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SYMMETRIC DUALITY AND POLAR PRODUCTION FUNCTIONS

GIORA HANOCH*

The Hebrew University of Jerusalem

1. Introduction

The Shephard-Uzawa-McFadden duality theorems' relating production
functions to cost and profit functions, may be utilized to generate new
valid functional forms for production functions and production frontiers,
or equivalently, new valid cost and profit functions. To any given
standard production relation, namely one which satisfies the conditions
for existence and uniqueness of the dual, there corresponds at least one
other standard production relation, which satisfies the same require-
ments, but may exhibit rather different specific patterns. This process of
getting “two for the price of one” in the search for useful functional
forms is made possible by reformulating the duality relations in a
perfectly symmetric way. The process has been applied before to
production as well as to consumer demand theory — although it seems to
have never been formalized and recognized as a generally valid pro-
cedure.

*This article constitutes a revision of a part of an earlier paper, “‘Generation of New
Production Functions Through Duality”, Discussion Paper No. 118, Harvard Institute of
Economic Research, April 1970. 1 am thankful to Zvi Griliches, who encouraged and
supported this research, and I have benefited from discussions with Kenneth Arrow, Erwin
Diewert, Melvyn Fuss, Dale Jorgenson, Lawrence Lau, Daniel McFadden, Michael Roth-
schild, and Christopher Sims. I am indebted to the National Science Foundation for
financial assistance (Grant No. 2762X), and to Harvard University, where I visited in
1969-70 and in 1973-74, while on leave from the Hebrew University, Jerusalem.

ISee Shephard (1953), Uzawa (1964), and McFadden (Chapter [.1). More detailed
presentations and modified proofs are in Diewert (1971, 1973a).
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As will be clarified below, the specific formulation used in the
established analysis of duality, self-duality, and related topics in utility
theory,? has unfortunately hindered the development of analogous
results in production. In particular, the choice of a utility-index
representation — which is arbitrary in the context of an ordinal utility
function — could not be carried over as it stood to cardinal production
functions, where output is measurable and non-negative.

Heuristically, given any standard production, cost, or profit function, a
standard polar cost, profit, or production function is obtained by a
transformation from the variable quantities (prices) space into the cor-
responding prices (quantities) space, using the functional form of the
dual relation for the new, polar, primal relation. Moreover, the fixed
quantity, such as output in cost minimization analysis, is transformed
into its reciprocal. In order to show this more rigorously, however, it is
necessary to modify the formulation of the duality relations, so as to get
a perfect symmetry between the primal and the dual — with exactly the
same type of restrictions on sets and on functions appearing on both
sides. This is done for cost functions in Section 2, and for profit
functions and joint-production frontiers in Section 4.

Section 3 establishes the existence and uniqueness of the polar
production and cost functions, as well as some special modifications for
homothetic production functions and for separable production frontiers.
In Section 5 similar results are stated and proved with respect to profit
functions and joint production frontiers. Section 6 discusses some
extensions and an application to various definitions of elasticities of
substitution. Examples of specific functional forms generated by this
approach are given in Chapter II.3.

2. A Symmetric Formulation of Cost and Production Functions

Suppose y = f(x) is a standard production function, satisfying the
following regularity conditions’ for existence of a unique dual cost
function C = G(y;p):

Condition I f(x) is defined for all x = {xy,...,.x,} =0 (x € £,,), and is
real, single-valued, right-continuous, non-decreasing in x, quasi-

?E.g.. in Houthakker (1965), Samuelson (1947, 1965a), and Lau (1969a).
3For a specification of these conditions and a proof, see Diewert (1971).
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concave, finite for finite x, and unbounded for at least some un-
bounded sequence {x"}, with f(0) = 0.

For any non-negative output y, the production possibilities set L(y)C
), is defined as

L(y) = {x:f(x) =y}, (1)

and satisfies the following:

Condition II* For y =0, L(y) is a non-empty, closed, convex set,
with free disposal:

X >xEL(Y)DX EL(y); y>y>L(y)CL(Y)

where for all x there exists a y’' >0 such that x€ L(y") [x is not in
L(y")]; and L(0) = Q,. If y >0, then 0 € L(y). The set {(y,x):x €EL(y)}
(the graph of L) is closed. '

Given a positive output y, it is always possible to represent uniquely
(for strictly positive vectors x > 0) the standard production set L(y), and
the production function equation f(x) =y, by a normalized equation of
the form: D(1/y:x)=1, such that the “distance function” D(1/y;x)
behaves with respect to its arguments (1/y;x) exactly in the same manner
as a standard cost function with respect to (y;p). This statement is now
formalized and proved. Define the distance function’ as follows (where
Q, is the positive orthant, £, = {x:x > 0}):

D(Q1/y:x) =sup{d:(1/d)x E L{y);x € Q,}
= sup{d:f((1/d)x) = y;x €E,}, (2)

by equation (1).

