use notation !(�) and ! to denote functions !(�j�)

and !(�j�), respectively. Let c : �! R+ and y : �! R+:

The optimal allocations solve the cost minimization problem for period

t = 1:

V1 (!0) = min
c;y;!

Z
(c (�)� y (�) + �V2 (! (�) ; �)) f1 (�) d�

subject to the incentive compatibility constraint:

U (c (�) ; y (�) =�) + �! (�j�)

� U
�
c
�
~�
�
; y
�
~�
�
=�
�
+ �!

�
~�j�
�
; 8~� 2 �; � 2 �; (6)

and to the promise keeping constraint:

!0 �
Z
G (U (c (�) ; y (�) =�) + �! (�j�)) f1 (�) d�:

The initial promised utility !0 is a solution to V1(!0) = 0.

For t > 1, the social planner takes the period t� 1 realization of the shock

and the chosen promised utility function !̂ (��) as given and solves:

Vt (!̂ (��) ; ��) = min
c;y;!

Z
(c (�)� y (�) + �Vt+1 (! (�) ; �)) ft (�j��) d� (7)

subject to the incentive compatibility constraint (6) and

!̂(��j~�) =
Z
(U (c (�) ; y (�) =�) + �! (�j�)) ft

�
�j~�
�
d� for all ~� 2 �: (8)
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The function VT+1 (! (�) ; �) = 0, if ! (�) = 0, and VT+1 (! (�) ; �) = 1,

otherwise. All other functions Vt are de�ned by backward induction. The

function Vt is the resource cost of delivering promised utilities ! (�).

The incentive compatibility constraint states that an agent prefers to reveal

his true type �, receive utility U (c (�) ; y (�) =�) and a continuation utility

! (�j�) rather than claim a di¤erent type ~�, receive utility U
�
c
�
~�
�
; y
�
~�
�
=�
�

and continuation utility !
�
~�j�
�
. The promise keeping constraints (8) ensure

that next period allocations indeed deliver the expected utility !
�
~�j�
�
to any

type ~� who sends a report �:

We proceed in this section by using the �rst order approach developed by

Kapiµcka (2010) and Pavan, Segal, and Toikka (2010) to obtain a more manage-

able recursive formulation. One needs to keep track only of the "on the path"

promised utility ! (�j�) and the utility from a local deviation !2 (�j�), where

!2 (�j�) is the derivative of ! with respect to its second argument evaluated at

(�j�) : Then de�ning functions w : �! R and w2 : �! R, the maximization

problem (7) can be re-written as

Vt(ŵ; ŵ2; ��) = min
c;y;u;w;w2

Z
(c (�)� y (�) + �Vt+1 (w (�) ; w2(�); �)) ft (�j��) d�

(9)

u0 (�) = U�(c(�); y(�)=�) + �w2 (�) ; (10)

ŵ =

Z
u (�) ft (�j��) d�; (11)

ŵ2 =

Z
u (�) f2;t(�j��)d�; (12)

u(�) = U(c(�); y(�)=�) + �w(�): (13)

There are three state variables in this recursive formulation: ŵ is the prom-

ised utility associated with the promise-keeping constraint (11); ŵ2 is the state
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variable associated with the threat-keeping constraint (12); �� is the repor-

ted type in period t � 1. In what follows we assume that solution to (9) is

di¤erentiable.4

The �rst-order approach is valid only if at the optimum the local con-

straints (10) are su¢ cient to guarantee that global incentive constraints (6)

are satis�ed. It is well known, that there are no general conditions either in

the static mechanism design problem with multiple goods (see, e.g., Mirrlees

(1976)) or in dynamic models (see, e.g., Kapiµcka (2010)) that guarantee that

only local incentive constraints bind. In the next lemma we show su¢ cient

conditions that the optimal allocations must satisfy to guarantee that local

constraints (10) imply (6).

Assumption 5. The optimal allocation satis�es

c0 (�) � 0; !1
�
�j�̂
�
� 0; !12

�
�j�̂
�
� 0; for all �; �̂. (14)

Lemma 1. Suppose that Assumption 1 and Assumption 5 are satis�ed. Then

(10) implies (6)

In the numerical part of the paper we verify that Assumption 5 is satis�ed

for the calibrated model.

As stated, problem (9) does not need to be convex. However, if it is not,

welfare can be improved by allowing randomizations over w and w2. Then the

di¤erentiability of Vt can be established following the methods similar to, e.g.,

Acemoglu, Golosov, and Tsyvinski (2008). To avoid cumbersome notation, for

the rest of the paper we make the assumption that follows.
4It is well known that there are circumstances when solutions to this problems are not

di¤erentiable, for example, when it is optimal to bunch di¤erent types. There are stand-

ard methods to characterize this problem in such situations at an expense of introducing

additional notational complexity.
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Assumption 6. Vt is convex and di¤erentiable in ŵ; ŵ2:

Before characterizing the problem, we re-write the optimal problem to

highlight the e¤ects of persistence. To minimize on notation, we drop explicit

conditioning of functions on �, and use, for example, notation c instead of c(�)

whenever this does not cause confusion.

Lemma 2. Let (c�; y�; u�; w�; w�2) be a solution to (9) for t > 1. Then

(c�; y�; u�; w�; w�2) is a solution to

min
(c;y;u;w;w2)

Z
(c� y + �Vt+1 (w;w2; �)) ft (�j��) d� (15)

subject to (10), (13), and

ŵ =

Z �
1� �

f2(�j��)
f(�j��)

�
uf (�j��) d�, (16)

for some constant �:

In the constraint (16) utility u (�) is multiplied by the term
�
1� � f2(�j��)

f(�j��)

�
.

This pseudo-objective is equivalent to the objective function of a social plan-

ner that has (non-normalized) weights
�
1� � f2(�j��)

f(�j��)

�
instead of the utilitarian

weights equal to 1 for all types � in period t. As we will argue later in our ana-

lysis, the relevant case in most circumstances is � > 0: The term
�
1� � f2(�j��)

f(�j��)

�
assigns the highest weight to the lowest type and monotonically decreases for

the higher types. In other words, the planner�s objective is more redistribu-

tionary towards the lower types in period t. The intuition for this change in

weights is as follows. Consider a marginal deviation in period t� 1. Suppose

type ��+� claims to be type �� for some small �. Under the above assumption

on f (�j��), this type is relatively more likely to receive high shocks � and re-

latively less likely to receive low shocks � in period t. The social planner who

is more redistributive in period t and puts higher (pseudo) weights on the low
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types allocates relatively low utility to this agent. The type �� is not signi�c-

antly a¤ected, since his probability of having high shocks � is relatively low.

This agent bene�ts from more redistribution as for him the high shocks � in

period t are less likely. The same intuition generalizes for other stochastic pro-

cesses. The main insight is that the social planner allocates relatively higher

pseudo weights on those realizations of shocks � for which there is a relatively

large di¤erence in the probability of occurrence between types �� and types

close to ��.

Now we de�ne and proceed to characterize optimal distortions. For an

agent with the history of shocks �t at time t, we de�ne a labor distortion:

1� � yt
�
�t
�
�
�Ul

�
ct
�
�t
�
; yt
�
�t
�
=�t
�

�tUc
�
ct
�
�t
�
; yt
�
�t
�
=�t
� (17)

and a savings distortion

1� � st
�
�t
�
=

�
�

�

�
Uc
�
ct
�
�t
�
; yt
�
�t
�
=�t
�

Et
�
Uc
�
ct+1

�
�t+1

�
; yt+1

�
�t+1

�
=�t+1

�	 : (18)

For some results it will also be useful to de�ne a life-time savings distortion,

�� st , as

1� �� st
�
�t
�
=

�
�

�

�T�t Uc
�
ct
�
�t
�
; yt
�
�t
�
=�t
�

Et
�
Uc
�
cT
�
�T
�
; yT

�
�T
�
=�T
�	 : (19)

2 Characterization of distortions

In the appendix, we proceed by setting up Hamiltonian to (15) and charac-

terizing the solution under the assumptions made in the previous section. In

this section, we instead provide a heuristic analysis of the problem in which

we emphasize a close connection of the dynamic mechanism design problem

(9) and static tax problem with two goods, as in Mirrlees (1976) and Mirrlees

(1986). We show how the insights from the static model can be used to provide

characterization of the distortions in the dynamic model.
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We now re-write the problem in a more intuitive form. De�ne function