Theorem 1. If L(y) defined in equation (1) satisfies the conditions
on standard production possibilities sets (Condition II), the function
D(1/y:x) defined in equation (2) satisfies Condition III below. The
set L*(y) = {x:D(1/y;x) = 1;x € ,} coincides with the set L(y) for
x> 0:L*(y)=L(y) N,

“These are Condition I1(2.7) in Diewert (1971), with slight modifications. The notation
adopted here is: X' =x means x;=x; (all {); x’>x means X' =x and x’# x; x'>x means
x> x; (all i). x* ts the transpose of x.

SThe distance function was first used for isoquants and unit cost functions (for the
differentiable case) by Shephard (1953, p. 6). However, Shephard did not show the
symmetry with respect to y, 1/y, respectively, of the distance functions.
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Condition III® The function D(1/y;:x) is

(a) positive, real-valued, defined, and finite for all finite x>0, 1/y>
0;

(b) non-decreasing in 1/y and unbounded if 1/y is unbounded;

(¢) non-decreasing in x;

(d) positive linear homogeneous in x, for all finite 1/y > 0; i.e., if
A >0, 1/y > 0 and finite, and x> 0, then D(1/y;Ax) = AD(1/y;x);

(e) concave in x, for finite 1/y > 0.

(f) continuous from below (left-continuous) in 1/y.

Proof: (a) If x€ L(y) N,, y >0, then by definition [equation (2)] D
exists and D=1, since (x/1)EL(y). D is finite, since lim,.(1/d)x =
0 & L(y). If 0 <x & L(y), then since L(y) is not empty, there exists an x°,
such that 0 €x°EL(y). Let do= Min;{x;/x%>0; then (1/d¢)x=x" and
thus (1/dy)x € L{y), by the free disposal assumption. Thus D(1/y;x)
exists and D=d,>0. Also, D<]1; since if D=1, (1/(1—e€)x=
(1/(D — €))x € L(y), and by taking limits as € >0, the closedness of L(y)
implies that x € L(y), a contradiction. We have thus proved that D=
1< 0<x € L(y), which implies the last statement of Theorem 1:

L*(y)={x:D(1/yx)= 1;)xE€ Q,}=L(y) N,

This identity, in addition to equation (2), leads almost immediately to the
proof of Conditions ITI(b) - ITI(f):

(b) Since L(0)=Q,, and y'> y = L(y') C L(y), Condition III(b) follows
from equation (2).

(c) Follows from the free disposal assumption.

(d) D(1/y;x) is linear-homogeneous in x, since for A >0,
(1/Aad)(Ax) = (1/d)x.

(e) The convexity of L(y) implies that D(1/y;x) is quasi-concave in x.
Since D is linear-homogeneous in x, it is concave in X.

(f) The continuity from below in 1/y follows from the closedness of
the graph of L(y). Q.E.D.

It should be noted, that since L(y) is the closure of L*(y), one could
extend the definition of D(1/y;x) to all non-negative x, by assuming that
D =0if (1/d)x € L(y) for all d >0, y =0 [or lim,.o(1/d)x € L(y)]. In this
case,

‘See Diewert (1971, Condition III, 2.13) for specification of similar conditions with
respect to the cost function c(y;p). Cf. also Shephard (1953) and Uzawa (1964).
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L'(y) = {x:D(1/y;x) = 1;xx =2 0} = L(y).

We now analyze the dual relation, i.e., the cost function. The She-
phard duality theorem, as extended by Uzawa and McFadden, states

that the function
C = G(y;p) = Min{p’x:x € L(y)} (3)

(where p'x = 3 px;) is uniquely determined by L(y) and satisfies Condi-
tion I1I above, with (y ;p) substituted for (1/y;x). The set of p (for given y),
defined by the equation G(y;p) = 1, is the unit cost frontier. Define the unit

cost set as follows:
V(l/y)={p:G(y;p) = 1}. 4)

Since G satisfies Condition III, the previous discussion suffices to
establish that V(1/y) satisfies, in £1,, exactly the same condition as L(y)
(Condition II) with 1/y substituted for y, and that G(y;p) is the “‘distance
function” corresponding to V(1/y); that is,

G(y;p) = sup{g:(1/g)p € V(1/y);p € Q,)}. (5)

Due to the perfect symmetry established between the sets L(y) and
V(1/y), and the functions D(1/y;x) and G(y;p), it is now possible to
apply the duality theorem “in reverse”, without changing the proof, to
obtain the following theorem:

Theorem 2. D(1/y;x) = Min{x'p:p € V(1/y)}, (6)
where D and V, are defined by equations (2) and (4), respectively.

Proof: 1dentical with the proof of the duality theorem on costs, with
the dual variables (y;p) substituted for the primal variables (1/y;x), and
vice-versa.” Q.E.D.

In addition, the functions G and D satisfy Shephard’s Lemma ;% that
is, the first partial derivatives of G or D with respect to an input price or
quantity, respectively —whenever they exist —are equal to the cor-
responding dual variables; i.e., if the derivatives exist,

aG(y:p)ldp; = x%, aD(1/y:x)/ox; = p. (7

’E.g.. McFadden (Chapter 1) or Diewert (1971, Theorem 4).
fShephard (1953). Cf. also Diewert (1971).
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The right-hand sides of equations (7) are the input demand and inverse
demand functions, respectively (if existing), where p*% are the normal-
ized (to yield unit cost) shadow prices (p;/C):’

xt=x¥yp), pi=pillyx).
If the equation D(1/y;x) = 1 is solved explicitly for y in terms of x, the
result y = f(x) (for x€Q,) is the production function, satisfying the

required regularity condition (Condition I).
Formally,

y =fx)=sup{n:D(1/n;x)= 1}
= sup{n:x €L(n)} (8)

Similarly, the unit cost equation G(y;p)= 1 may be solved explicitly for
l/ly (0 <y <),

1/y = g(p) = sup{l/y:G(y,p) = 1}
= sup{l/y:p € V(1/y)} = l/inf {y:p € V(1/y)}. 9)

The function g(p) satisfies the same conditions with respect to p as f(x)
with respect to x (Condition I). In analogy to the accepted terminology
of consumer utility theory, the function h(p)= 1/g(p) may be denoted
the “indirect production function”, corresponding to the direct produc-
tion function y = f(x) and the function g(p) may be denoted the
“reciprocal indirect production function”. The equation g(p) = 1/y, for a
given y, is the “factor price frontier”. Any standard production relation
may be uniquely characterized by each of these functions g(p) or h(p).

In the discussion of duality and “seif-duality” in utility theory, the
accepted formulation' for the dual indirect form corresponding to utility
U(x) is — V(p) {rather than 1/ V(p)]. However, since utility is ordinal, one
could equally choose e’® and e™"® = 1/e"®, in analogy to the present
results, without affecting the corresponding direct and indirect demand
functions, or any real behavior. A similar monotone transformation is
not acceptable in production theory (unless output y is replaced by
log y), since y is a measurable, non-negative quantity. Equation (9)

>The notation p* implies both the optimality property of p (i.e., p* are shadow prices)
and the normalization to yield unit cost p* = (1/c¢)p.

E.g., Houthakker (1960, 1965), Samuelson (1947, 1965a), Lau (1969a} and Pollak (1972).
The indirect utility V(p) referred to here, is in terms of the n normalized prices (i.e., per
unit of expenditure) and not the alternative (homogeneous) indirect utility V(E,p) which is
homogeneous of degree zero in (r+ 1) arguments—the non-normalized prices p and
expenditure E.
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seems therefore to be a more natural definition of the indirect produc-
tion function, since it preserves the perfect symmetry between the
primal and the dual representations.

Finally, if h(y) is any strictly monotone function, such that h(0)=0
and k(=)= «, one may choose the pair of dual variables to be h(y} and
1/h(y) (rather than y and 1/y), without affecting the resulits, nor the
perfect symmetry of the dual relations. (The significance of this remark
is clarified below, in the discussions of homothetic functions and of
separable production frontiers.)

Table 1 summarizes these symmetric dual relations for the case of
production and cost functions with a singie output.