Ht(r; ŵ2; ��) implicitly from Vt(Ht; ŵt; ��) = r and denote by Hr;t =
�
@Vt
@w

��1
the partial derivative of H with respect to r. Ht(r;ŵ2; ��) is the maximal

utility that the social planner can provide to an agent in period t if the agent

has r amount of resources. Parameter ŵ2 captures how much additional redis-

tribution the planner promised in the previous period, as discussed in Lemma

2. That is, Ht(r;ŵ2; ��) is an indirect utility function for an agent who was

type �� in the previous period, has r units of savings, and faces the optimal

schedule of distortions over his lifetime. With this notation, we can write a

dual problem to (15) as

Ht(r̂; ŵ2; ��) = max
u;c;y;r;w2

Z �
1� �

f2;t (�j��)
ft (�j��)

�
uft (�j��) d�

subject to the incentive compatibility constraint (10), andZ
(c� y + �r) ft (�j��) d� = r̂; (20)

u = U(c; y=�) + �Ht+1 (r; w2; �) : (21)

If we take w2 as being set optimally, the optimization with respect to

(u; c; r; y) in this problem is analogous to the maximization in the static model

with labor and two goods, c and r, which have relative prices 1 and � with

respect to labor y: To simplify notation, we drop explicit notation with respect

to t and ��, whenever this does not cause confusion. If � is a multiplier on

(10), � is the multiplier on (20), and � is a multiplier on (21), the necessary

conditions can be written, using notation pc = 1; pr = �; and py = �1 as

(�fpj � �U�j) = �Uj for j 2 fc; yg ; (22)

� fpr� = ��Hr; (23)�
1� f2

f
�

�
f + � = �0: (24)
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These �rst order conditions are equivalent to those in a static model with

two goods (see Mirrlees (1976); equations (33) and (34)). As Mirrlees (1976)

discusses, generally we expect that the multiplier on the incentive compatibility

constraint � is nonnegative (which corresponds to downward binding incentive

constraints), although it is di¢ cult to rule out that � can take negative values

for some �. We proceed by assuming that � is non-negative everywhere, and

show in the online appendix that this is indeed the case when Ucl = 0 or shocks

are independent across periods.

2.1 Savings distortions

We �rst characterize savings distortions. Direct comparison of (22) and (23)

shows that when � � 0;
1

pc
Uc;t �

1

pr
�Hr;t+1; (25)

with strict inequality when Ucl = 0: This result has a direct analogue in the

static multi-good model. Mirrlees (1976) shows that when � is non-negative,

it is optimal to distort the good which is more complementary with leisure.

The intuition for this result is as follows. The role of the distortions is to

provide incentives for the agents with the high skill not to pretend to be of

low skill. When such a deviation occurs, a deviating agent enjoys more leisure

than the truth telling agent of the low type5. Therefore, taxing goods which

are complementary with leisure helps to relax the incentive constraints. In

the context of our model, consumption today, c, is a substitute with leisure,

because Ucl � 0; while Hrl = 0: This implies that good r should be more

distorted than good c.

5See Kaplow (2008) for a detailed discussion of nonseparable preferences in a static

context.
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To explore the implication of (25) for savings distortions, we now discuss

the relationship between Hr;t+1 and EtUc;t+1: By the envelope theorem, Hr;t+1

is equal to an increase in the expected utility from any incentive compatible

allocation of an additional unit of resources tomorrow. An allocation of a unit

of resources equally across for all the realizations of shocks in period t + 1

is generally not incentive compatible, which implies that Hr;t+1 6= EtUc;t+1:

When preferences are separable between c and l it can be shown (see, e.g.,

Golosov, Kocherlakota, and Tsyvinski (2003) or Farhi andWerning (2009) that

an incentive compatible perturbation increases utility of consumption, U(c(�)),

equally for all the realization of �; and that Hr;t+1 =
�
Et 1

Uc;t+1

��1
:When there

is uncertainty about consumption in period t + 1; Jensen�s inequality implies

that Hr;t+1 < EtUc;t+1; which, together with (25), implies that � st > 0: When

preferences are non-separable, Hr;t+1 can be greater or less than EtUc;t+1; and

in general it is not possible to sign � st : We show, however, that under some

conditions it is possible to sign the life-time savings distortion, �� st :

Integrate (24), using the boundary conditions �(0) = �(1) = 0 and the

fact that
R1
0
f2d� = 0, to get �

R
�d� = 1: If we substitute the expression for

� from (23) and the equality Hr;t = �, we get�
�

�

�
Et

Hr;t

Hr;t+1

= 1: (26)

This expression is a generalization of the "inverse Euler equation" which is

obtained with separable preferences.6 Similarly to the inverse Euler equation,

it implies that it is optimal to have a positive distortion between marginal

utility of resources in period t, Hr;t; and period t + 1; EtHr;t+1: Iteration of

(26) implies that �
�

�

�T�t
Et
Hr;t

Hr;T

= 1:

6To see this, substitute (25), which holds with equality in separable case.
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This expressions has important implications for the lifetime savings distor-

tion, �� st ; in environments in which agents eventually retire. If all agents retire

by period T; Hr;T = Uc (cT ; 0) ; which, combining with inequality (26) implies

that �� st > 0: The simplest restriction on fundamentals that ensure retirement

is the assumption that �T = 0 with probability 1, for any history of shocks.

We summarize this discussion in the following proposition

Proposition 1. Suppose that assumptions 1, 5, and 6 hold. Suppose that

FT (0j��) = 1 for all �� and � � 0: Then �� st � 0, with the strict inequality in

all states in which the incentive constraint (10) is binding and Ucl > 0:

Although it is di¢ cult in general to characterize the cross-sectional implic-

ations for the optimal savings wedge � s; one can �nd an expression for the

wedge �w de�ned as �w = 1 +
�
�
�

�
Uy=Hr: By analogy with � y; which meas-

ures distortion between labor supply and consumption today, �w measures a

distortion between labor supply and consumption tomorrow. In the appendix

we show that

�w =

�
1 +

"

"+ 1

Ucl
Uc

�y
�

��
� y: (27)

In the next section we derive an expression for the labor wedge � y(�) and

use expression (27) to get insights about dynamics of �w. We also will use it

to show an important insights about asymptotic behavior of the wedges. As

long as the degree of substitutability of consumption and leisure, Ucl=Uc does

not go to zero, (27) shows that the gap between the two distortions, �w=� y

widens if more productive types supply more e¤ort. In the next section, we

show that for some widely used classes of preferences this implies that � y must

go to zero for high � types.

16



2.2 Labor distortions

Next, we turn to characterization of labor distortions. Again, we can use the

standard arguments of Mirrlees (1971) and Mirrlees (1976) to re-write the �rst

order condition (22) as

� y

1� � y
=

�
1 +

1

"

�
�

�f
Uc: (28)

One can then express � from (22), substitute into (24), and integrate to

obtain the expression for �: In the appendix, we describe in details how to

proceed and derive the expression that follows for the labor wedge:

� y

1� � y
=

�
1 +

1

"

�
1� F (�)

�f (�)

Z 1

�

(
exp

"Z �̂

�

��
1� �u

�c

�
_y

y

�
d�0

#

�
 
1� �

 
1� f2(�̂)

f(�̂)
�

!
Uc(�̂)

!
exp

"Z �̂

�

�
Uccw1

(Uc)
2 d�

0

#
f(�̂)

1� F (�)

)
d�̂; (29)

where �c and �u are compensated and uncompensated elasticities of labor sup-

ply holding savings �xed. We wrote the expression in terms of the elasticities

holding savings �xed to facilitate comparison with the optimal taxes in the

static models, e.g. Diamond (1998) and Saez (2001).

There are three key di¤erences with the formula for the labor wedges in

the static economy such as Saez (2001), Proposition 1. The �rst di¤erence the

term exp
hR �̂
�
� Uccw1
(Uc)

2 d�
0
i
, which depends on the future promised utility and on

the current realization of the shock. This term is less than 1, which points

out that there is a force that pushes the wedges lower in the dynamic setting.

The second di¤erence is that the social weight that the planner applies to

agents of di¤erent types changes when the shocks are persistent di¤ers from the

true social weight G0
�
�Uc(�)

�
. We already discussed the intuition behind this

changing the social welfare in Lemma 2. Finally, the expression 1�Ft(�j��)
�ft(�j��) in
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(29) depends on the distribution of shocks conditional on last period realization

rather than the cross-sectional distribution of shocks in static models.

Diamond (1998) used the static analogue of (29) to show that if utility is

quasi-linear then the �rst integral in (29) asymptotically converges to 1 and
�y

1��y converges to
�
1 + 1

"

�
1�F cs
�fcs

from below, where f cs and F cs denote the

cross-sectional distribution of the types. His analysis can easily be extended

to any quasi-linear preferences of the form

U(c; l) = ~U (c� h(l)) : (30)

As Diamond (1998) and Saez (2001) discuss, the empirical distribution of

income 1�F cs
�fcs

is such that the implied asymptotic labor distortions may be

quite high, with � y ! 0:8 for some speci�cations of ": We show next that

the conclusion about the size of the optimal labor distortions may change

signi�cantly in the dynamic models.

Let the preferences have the form (30). In this case, Ucl=Uc = � ~U 00
~U 0
h0(l) and

h0(l) = (1� � y) �: Substitute these expressions into (27) to obtain

1 +
�

�

Uy
Hr

=

"
1 +

"

1 + "

� ~U 00
~U 0

(1� � y) y

#
� y;

where we used (28) and (30). The left hand side of this expression is less than

1. Consider the right hand side of this expression. Suppose that � y did not

converge to 0: As long as � y is bounded away from 1, this implies that the

term (1� � y) y goes to in�nity. If the coe¢ cient of the absolute risk aversion
� ~U 00
~U 0
is bounded away from zero, this implies that the right hand side of this

expression is unbounded and eventually becomes greater than 1 which leads

to a contradiction. Therefore, we have the following result which we prove

formally in the appendix.
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Proposition 2. Suppose that assumptions 1, 2, 3, 5, 4, and 6 hold. Suppose

that preferences are of the form (30), and �Ucc=Uc is bounded away from zero.

Suppose that
�
1� f2(�̂)

f(�̂)
�
�
� 0; or that Uc(�̂) and f2(�̂)

f(�̂)
are bounded from above.

Then � yt ! 0 for t < T:

3 Quantitative analysis

We now turn to the quantitative study of a calibrated model. The theoret-

ical analysis above unambiguously points to empirical skill distributions as a

crucial input for a quantitative analysis. Before we proceed to estimate skill

distributions, we start by constructing a dataset of individual skills, �, implied

by the observed micro level data for the U.S.

The main di¢ culty in estimating skills from the data is that skills are

unobservable. One can use wages as a proxy for skills but it is not clear that

this measure corresponds to �; which measures the return to e¤ort. Because of

these conceptual problems with using wage data we chose a di¤erent approach.

We use the data on the actual U.S. tax code and labor income choices to infer

the unobservable skill level. Since the details of the actual U.S. system of

taxes and transfers are observable, we compute the implied individual skills

from the necessary conditions for individual optimum. The methodology is a

dynamic extension of that of Saez (2001) who used a similar approach to infer

cross-sectional distribution of skills in the population.

Both to simplify the analysis and to be directly comparable to previous

work of Diamond (1998) and Saez (2001), we choose quasi-linear preferences

(30) with a constant elasticity of labor supply ": For these preferences, the

implied skill �i;year for an individual i in a given year is computed from the
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individual �rst-order conditions as follows:

�i;year =
yi;year�

yi;year
�
1� T 0year (yi;year)

�	"=(1+") ;
where yi;year is the labor income of individual i observed in a given year, and

T 0year (yi;year) is the e¤ective marginal tax rate that the individual faces when

she earned her labor income. Since there are no income e¤ects with quasi-linear

preferences (30), an individual labor supply decision is una¤ected by individual

savings choice, and thus a static consumption-labor margin determines the

implied skill.

We brie�y outline our empirical and computational strategy. The online

appendix contains a complete description of our approach with further details

and summary statistics. Our main data source is the U.S. Panel Study of

Income Dynamics (PSID). We use the data collection waves from 1990 onward

with the latest currently available data wave of 2007, which contains data

from 2006. Recent waves (from 1996) come in two year intervals, hence, we

consider a total of nine waves with two years in between. To be consistent

with the data, a period in our calibrated model correspond to two years, i.e.,

T = 20, and we model 40 years of working life. The labor income, yi;year, is

obtained directly from the PSID waves, converted to constant 1990 dollars. We

consider total labor income, which is a sum of a list of variables in the PSID

that contain data on salaries and wages, separate bonuses, the labor portion of

business income, overtime pay, tips, commissions, professional practice or trade

payments, market gardening, additional job income, and other miscellaneous

labor income.7

E¤ective marginal tax rates, T 0year (yi;year), are estimated for each individual

using TAXSIM - a National Bureau of Economic Research�s program for cal-

7The online appendix contains speci�c details and variable names.
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culating individual e¤ective liabilities under the U.S. Federal and State income

tax laws from individual data. For each individual with labor income we also

have in the PSID a collection of personal data that are in most cases su¢ cient

to estimate individual and year speci�c e¤ective marginal tax rates. Finally,

we use the constructed total individual labor incomes and the estimated e¤ect-

ive marginal tax rates to compute implied skills from the individual optimality

conditions as described above.

Estimation approach. We �rst estimate the initial unconditional distri-

bution of implied skills among the initial young workers, F1 (�). We consider

the 25 year old from all of the PSID waves to obtain the sample of 8,231

observations. We estimate F1 (�) non-parametrically using a kernel density es-

timation. The resulting distribution is shown as "initial young, unconditional"

distribution depicted by a dotted line in Figure 1. One concern with a cross-

sectional distribution is that high income individuals may be undersampled in

the PSID or that the PSID is "top coded", i.e., there is an income cuto¤ level

above which no observations are collected. To address this concern we �t a

Pareto distribution to the right tail of our skill distribution. Speci�cally, we

let skills to be Pareto distributed above the income level of $150; 000.

To estimate conditional distributions Ft (�j�_), i.e. transition probabilities,

we exploit the panel feature of the PSID. We start by considering all individual

skill transitions between adjacent data waves. Furthermore, we break all these

wave-to-wave skill transitions into two age groups �when the individual is

younger than 45 at the beginning of the transition and when the individual is 45

or older at the beginning of the transition. We therefore estimate two separate

conditional distributions Fyoung (�j�_) and Fold (�j�_). Hence we assume age

dependence between the age groups and age-independent transitions within
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each age group.8 In other words, we allow younger individuals to experience

di¤erent transition probabilities than older individuals; within each age group,

we assume age-independent transition probabilities.9
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Figure 1: Initial unconditional vs. some of the conditional distributions

To provide an easy comparison, Figure 1 displays the initial unconditional

distribution (the dotted line) together with just four examples of the estim-

ated conditional distributions, two from each age group. An old skill distribu-

tion conditional on $50; 000 income, with the conditional expected income of

$54; 937, appears as the closest to the initial unconditional distribution. The

di¤erence between the conditional expected income and the unconditional ex-

pected income of $23; 963 is primarily due to a signi�cantly thicker right tail.

A young skill distribution conditional on $50; 000 income is the next closest to

the unconditional one with the conditional expected income of $58; 599. The

8We also check our results for robustness by removing this age dependence in the estim-

ated conditional distributions.
9We stop at just two age groups to have su¢ cient number of data points to estimate

all conditional distributions. There is nothing in our computational solution method that

would stop us from having a di¤erent transition matrix for each period, provided that we

had enough data to obtain those transition matrices.
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other two examples of conditional distributions di¤er more signi�cantly from

the initial unconditional distribution. An old skill distribution conditional on

$150; 000 income has the conditional expected income of $109; 893. A young

distribution conditional on $150; 000 income has the conditional expected in-

come of $115; 508. If one were to compare the initial unconditional distribution

with a cross-sectional unconditional distribution, it would reveal that the ini-

tial young unconditional distribution appears less unequal with a somewhat

thinner right tail, which is perhaps not surprising for a sample of young 25

year old workers.