3. Polar Production and Cost Functions

Having demonstrated in the previous section the perfect symmetry
between production and cost relations, it is now evident that new valid
cost and production relations (namely the polar relations''), may be
obtained by exchanging the roles of the sets L(y) and V(l/y), or
equivalently the functions D(1/y;x) and G(y;p), through substitution of
the dual variables (1/y;p) for the primal variables (y;x), and vice-versa
(within the positive orthant £},,). The new cost and production
functions thus generated are necessarily standard, satisfying the
required conditions.

If the original production function is represented implicitly by an
identity F(y;x)=0 [where F satisfies the conditions of the implicit
function theorem'? for yielding a unique standard y = f(x)], then the
unit-cost frontier of the polar production function is given by F(1/y;p)=
0, and the polar total cost D(y;p) is defined implicitly by the identity
F(1/y;(1/D)p)=0. Conversely, if the original cost function G is given
implicitly by H(y;(1/G)p)=0 (G being linear homogeneous in p), the
polar production function is given implicitly by H (1/y;x) =0, provided H
satisfies the required conditions. Similar substitutions of variables would
appear if either the cost or the production function is represented by a

“The term polar was adopted in accordance with Shephard’s geometric interpretation
(1953), Ch.5), where the isoquant and the unit cost surfaces are shown to be polar reciprocal
to’each other with respect to the unit sphere 2 x} = 1.

2E g, in Hadley (1964), Courant (1936). The implicit function theorem for a single
function (identity) could be made somewhat stronger, to apply to non-differentiable cases
(with only strict monotonicity at 0) such as the general case discussed here.
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set of parametric equations. The polar relations are now stated formally:

Theorem 3. Given a standard production function y = f(x) which
may be represented uniquely by any one of the following equivalent

relations:

Satisfying
Primal Dual Conditions
() PF:  y=f(x) (a) InPF: 1/y = g(p) I
(2) ImPF: F(y;x)=0 (b) IIPF: H(/y;p)=0
(3) UDE: D(ljy;x)=1 (c¢) UCE: G(y;p)=1 Il
(4) FS: L(y) (d) UCS: V(1/y) | .

there exists a unique Polar Production Function y = g(x) which is
standard, and may be represented uniquely by any one of the
following equivalent relations:

Satisfying
Primal Dual Conditions
(1) PF:  y=g(x) (@) InPF: 1/y = f(p) I
(2) ImPF: H(y;x)=0 (b) IIPF: F(1/y;p)=0
(3) UDE: G(1/y;x)=1 (c') UCE: D(y;p)=1 111
(4 FS:  V(y) (d) UCS: L(1/y) II

Proof: By construction and by the results of Section 2, the Conditions
I, II, or III are satisfied with respect to g(x), V(y) or D(y;p), respec-
tively, for finite y > 0, x > 0 [that is, (y;x) and (1/y;p) in &,.]. In order
to extend these relations to all x=0, p=0, y=0, one should put
2(0) =0, and extend the definition of g(x) to the (right-hand) limits as x
approaches the boundaries of Q.. Equivalently, the sets V(y) are to be
replaced by their closures, i.e., include their boundary points in Q,.
Similar modifications apply to the other relations in Theorem 3.

I3PF = production function; ImPF = implicit production function; UDE = unit distance

equation; FS = feasible sets; InPF = indirect production function; IIPF = indirect implicit
production function; UCE = unit cost equation; UCS = unit cost sets.
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The uniqueness of the polar functions follows from their construction.
The minimum properttes appearing in Theorem 2 and in Table 1, assure
that D(y;p) is indeed the cost function corresponding to the production
distance function G(1/y;x) by the duality theorem; that is

D(y;p) = Min{p’x:G(1/y;x) = 1}, (10)
and also
Gl/y;x)=Mmn{x'p:D(y;p) = 1}. (11)

This completes our proof. A few additional remarks are in order. First,
differentiability of f(x) does not necessarily imply differentiability of the
polar function g(x), or vice-versa. This is best demonstrated by the fact
that non-differentiable standard production functions may have
differentiable dual cost functions, and therefore differentiable polar
production functions (such as the Leontief fixed-coefficient function,
with a linear differentiable cost function; see Chapter 11.3). A separate
duality theorem applies to the restricted class of smooth neo-classical
production and cost functions,' such that both the original and the polar
functions belong to this class, and yield everywhere continuously
differentiable demand functions. It may be shown, however, that the
polar transformation defined here for a more general class, transforms
each isoquant surface so that any smooth, strictly convex part is
transformed into a smooth counterpart; every planar section into a
vertex, and every vertex into a planar section [see Shephard (1953, p. 11)].