The estimated conditional distributions imply a persistent skill shock pro-

cess. Depending on the speci�cation of the stochastic process, estimates of the

persistence of skills simulated with our conditional distributions range from

0.73 to 0.81. These persistence estimates are not as high as the estimates of

0.95 and higher in Storesletten, Telmer, and Yaron (2004) and are closer to

the estimates around 0.8 in Guvenen (2009). All these estimates are signi�c-

antly higher than the estimate of 0.5 in Heaton and Lucas (1996), who do not

condition on age.

Calibration. We model a life cycle of 40 years of working life, i.e., the

individuals between the ages of 25 and 65; with one period representing two

years as dictated by our main data source, the PSID. We choose preferences

of the form

� 1
 
exp

�
� 

�
c� l



��
:

As we explain in the online appendix, exponential preferences allow to reduce

the dimension of the state space in the recursive formulation. We set the

coe¢ cient of absolute risk aversion,  , equal to 10. Numerical simulations are

re-scaled so that consumption ranges from 0:1 to 1 implying that relative risk

aversion ranges from 1 to 10 when  = 10. The elasticity parameter, , is set
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to 3 with the Frisch elasticity of labor supply then " = 1= ( � 1) = 0:5. The

annual discount factor is � = 0:9804 and the marginal rate of transformation

across years is � = 1:02 so that the social planner at the solution of the optimal

program chooses not to transfer resources between periods.

Finally, in the benchmark analysis we assume that the social welfare cri-

terion is utilitarian. We discuss the implications of relaxing this assumption

later in the section.

Results. Given the parameters of the calibrated model and the empirically

estimated skill distributions, we proceed to solve the model numerically by

exploiting the recursive formulation of the dual problem. Figure 2 presents

the results of numerical simulations. Consider �rst panels A and B. Panel A

displays labor distortions at the initial age of 25 and at ages 27, 35, 45, 55,

and 65 for the agent with a history of shocks up to that period such that

in each previous period he had income of $50; 000. Panel B displays labor

distortions at the same ages for the agent with a history of shocks up to that

period such that in each previous period she had income of $150; 000. Both

for agents with $50; 000 and $150; 000 income histories, the lowest, dotted line

is the unconditional labor wedge at the initial age of 25, which is identical

in both panels, and generally higher lines represent distortions at older ages.

These two examples correspond to the two examples (for each age group) of

the estimated conditional distributions of skills in Figure 1.

There are several key features of interest with the labor wedge results.

First, both for the agent with the history of $50; 000 incomes and for the agent

with the history of $150; 000 incomes, the average conditional labor wedges are

increasing with age. This is consistent with our theoretical �ndings where the

provision of incentives dynamically allows to lower labor wedges early in life.

The planner then wants to distort the provision of the incentives in the future,
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Figure 2: Labor and capital distortions with persistent shocks

and therefore to distort the intertemporal margin. The further away the agents

from the end of the working life, the bigger are the planner�s opportunities

to distort the intertemporal margin which also relates to our analysis of the

lifetime savings distortion. This allows the planner to substitute the labor

wedge for the intertemporal wedge. As agents near the end of the working life,

the power of the intertemporal distortions decreases, and the labor wedges are

higher.

Second, the conditional labor wedges for an agent with a history of $50; 000

incomes are generally lower, especially at older ages, than those for an agent
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of the same age with a history of incomes of $150; 000. In particular at age

65, the distortions for an agent with a $50; 000 income history start from 0:16

and increase to 0:33 at $150; 000 current income before decreasing to 0:27 at

$300; 000 current income. The distortions for an agent with a $150; 000 income

history start from 0:36 and increase to 0:43 at $150; 000 current income before

decreasing to 0:34 at $300; 000 current income. There are two forces driving

these di¤erences that follow from the discussion in the theoretical analysis:

(i) the additional redistribution over time implied by the persistent shocks

and (ii) the di¤erences between conditional and unconditional distributions

of skills as well as the di¤erences in conditional distributions among agents,

speci�cally between those with a history of relatively low incomes and those

with a history of relatively high incomes as is evident from the discussion of

the examples in Figure 1 above.

Third, consistent with Proposition 2, the labor wedge decreases for the high

incomes at every age for any history. Figure 2 shows this for two particular

histories of $50; 000 incomes and $150; 000 incomes with the decrease in wedges

at all ages for incomes above $150; 000.

Next, consider capital wedges in panels C and D of Figure 2. Panel C

presents capital distortions between the initial age of 25 and age 27, and

between ages 33-35, 43-45, 53-55, and 63-65, with generally lower lines repres-

enting younger ages, for the agent with a history of shocks up to that period

such that in each previous period he had income of $50; 000. Panel D dis-

plays savings distortions at the same ages, once again with generally lower

lines representing younger ages, for the agent with a history of shocks up to

that period such that in each previous period she had income of $150; 000. In

both examples, the conditional savings distortions are generally increasing in

current period realization of income as well as with age. The distortions are
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close to zero for current incomes below $50; 000. For the agents with a history

of $50; 000 incomes, savings distortions at current income of $300; 000 reach

as high as 0:06 at ages 25-27 and 0:34 at ages 63-65. For the agents with a

history of $150; 000 incomes, savings distortions reach at current income of

$300; 000 as high as 0:07 at ages 25-27 and 0:39 at ages 63-65.

Welfare losses from simple tax policies. Farhi and Werning (2010)

solve a dynamic model with idiosyncratic shocks and argue that in their para-

metrization the fully optimal non-linear tax system can be well approximated

by simpler linear taxes when the social planner is utilitarian. We use a dif-

ferent stochastic process for skills and assume di¤erent preferences. Still, as

�gure 2, the optimal history-dependent non-linear labor distortions appear to

be mostly �at. Next, we explore the magnitude of welfare losses in our model

from using simpler tax instruments.

A natural benchmark for comparison is optimal linear taxes. We keep

optimal savings distortions and transfer all revenues lump sum back to the

agents. First, consider the case of the utilitarian social planner. Using optimal

age-dependent linear labor wedges instead of the constrained optimal wedges

results in a welfare loss of 0:9% of consumption equivalent. Using optimal

age-independent labor distortions increases the welfare loss to 1:6%. While

these magnitudes are non-trivial, linear taxes can still yield reasonably good

policies.

The result that welfare gains from non-linear taxes are small for utilitarian

social planner has parallels in the static Mirrlees models. Mirrlees (1971),

Atkinson and Stiglitz (1976), Tuomala (1990) also found in numerical simula-

tions that the optimal labor distortions appear to be mostly �at in this case.

They also argued that as the importance of nonlinearities increases, the social

planner becomes more redistributive. To investigate this in dynamic settings,
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we compute the welfare gains of using optimal policies when the social planner

is Rawlsian. The optimal age-dependent linear labor wedges yield a welfare

loss of 4:6% of consumption compared to the constrained optimum. The op-

timal age-independent labor wedges yield a welfare loss of 5:1%. We conclude

that the welfare gains of using optimal non-linear policies are signi�cant.

4 Conclusion

In this paper, we take a step toward reconciling two literatures: the dynamic

optimal taxation literature and the classic static optimal taxation literature.

We show that a dynamic optimal taxation model shares many similarities

with the static model with two goods. A suitably written recursive formu-

lation of the dynamic model separates the analysis as one involving utility

of consumption (and labor) today and the future utility over transferred re-

sources. This allows one to use the insights of the static literature to study

the optimal dynamic labor and savings wedges and extend the analysis of the

forces behind the optimal wedges in Diamond (1998) and Saez (2001) to the

dynamic settings. We show that while there are many similarities, the dynam-

ics importantly alters the prescription of the static optimal taxation literature.

Perhaps, the most important di¤erence is that while the static literature pre-

scribes labor taxes to be as high as 50-70% for the high skilled individuals in

the calibrated models, in the dynamic settings the labor wedge tends to zero

for the high skilled. Other important di¤erences include the use of conditional

rather than unconditional distribution of skills, an ability to use intertemporal

distortions to lower labor wedges, especially, early in the life of the agents,

and the behavior and implications for the savings distortions not present in

the static models.
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Importantly, we calibrate our model by estimating the skill distribution

and its evolution over the lifetime as this is one of the key determinants of

the dynamic labor and savings distortions. We compute optimal labor and

savings distortions and �nd them signi�cantly di¤erent from the static ones.

As such, we conclude that while conceptually one can think of the dynamic

optimal taxation model in its recursive form as of a static model with two

goods, the dynamics adds important insights that signi�cantly change the

policy prescriptions.

Conesa, Kitao, and Krueger (2009) take a di¤erent approach to the analysis

of the dynamic optimal taxation models. They study tax reforms and the

optimal taxes within a set of the parametrically restricted tax functions. One

advantage of that approach over solving for the full informationally constrained

optimum is that it is computationally more feasible and allows one to study

optimal taxes which are most commonly used in practice. Our paper points

out to the elements that may be important in choosing the parameters of such

functions.

5 Appendix

To keep our analysis here succinct, let x = (c; y), p = (1;�1)0, pc = 1, py = �1,

and use shorthand notation for utility U (x; �) : Then a Hamiltonian to (9)

H =

�
�u

�
1� f2

f
�

�
� (px+ �V )

�
f + � [u� U � �w]� �U� � ��w2;

where �, �; ��=�, and � are the respective multipliers on (10), (11), (12), and

(13).

The �rst order conditions are as follows: with respect to good j 2 fc; yg:

� fpj � �U�j = �Uj; (31)
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with respect to u

�

�
1� f2

f
�

�
f + � = �0; (32)

with respect to w and w2 (where we use V1 and V2 to denote relevant cross

partial derivatives)

� �V1;t+1f = ��; (33)

and

� �V2;t+1f = ��: (34)

Also, note that the envelope theorem implies that

V1;t+1 = �t; V2;t+1 = ��=�t: (35)

Use (31) for c to �nd � and substitute it into (31) for y�
pc
Uy
Uc
� py

�
f = �

�
Uy� �

Uy
Uc
Uc�

�
= ��Uc

�

Uy
Uc

�
1 +

1

"

�
:

Since pc
Uy
Uc
� py = � y; it implies that

� y

1� � y
=

�
1 +

1

"

�
Uc

�

�f
: (36)

This expression shows that if U satis�es Assumption 1 then the sign of � y

is equal to the sign of �: The expression for the multiplier � can be obtained

by integrating (32) with a boundary condition �(0) = 0: By substituting �

from the FOCs for w or c; we show in the online appendix that

� =

Z �

0

"
�

 
1� f2(�̂)

f(�̂)
�

!
� �

�
V1(�̂)

#
f(�̂)d�̂ (37)

=

Z �

0

 
�

 
1� f2(�̂)

f(�̂)
�

!
� 1

Uc(�̂)

!
exp

�
�
Z �

�̂

Uc�(�
0)

Uc(�
0)
d�0
�
f(�̂)d�̂
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As we already discussed, it is di¢ cult to determine the sign of � and �: The

analogous problem arises in the static model with multiple goods, as explained

by Mirrlees (1976). Similar to that literature, we focus on the case of � � 0

and � � 0. In the online appendix we show that these assumptions are indeed

satis�ed if preferences are separable or shocks are i.i.d.

We characterize the savings distortions �rst. It is useful to characterize the

distortion �w, de�ned as

1� �w � � �
�
V1Uy: (38)

This is a wedge between the marginal cost of labor today and the marginal

cost of providing one util to this agent tomorrow. Use the �rst order conditions

(31) and (33) to obtain �
1� �

�
V1Uc

�
f = ��Uc�: (39)

Since Uc� = Ucl
�
� y
�2

�
� 0;

�

�
V1;t+1Uc;t � 1: (40)

We can also rewrite (39) as

�
1� �

�
V1 (�Uy)

Uc
�Uy

�
=
�Uc
�f

Ucl
Uc

�y
�

�
:

Substitute (36) and the de�nitions of � y and �w and re-arrange

�w =

�
1 +

"

"+ 1

Ucl
Uc

�y
�

��
� y: (41)

This is the expression (27) in the body of the paper. Since the expression in

square brackets is greater than 1, this implies that �w � � y (see the online

appendix for details).

When Ucl = 0 this expression implies the Inverse Euler Equation. To see

this consider the the second line of (37). The boundary condition �(1) implies

31



that � =
R1
0

1

Uc(�̂)
f(�̂)d�̂. The envelope condition (35) gives the expression for

�; so that V1;t+1 = Et (Uc;t+1)�1 : Combine it with (40) (which holds with

equality in separable case) to get �
�
Et Uc;t

Uc;t+1
= 1:

We now characterize the lifetime saving distortion. Use the �rst line of

(37) with the boundary condition �(1) = 0 to get
�

�
EtV1;t+1 = �t = V1;t (42)

where the second equality follows from (35). Since V1 = 1=Hr; this equation

implies (26).

We now ready to prove Proposition 1. When there is no labor supply

in the last period, then U(cT ; 0) = w and VT (w) = U�1(w; 0): Therefore,

V1;T =
1

Uc(cT ;0)
: Use (42) to show that

V1;t =
�

�
Et fV1;t+1g =

�
�

�

�2
Et fEt+1 fV1;t+2gg = � � � =

�
�

�

�T�t
Et
�
1

Uc;T

�
:

Then (40) implies that

1 �
�
�

�

�T�t
Uc;tEt

�
1

Uc;T

�
; for all t;

which by Jensen�s inequality implies that

1 �
�
�

�

�T�t
Uc;t

Et fUc;Tg
;

and proves Proposition 1.

We now explore the determinants of the labor wedges. A key term in (36)

is Uc (�)�(�). Use the second line of (37) and the boundary conditions on �

to determine Uc�:

Uc (�)�(�)

= Uc (�)

Z 1

�

(
1

~Uc(�̂)

 
1� �

 
1� f2(�̂)

f(�̂)
�

!
Uc(�̂)

!

� exp
"Z �̂

�

Uc�(�
0)

Uc(�
0)
d�0

#
f(�̂)

)
d�̂
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=

Z 1

�

(
exp

"
�
Z �̂

�

@ lnUc(�
0)

d�0
d�0

# 
1� �

 
1� f2(�̂)

f(�̂)
�

!
Uc(�̂)

!

� exp
"Z �̂

�

Uc�(�
0)

Uc(�
0)
d�0

#
f(�̂)

)
d�̂

=

Z 1

�

8<:exp
24Z �̂

�

Uc� �
�
Ucc(�

0) _c+ Ucl _l
�

Uc(�
0)

d�0

35
�
 
1� �

 
1� f2(�̂)

f(�̂)
�

!
Uc(�̂)

!
f(�̂)

)
d�̂:

Use u0(�) = Uc _c+Ul _l+�w1+�w2 and (10) to derive _c =
h
U� � Ul _l � �w1

i
=Uc:

This implies that

Z �̂

�

Uc� �
�
Ucc(�

0) _c+ Ucl _l
�

Uc(�
0)

d�0

=

Z �̂

�

��
Uc�
Uc

� UccU�

(Uc)
2

�
�
�
Ucl
Uc
� UccUl

(Uc)
2

�
_l + �

Uccw1

(Uc)
2

�
d�0

=

Z �̂

�

��
l
UccUl

(Uc)
2 � l

Ucl
Uc

�
_y

y
+ �

Uccw1

(Uc)
2

�
d�0:

Following Saez (2003) we can show that
�
lUccUl
(Uc)

2 � lUcl
Uc

�
= �c��u

�c
and obtain

the expression for the labor wedge (29).