Let us now examine the special case of homothetic functions. If f(x) 1s
homothetic, it may be written in the form h(y)= f*(x), where f*(x) is
linear homogenous, and A(y) strictly increases with y from 0 to «. The
dual unit cost function is separable in this case into G(y;p)=
h(y)-g*(p)=1, or 1/h(y)= g*(p), where g*(p) is the cost of producing
the output y = h~'(1), and where the elasticity of total cost with respect
to output [see Hanoch (1975b)] is 0., = 4 log G/3 log y = yh'(y)/h(y), and
is independent of prices! Applying our polar transformation yields the
new production function given by 1/h(1/y) = g*(x), with a corresponding
unit cost equation, 1/h(1/y)-f*(p) = 1. The new output elasticity of cost
is & = (1/y)(h'(1/y)/h(1/y)), and the polar function is also homothetic.

*Cf. Lau (Chapter 1.3) for a presentation and a proof of this restricted duality theorem.
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However, if one wishes to impose on the polar function the same
behavior of cost with respect to output as in the original — transforming
only the form of any given isoquant-surface, but preserving the behavior
of output along any given ray (Ax)-one can modify the polar trans-
formation so as to make 1/h(y) the dual variable to h(y) (that is,
h*(y) = h~'[1/h(y)] dual to y), as explained in Section 2 above. In this
case, the homothetic-polar transformation yields the production
function h(y)= g*(x), with the corresponding cost function c¢*=
h(y)-f*(p). These two transformations are identical, if and only if f(x) is
homogeneous of some degree p >0. In this case it may be shown that
h(y) = y“*, hence h(1/y)=y~"* = 1/h(y), and thus h*(y) = 1/y.

A similar approach allows extension of the polar transformation
through cost functions to the case of joint production with multiple
outputs, if outputs are separable from inputs. That is, if the production
frontier is of the form F[h(y);x] =0, which may be solved for h(y) (y a
vector of order m),

h(y) = f(x), (12)

where f(x) is standard, and h(y) increasing in y, such that h(0)=0;
y' > y*>h(y)> h(y") [an increase in at least one output requires an
increase in f(x), and therefore of x, since f(x) is single-valued and
non-decreasing] and k(y") is unbounded if y" is unbounded. The cor-
responding cost function is G[h(y);p], and the unit cost frontier is
separable into 1/h(y) = g(p). Hence, the previous analysis is carried over
entirely, with h(y) substituted for y as the primal variable, and 1/h(y)
replacing 1/y as the dual variable. The cost-polar transformation now
yields a new separable production frontier, of the form h(y) = g(x), with
g(x) standard, satisfying Condition I, and a new separable unit cost
frontier 1/h(y) = f(p).

4. A Symmetric Formulation of Profit Functions and
Production Frontiers

The analysis of duality relations between profit functions and production
frontiers for the case of joint production with multiple outputs and
inputs, may be carried out along lines similar to the cost—production
analysis of Section 2, so as to yield a perfectly symmetric formulation
for the primal and the dual relations.
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Suppose z = (y;x) are non-negative'’ vectors of m outputs y (m =1),
and k inputs x (k=1;m + k=n). The corresponding price vector is
denoted by q = (p;w) € Q,. The set of feasible input-output combina-
tions for a given production process is denoted by T(C ©,). The condi-
tions for T being regular, namely for the existence of a unique non-
negative dual profit function,

x = Q(p;w)=sup {p'y —wx:(y;x) ETC Q.}, (13)
(y:x)
are as follows:'®

Condition B. T is a closed, convex set in {2,, with free disposal:

yx)=(yx)ET=(yx)ET,
O:x)=(¥x)=yxET>FXET.

(0;0) €T, and (¥°;x°) €T for some y°> 0.
Bounded inputs x imply bounded outputs y in T.

By McFadden’s duality theorem, the profit function defined in equa-
tion (13) exists uniquely and satisfies the following:

Condition A.

(1) Q(p;w) is a real, non-negative function of q=(p;w)=0.
Q(0;0) = 0 and Q(q°) > 0 for some q°> 0. [Q may be infinite for
finite q.]

(2) Q is non-increasing in w and non-decreasing in p.