We now proceed to the proof of Proposition 2. If
�
1� f2(�̂)

f(�̂)
�
�
� 0; for

all �̂; or if
�
1� �

�
1� f2(�̂)

f(�̂)
�
�
~Uc(�̂)

�
is bounded from above, then expression

(29) implies that � y is bounded away from 1: With quasi-linear preferences

h0(l) = (1� � y) �: (43)

Therefore, as � y is bounded away from 1, l(�) ! 1. Suppose � y does not

converge to zero. Then, since � y is bounded from above, condition (43) implies

that l ! 1: When U is of the form (30), Ucl=Uc = �Ucc
Uc

h0 = �Ucc
Uc
(1� � y) �:

Since �Ucc
Uc

is bounded away from zero, this expression becomes arbitrarily large
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for some � when � y does not converge to zero. From (41) this implies that

from some �, �w(�) > 1: However, since Uy � 0 and V1 � 0; expression (38)

implies that �w(�) � 1 for all �; which leads to a contradiction.
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A Appendix For Online Publication

A.1 Proof of Lemma 1

Note that given any solution u� (�) following a sequence of reports
�
�t�1; �

�
;

we can construct

!
�
�j�̂
�
=

Z 1

0

u�
�
�t�1; �; s

�
ft+1

�
sj�̂
�
ds:

We can re-write (6) as

max
�̂
V
�
�̂; �
�
� max

�̂
U
�
c(�̂); y(�̂); �

�
+ �!(�̂j�):

If �̂ = � is a local maximum for all �; then

Uc

�
c(�̂); y(�̂); �̂

�
c0
�
�̂
�
+ Uy

�
c(�̂); y(�̂); �̂

�
y0
�
�̂
�
+ �!1(�̂j�̂) = 0, for all �̂,

(44)

or equivalently

Uc

�
c(�̂); y(�̂); �̂

�
y0
�
�̂
�

�

24 c0
�
�̂
�

y0
�
�̂
� + Uy

�
c(�̂); y(�̂); �̂

�
Uc

�
c(�̂); y(�̂); �̂

� + �
!1(�̂j�̂)
y0
�
�̂
� 1

Uc

�
c(�̂); y(�̂); �̂

�
35 = 0; for all �̂:

Note that from (44) and assumptions 1 and 5 y0 � 0:

We argue next that for any ��; V1
�
�̂; ��

�
� 0 for all �̂ < ��; and V1

�
�̂; ��

�
�

0 for all �̂ > ��; which establishes the lemma. Di¤erentiating V, one obtains

V1
�
�̂; ��

�
= Uc

�
c(�̂); y(�̂); ��

�
c0
�
�̂
�
+ Uy

�
c(�̂); y(�̂); ��

�
y0
�
�̂
�
+ �!1

�
�̂j��

�
= Uc

�
c(�̂); y(�̂); ��

�
y0
�
�̂
�

�

24 c0
�
�̂
�

y0
�
�̂
� + Uy

�
c(�̂); y(�̂); ��

�
Uc

�
c(�̂); y(�̂); ��

� + �
!1

�
�̂j��

�
y0
�
�̂
� 1

Uc

�
c(�̂); y(�̂); ��

�
35

i



= Uc

�
c(�̂); y(�̂); ��

�
y0
�
�̂
�

�

248<:Uy
�
c(�̂); y(�̂); ��

�
Uc

�
c(�̂); y(�̂); ��

� � Uy

�
c(�̂); y(�̂); �̂

�
Uc

�
c(�̂); y(�̂); �̂

�
9=;

+
�

y0
�
�̂
�
0@ !1

�
�̂j��

�
Uc

�
c(�̂); y(�̂); ��

� � !1

�
�̂j�̂
�

Uc

�
c(�̂); y(�̂); �̂

�
1A35

The term in curly brackets takes the sign of �� � �̂ for any utility func-

tion that satis�es assumption 1. If �� � (�)�̂; then Uc
�
c(�̂); y(�̂); ��

�
� (�

)Uc

�
c(�̂); y(�̂); �̂

�
, which, together with the assumptions that y0 � 0 and w1 is

increasing in the second argument, implies that the second term in the square

brackets also takes the same sign as �� � �̂: Since uc > 0 and y0 � 0; this

establishes that V1
�
�̂; ��

�
has the sign of �� � �̂:

A.2 Proof of Lemma 2

Consider a Hamiltonian to (9) and use (13) to substitute for w(�)

H = �
�
c (�)� y (�) + �Vt+1

�
��1 (u(�)� U(c(�); y(�)=�)) ; w2(�); �

��
ft (�j��)

+�(�)

�
Ul(c(�); y(�)=�)

�
�y (�)

�2

�
+ �w2 (�)

�
�pu (�) f (�j��)� p2u (�) f2(�j��)

= �
�
c (�)� y (�) + �Vt+1

�
��1 (u(�)� U(c(�); y(�)=�)) ; w2(�); �

��
ft (�j��)

+�(�)

�
Ul(c(�); y(�)=�)

�
�y (�)

�2

�
+ �w2 (�)

�
�
�
1 +

p2
p

f2(�j��)
f (�j��)

�
pu (�) f (�j��)

and let (c�; y�; w�2; �
�; p�; p�2) be a solution. Let � = �p�2=p�: Using direct

substitution it is straightforward to verify that (c�; y�; w�2; �
�; p�2) is a solution

to a Hamiltonian for (15).
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A.3 Analysis

Here we proved some additional results we referred to in Section 2 and in the

Appendix.

Lemma 3. Suppose that Assumptions 1, 5, and 6 hold.

(i) If either shocks � are independent over time; or Ucl = 0; or V1 � 0;

then � � 0;

(ii) If shocks to � are independent over time; or assumption 4 is satis�ed

and Ucl = 0; or assumption 4 and V1 � 0 and is increasing in �; then � � 0.

Proof. We prove part (i) �rst. Substitute (33) into (32) (with independent

shocks f2 = 0).

�

�
1� f2

f
�

�
f � �

�
V1f = �0:

Integrate using the boundary condition �(0) = 0

�(�) =

Z �

0

"
�

 
1� f2(�̂)

f(�̂)
�

!
� �

�
V1(�̂)

#
f(�̂)d�̂: (45)

Use the other boundary condition �(1) = 0 to get

� =

Z 1

0

�

�
V1(�̂)f(�̂)d�̂; (46)

where we used the fact that
R1
0
f2(�̂)d�̂ = 0: V1 � 0 implies that � � 0:

Alternatively use the �rst order condition for c, (31), to substitute into

(32) and integrate

�(�) =

Z �

0

 
�

 
1� f2(�̂)

f(�̂)
�

!
� 1

Uc(�̂)

!
exp

�
�
Z �

�̂

Uc�(�
0)

Uc(�
0)
d�0
�
f(�̂)d�̂: (47)

The boundary condition �(1) = 0 implies that

� =

R1
0

1
~Uc(�̂)

exp
h
�
R1
�̂

Uc�(�
0)

Uc(�
0) d�

0
i
f(�̂)d�̂R1

0

�
1� f2(�̂)

f(�̂)
�
�
exp

h
�
R1
�̂

Uc�(�
0)

Uc(�
0) d�

0
i
f(�̂)d�̂

: (48)
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When shocks are independent, f2 = 0 and � > 0. When Ucl = 0, then

Uc� = 0 and therefore this expression becomes

� =

R1
0

1
~Uc(�̂)

f(�̂)d�̂R1
0

�
1� f2(�̂)

f(�̂)
�
�
f(�̂)d�̂

=

Z 1

0

1

Uc(�̂)
f(�̂)d�̂ > 0:

Next we turn to part (ii). First, suppose that shocks are independent.

By Assumption 5 w(�) is increasing and therefore by assumption 6 V1(�) is

increasing in �: Choose �� s.t. � = �
�
V1(��): Therefore � � �

�
V1(�) � 0 for

all � � �� and then (45) together with f2 = 0 implies that �(�) � 0 for all

� � ��: Now consider � � ��: Since �(1) = 0; we can write �(�) as �(�) =R1
�

�
�
�
V1(�̂)� �

�
f(�̂)d�̂: The expression in the brackets is positive for all �̂ �

��; and therefore �(�) � 0 for � � ��:

Next, suppose that shocks are persistent, assumption 4 is satis�ed and V1

is increasing in �: Consider period 1 �rst. In period 1 �t=1 = 0 by the de�nition

of the recursive problem, and equation (45) takes the form

�(�) =

Z �

0

�
�G0(u(�))� �

�
V1(�̂)

�
f(�̂)d�̂:

Since Ft exhibits �rst order stochastic dominance, u(�) must be increasing

in � and hence G0(u(�)) decreases in �: If V1 is increasing in � we can apply

the same arguments as in i.i.d case to show that �t=1 � 0. Since �t=1 � 0;

the �rst order condition for w2, (34) implies that V2 � 0 which implies from

the equation (35) that �t=2 � 0: Since f satis�es assumption 4,
f2;t=2(�)

ft=2(�)
�t=2 +

�
�
V1;t=2(�) is increasing in �. Then we choose �� such that � =

f2;t=2(��)

ft=2(��)
�t=2 +

�
�
V1;t=2(��) and apply the arguments of the previous paragraph to show that

�t=2 � 0. By iteration we then establish this argument for all t:

Finally, suppose that shocks are persistent, assumption 4 is satis�ed, and

Ucl = 0: In this case, by assumption 5, 1=Uc(�) is increasing in �: Since Uc� = 0
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we can apply the same arguments as in the previous paragraph to equation

(47).