(3) If w0, limg.o Q(p;(1/d)w)<p’a, where a>0 is a vector of
fixed, finite values.

(4) Q(q) is a convex, closed function for q=0.

(5) Q is positive linear homogeneous in q: ¢>0A>05Q(Aq) =
AQ(q).

Define the unit profit set V as follows:
V={q:Q(q)=1;q=0}; (14)

It is more convenient for our purposes to define the quantity vectors (y:x) with all the
arguments non-negative, rather than the “net outputs™ notation (y;—x). In our notation,
outputs are mathematically distinguished from inputs by the direction of change of the
frontier functions, rather than by their sign. Cf. McFadden (Chapter 1.1).

“These are the conditions in Diewert (1973a), modified to imply non-negative (but not
identically zero) profits.
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then the following theorem holds:

Theorem 4. If Q(p:w) satisfies Condition A, the unit profit set V
satisfies Condition B, where input prices w are to be substituted for
inputs x; output prices p for outputs y, and V for T.

Proof: By Condition A(4), V is convex and closed, since Q(q) is a
convex, closed function over the domain {q:0 =< Q(g) = 1).

By Condition A(2), the free disposal conditions follow immediately.

To show that (p%;w®) € V for some p° >0, note that by Condition A(3),
there exists a (p';w’) > 0 such that Q(p';w) = Qo< If Q=1, choose
(%w°) = (p';w) € V; and if Qo> 1 then 0 < (p%w®) = (1/Qo)p'5(1/ Q)W) €
V, by Condition A(5).

It remains to be shown that bounded w imply bounded p in V.
Suppose {w"}=B (B a finite vector), but {p™} unbounded in V. Since
there exists by Condition A(l) a strictly positive vector (p°;w") > 0 such
that Q(p®;w®) >0, we may choose a partial sequence {p" ;w"} such that
p" = Np%w" =B =Nw’ for all N =N, Hence we get by Conditions
A(2) and A(): limy-e Q(pY :w") = limy e Q(Np*;Nw’ =, and (p";w")
cannot be all in V, a contradiction. Q.E.D.

Theorem 4 establishes a complete symmetry between the regular
production set T and the regular corresponding unit profit set V, which is
the dual of T. Equipped with the duality theorem and this result, we may
now state without further proof all the other symmetric results which
follow by the transformation from the prices space into the quantities

space and conversely.
First, applying the transformation to the duality theorem we may

define the “gauge function” H(y:x), by the following maximum pro-
perty:

H(y:x)=sup {y'p—x'w:(p:w) €V C 0.}, (15)
(pw)

which is the dual counterpart of equation (13). The set T is then
derivable from H(y;x) by

T = {(y;x):H (y;x) = 15(y;x) = 0}, (16)

which is equivalent to equation (14). The function H defined here
satisfies Condition A, with the appropriate substitution of variables. In
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particular, H is linear homogeneous in (y;x) for any production frontier
which is regular (but not necessarily homogeneous).

Given a regular unit profit set V satisfying Condition B, the profit
function Q(p;w) is derivable from V by the following relation:

Q(p;W)=inf{ﬂ:(%p;%w)ev;0<0.<_co}. (17)

This is shown as follows:

inf{az(%q) eEVo<é sco}= inf{O:Q(%q)s 1;0<0$oo}
= inf{0:Q(q) < 8;0 < # < =} = Q(q).

Q is the ‘“‘gauge function” of the set V, representing the distance from
the origin of a point (p;w) =0, divided by the furthest distance from (0)
of points ((1/8)p;(1/6)w) which lie on the efficient boundary of the set
V."” In an exactly analogous derivation for the dual case, we have

H(y:x) = inf{h: (%y;%x) ET0<h sw}, (18)
where H <1 in the production set T, and H =1 on the production
frontier (when it exists). In general, if the frontier exists and is given by
an implicit function F(y;x) =0, where F satisfies the following:

Condition C. The set T={(y:x):F(y;x)=<0;(y;x)=0} satisfies
Condition B above:!*®

then this frontier could equally be represented by H(y;x) =1 where H is
linear homogeneous and satisfies Condition A. Symmetrically, maximum
profits = may be represented by an implicit equation in the variables
((1/m)p;(1/m)w) [since = is linear homogeneous]: R((1/7)p;(1/m)w)=0,
and the unit profit frontier by R(p*;w*)=0 (R is generally not linear
homogeneous; p*, w* are prices normalized to yield maximum profits equal
to unity).