We state the following lemma to conclude this part of the discussion.

Lemma 4. Suppose assumptions 1, 5, 6 are satis�ed. Then � y � 0 if and

only if � � 0:

Lemma 5. Suppose assumptions 1, 2, 5, and 6 are satis�ed. Suppose that

� � 0: Then �w � � y:

Proof. Since � � 0 by Lemma 4, � y � 0. Assumption 2 implies that " > 0

and Assumption 1 that Ucl=Uc � 0; therefore �w � � y:

A.4 Calibration, estimation, and computation

This section follows the general outline of the quantitative analysis section but

�lls in the details to provides a more complete description of the estimation

and computation strategies we used.

Calibrated model. We model a life cycle of 40 years of working life,

i.e., the individuals between the ages of 25 and 65. The parameters of the

calibrated model are summarized in Table 1. Recall that we set the coe¢ cient

of absolute risk aversion,  , equal to 10. Numerical simulations are re-scaled

so that consumption ranges from 0:1 to 1 implying that relative risk aversion

ranges from 1 to 10 when  = 10. The elasticity parameter, , is set to 3

with the Frisch elasticity of labor supply then " = 1= ( � 1) = 0:5. The

annual discount factor is � = 0:9804 and the marginal rate of transformation

is � = 1:02 so that the social planner at the solution of the optimal program

chooses not to transfer resources between periods.

Empirical strategy. Our main data source is the PSID. We use the data
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Table 1: Parameters Of The Calibrated Model

Parameter (explanation) Value Notes

 (absolute risk aversion) 10 consumption ranges from 0.1 to 1,

implying relative risk aversion

ranges from 1 to 10

 (elasticity) 3 Frisch elasticity of labor supply 0.5

� (discount factor) 0.9804

� (marginal rate of 1.02 1=�, no transfer of resources

transformation) between periods

a1 (age at t = 1) 25

aT (age at t = T ) 65 model 40 years of work life

waves from 1990 onward to the latest currently available data wave, 2006.

Table 2 presents summary statistics for the PSID waves we use. Recent waves

(from 1996) come in two year intervals, hence we consider a total of nine waves

with two years in between. To be consistent with the data, we let one period

in the model correspond to two years, i.e., T = 20 since we model 40 year of

working life.10

Labor income, yi;year, is obtained directly from the PSID waves, converted

to constant 1990 dollars, and is summarized in Table 2. We consider total labor

income, which is a sum of a list of variables in the PSID that contain data

on salaries and wages, separate bonuses, the labor portion of business income,

overtime pay, tips, commissions, professional practice or trade payments, mar-

10We check that our results are robust when the number of periods is doubled to T = 40.

When we take one period in the model to be 2 years, the discount factor is �2 and the

marginal rate of tranformation between periods is �2.
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Table 2: Summary Statistics Of The PSID Waves

Age Labor Income

Number Standard Standard

Year of Individuals Mean Deviation Mean Deviation Maximum

1990 4718 38.0 11.4 26,668 26,380 550,000

1992 4936 38.4 11.5 27,411 28,869 759,259

1994 5312 38.7 11.2 27,922 31,537 789,503

1996 5437 39.0 11.3 27,820 29,843 581,612

1998 5785 39.5 11.6 29,405 35,284 1,140,000

2000 6162 39.6 11.9 30,828 38,883 869,699

2002 6362 40.1 12.1 30,832 51,943 2,536,232

2004 6346 40.4 12.5 31,332 54,235 2,054,795

2006 6490 40.6 12.8 31,081 45,965 2,051,282

Notes: The year entries correspond to the year of the data origin of PSID waves. Individuals

are heads of households and their spouses or long-term cohabitants separately. Labor income

is total labor income of an individual, e.g.,.in 2006 it is the sum of PSID variables ER40921

(which is in turn a sum of several variables) and ER40900.

ket gardening, additional job income, and other miscellaneous labor income.

As Table 2 illustrates, mean real total labor income grows about 8.5% over

the sixteen years considered or at about 0.5% per year. The variance of labor

income increases by 0.3% over the same period.

E¤ective marginal tax rates, T 0year (yi;year), are estimated for each individual

with TAXSIM. TAXSIM is a FORTRAN program of the National Bureau of

Economic Research for estimating individual e¤ective liabilities under U.S.
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Table 3: Estimated Marginal Tax Rates and Implied Skills

Estimated E¤ective

Marginal Tax Rate Implied Skill, �

Standard Standard

Year Mean Deviation Mean Deviation

1990 21.7 8.7 2.0 1.2

1992 20.4 9.4 2.1 1.3

1994 22.7 11.1 2.2 1.4

1996 21.5 10.9 2.3 1.4

1998 21.5 11.0 2.4 1.6

2000 22.3 10.7 2.6 1.8

2002 20.9 10.9 2.7 2.0

2004 19.1 10.8 2.8 2.1

2006 19.2 10.9 2.9 2.1

Notes: E¤ective marginal tax rates are estimated using TAXSIM.

Implied skills are computed from individual optimality conditions as described in the text.
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Federal and State income tax laws from individual data.11 For each individual

with labor income we also have in the PSID a collection of personal data that

are in most cases su¢ cient to estimate individual and year speci�c e¤ective

marginal tax rates. Speci�cally, we input into TAXSIM for each individual

their wage and salary income, wage and salary income of their spouse, di-

vidend income, other property income (e.g., interest), taxable pensions and

social security bene�ts, other transfers (e.g., welfare), unemployment com-

pensation, whether the individual is older than 65, state of residence, marital

status, number of dependents, and tax year. The estimated e¤ective marginal

tax rates for the individuals in the PSID waves are summarized in Table 3.

Notably, mean of the e¤ective marginal tax rate remains (except in 1992) close

to 22% until 2000 and then falls to 20.9 in 2002, 19.1 in 2004, and 19.2 in 2006.

Finally, we use the constructed total individual labor incomes and the

estimated e¤ective marginal tax rates to compute implied skills as described

above. Table 3 provides summaries for each of the PSID waves we consider.

Thus we obtain a data set of implied skills based on empirical U.S. micro

data with the details of our data set sample size provided in Table 4. When

using PSID waves, we treat heads of households and their spouses or long-

term cohabitants as separate observations. We �rst restrict the sample to

include only individuals with the total labor income of at least $1; 000 in

1990 dollars and with at least 250 total hours worked in a year. Excluding

individuals that do not have enough data in the PSID to estimate e¤ective

marginal tax rates with TAXSIM results in a sample of 50,624 individuals total

from all waves. We also check our results for robustness with an alternative

sample where individuals older than 65 are excluded. Considering only those

with enough data for TAXSIM results in an alternative sample of just above

11For more details and to use the program freely see http://www.nber.org/~taxsim/.
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Table 4: Sample Sizes

Sample Restriction Sample Size

At least 250 hours worked, $1,000 income 51,548

- enough personal information for TAXSIM 50,624

Younger than 65 50,277

- enough personal information for TAXSIM 49,396

In at least two adjacent waves

(i.e. at least one skill "transition") 27,664

- younger than 45 20,410

- 45 or older 7,254

Initial young 8,387

- enough personal information for TAXSIM 8,231
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Table 5: Labor Income, Tax Rates, And Skills Of The Initial Young

Standard

Statistic Mean Deviation

Labor Income 23,963 19,929

Estimated E¤ective Marginal Tax Rate 19.3 11.0

Implied Skill, � 2.2 1.2

Notes: Labor income is total labor income of an individual

from the PSID. E¤ective marginal tax rates are estimated

using TAXSIM. Implied skills are computed from individual

optimality conditions as described in the text.

forty nine thousand. In contrast, to estimate conditional distributions used

in this section, we use the panel characteristic of the PSID �we consider all

individuals that appear in at least two adjacent waves, that is the individuals

for whom we observe at least one skill "transition".12 We have a total of 27,664

skill transitions. To estimate the initial unconditional distribution of skills we

consider a cross section of 25 year old from all waves to obtain a usable sample

of 8,231. Summary statistics for this last subsample are provided in Table 5.

Estimation approach. As mentioned in the body of the paper, we start

by estimating the initial unconditional distribution of implied skills among

the initial young workers, F1 (�). We consider the 25 year old from all of

the PSID waves to obtain the sample of 8,231 observations described above

and summarized in Table 5. We estimate F1 (�) non-parametrically using a

12The PSID is not a balanced panel - an individual may appear in one wave, stay for

one or more waves, and then disappear. Our data points are all of the separate individual

wave-to-wave skill transitions.
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kernel density estimation. We use the normal kernel function and R+ as the

support. The resulting distribution is shown as "initial young, unconditional"

distribution depicted by a dotted line in Figure 1.

To estimate conditional distributions Ft (�j�_), i.e., transition probabil-

ities, we exploit the panel feature of the PSID. We start by considering all

individual skill transitions between adjacent data waves to obtain 27,664 trans-

itions as shown in Table 4. Furthermore, we break all these skill transitions

into two age groups �when the individual is younger than 45 at the begin-

ning of the transition and when the individual is 45 or older at the beginning

of the transition. This gives samples of 20,410 "young" skill transitions and

7,254 "old" skill transitions. We therefore estimate two separate conditional

distributions Fyoung (�j�_) and Fold (�j�_). Hence we assume age dependence

between the age groups and age-independent transitions within each age group.

In other words, we allow younger individuals to experience di¤erent transition

probabilities than older individuals; within each age group, we assume age-

independent transition probabilities.13 We estimate each conditional distri-

bution non-parametrically using a kernel density estimation with the normal

kernel function and R+ as the support.

Computational strategy. To be able to numerically solve the problem of

this size and complexity (i.e., with multitude of periods and correlated shocks)

we exploit the recursive structure of the dual formulation of the planner�s

problem analyzed in Section 1. Hence we need to solve a �nite horizon discrete

time dynamic programming problem with a three-dimensional state vector

13We stop at just two age groups to have su¢ cient number of data points to estimate

all conditional distributions. There is nothing in our computational solution method that

would stop us from having a di¤erent transition matrix for each period, provided that we

had enough data to obtain those transition matrices.

xii



which is continuous in each dimension. We proceed in three stages.

The �rst stage is a value function iteration. We start from period T and

proceed by backward induction. First, we solve period t = T problem for a

�xed set of values of the state vector and compute VT for each of then. Then

we can approximate VT and proceed to period t = T � 1 where we use the

approximation as the basis for the interpolation of VT to any value of the state

vector to solve for VT�1. We continue until we compute V1. Speci�cally, with

the exponential preferences we can show that

Vt (ŵ; ŵ2; ��) = at(�
ŵ2
ŵ
j��)�

1 + � + :::+ �T�t

 
ln (�ŵ)

and in particular

VT (ŵ; ŵ2; ��) = aT

�
�ŵ2
ŵ
j��
�
� 1

 
ln(�ŵ):

This means two things for our computations. First, if we discretize the type

space �, we only need to consider ŵ and ŵ2
ŵ
as the state variables for each type.

That is, our state space is discretized in skill dimension and is continuous in the

other two dimensions. Second, we do not need to approximate Vt as a whole,

rather we only need to approximate at, which signi�cantly improves the quality

of the approximation of Vt. We approximate at�s using a shape-preserving

least absolute deviation (LAD) method with Chebyshev polynomials. The

evaluation nodes are chosen as the roots of Chebyshev polynomials.14 The

policy functions are similarly approximated at this stage. With our preferences

14For more on this, see e.g. Judd (1996) and Judd (1998).
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it can be shown that

ct(ŵ; ŵ2; ��) = act

�
�ŵ2
ŵ
j��
�
� 1

 
ln(�ŵ)

yt(ŵ; ŵ2; ��) = ayt

�
�ŵ2
ŵ
j��
�

wt(ŵ; ŵ2; ��) = awt

�
�ŵ2
ŵ
j��
�
ŵ

w2t(ŵ; ŵ2; ��) = aw2t

�
�ŵ2
ŵ
j��
�
ŵ:

Once again, we approximate act�s, a
y
t�s, a

w
t �s, and a

w2
t �s using a shape-preserving

LAD method with Chebyshev polynomials and the evaluation nodes at Cheby-

shev roots.

To compute the full constrained optimal allocation, we need to �nd w0

such that V1 (w0) = 0. This is the second stage. Given V1 computed in the

�rst stage, we search for an interval containing zero using binary jumps. Then

we converge to w0 with bisection (binary search).15

The third stage is to compute optimal labor and savings distortions. Since

policy functions were approximated during the �rst stage, given Vt�s and w0

from the �rst two stages, we can now generate the optimal allocations by

forward induction. We start with w0 computed in the second stage and roll

out the solution from period t = 1 all the way to period t = T . Optimal labor

and savings distortions are computed from their de�nitions in equations (17)

and (18) respectively.

Finally, we verify ex post that the �rst-order approach is valid. We verify

within small numerical error bounds the su¢ cient conditions discussed above

in the context of optimization problem (9) and with formal arguments in the

Appendix. In particular, in addition to preferences described by the utility

15The rate of convergence for bisection is, admittedly, only linear, however, what is im-

portant here is guaranteed convergence.
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function U that satis�es single crossing property, we numerically verify that

output satis�es y0 (�) � 0 and promised utility satis�es !1
�
�̂j�
�
� 0 and

!12

�
�̂j�
�
� 0. These conditions are straightforward to verify numerically

within the value function iteration.16

For this three-stage computational procedure to be feasible it is essential to

have an e¢ cient and robust optimization algorithm to solve all of the separate

period t mechanism design problems of each stage at each node.17 We solve

each problem using an implementation of the interior-point optimization al-

gorithm with conjugate gradient iteration to compute the optimization step.18

Conjugate gradient iteration o¤ers a way of dealing with possible Jacobian and

Hessian singularities. The interior-point approach is one of the most e¢ cient

and stable methods that are currently available for solving large nonlinear op-

timization problems. The interior-point algorithm uses a trust-region Newton

method to solve the barrier problem and an l1 penalty barrier function. We

�nd that the interior-point algorithm provides a good approximate estimate

of the solution and the optimal set of active constraints. To compute accur-

16As an additional check, we also veri�ed su¢ ciency using the "brute force" approach:

once the solution is found, we check that there are no global deviations.
17The main reason is that a mechanism design problem is a bi-level maximization prob-

lem (alternatively, a mathematical programming problem with equilibrium constraints).

The outer-level maximization of the planner has to take into account the best response of

the agents, which is the outcome of the inner-level maximization of each agent type with

respect to the type reported. In other words, incentive constraints are individual agent

type maximization problems with type report as a choice variable. We follow the usual

convention of computationally approaching these types of problems (e.g. Judd (1998)) by

writing the incentive constraints as inequalities (without relying on simplifying the incentive

compatibility constraints with the envelope theorem) as in problem (3).
18The implementation we use is KNITRO. To streamline the application of KNITRO we

use a modelling language AMPL.

xv



ate estimates of the solution, including Lagrange multipliers, we proceed to

switch to an active-set iteration that uses the output of the interior-point al-

gorithm as its input. The implementation of the active-set algorithm is based

on the sequential linear quadratic programming. Once the problem is cor-

rectly scaled, we observe quadratic convergence to a local maximum. Our

globalization strategy is to explore multiple feasible starting points.
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