When the partial derivatives of Q and H exist, they satisfy the
relations” aQ/op; = y¥(q); 3Q/dw; = —x¥(q), where y} and x} are the

"This includes Q =0 if (1/8)qE V for all > 0; and Q =, if (1/8)q & V for all §>0.

BFor specification of direct conditions on the function F (rather than the set T), see
Diewert {1973a). He assumes, however, that F is normalized, i.e., solved for one argument
as a dependent variable. More. general conditions on F could also be given, but are omitted

here.
E.g., in Diewert (1973a), Lau (Chapter 1.3), and others.
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output supply and factor demand functions, respectively. Similarly,
aH|dy; = p¥(z); 8H/3x; = —w*(z) (if existing), where p¥ and w} are the
optimal inverse supply and demand functions, determining the normal-
ized shadow price variables (1/a)p,(1/7)w.

The Table 2 summarizes these symmetric relations.

The foregoing analysis rests heavily on the assumption that zero
variable outputs and inputs are feasible; i.e., (0;0) € T, since in this case
maximum variable profits are non-negative, and the profit function is
completely determined by the unit profit set. If, however, some mini-
mum positive inputs are always required — either due to indivisibilities,
or because some outputs are fixed or are bounded below through
exogeneously determined restrictions —then (0,0) is not feasible, and
maximum variable profits assume negative values. The symmetric dual-
ity relations in terms of the original variables break down. However, as
shown by McFadden in Chapter 1.1, the variables may be translated to
be measured from a point (%,€) in T, and the symmetric duality applies
with respect to the translated variables (y — n,x — &) and with respect to
the corresponding modified profit and production functions. (Details and
proofs of these general statements are omitted here.)

5. The Polar Profit and Production Functions

In analogy to the derivation of cost polar production functions, the
perfect symmetry of the dual production-profit relations exhibited above
leads to the definition, for any regular production set T, of another
regular production set T*, which coincides with the original unit profit
set V, if prices are transformed to the respective quantities. That 1s,

T* = {(y;x):(y:x) = (p;w) € V}. (19)

The set T* is the profit polar production set, determined uniquely by T,
and satisfying the same conditions specified in Condition B. Similar
results apply to all equivalent representations of T*, as summarized by
the following theorem:

Theorem 5. Given a regular production set T, which may be
represented uniquely by any one of the following equivalent rela-
tions:*

2pS§ = production set; PFr=production frontier; GF=gauge function; UPS= unit
profit set; IPF = implicit profit function; PFn = profit function.
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Satisfying

Primal Dual Conditions
(LPS: T (a) UPS:V B
(2) PFr: F(y;x)=0 (b) IPF: R(%p;%w)so C
(3) GF: H(y;x) (c) PFn: Q(p;w) A

there exists a unique polar production set T*, defined by equation
(19), which is regular, and may be represented uniquely by any one
of the following equivalent relations:

Satisfying

Primal Dual Conditions
(1 PS: T*=V (a) UPS:V*=T B
(2 PFr: R(y:x)=0 (b') IPF: F(% p;%w)EO C
(3") GF: Q(y:x) (c') PFn: H(p;w) A

Proof: The proof is immediate, using McFadden’s Theorem 24 in
Chapter 1.1, Theorem 4 above, and the results of Section 4, summarized
in Table 2 above. Q.E.D.

The results cited in Table 2 with respect to the maximum properties of
the profit and gauge functions, as well as to partial derivatives of Q and
H (i.e., factor demand and output supply functions), are applicable to
the new polar production frontier, if proper substitutions are made
throughout. However, the specific behavior of the polar production
relation may be quite different from that of the original relation, as
indicated by some of the examples in Chapter II.3 and in Hanoch
(1975a).

Let us examine now a few special cases. For the case of a single
output with a concave production function y = f(x) (such that the profit
function exists), the profit polar production function defined here
generally vields a different production function from the cost polar
function defined in Section 3. However, if y = f(x) is homogeneous of
degree u (0 < < 1), the two functions coincide, except for a constant
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scale factor. The cost function dual to f(x) is separable in this case in the
form C = y"*G(w), where G(w) is linear homogeneous. Hence the cost
polar production function is given by y = g°(x) =[G(x))]*. The profit
function dual to f(x) is derived as follows (assuming 3C/dy exists):
3Cldy = Cluy = p, equating output price to marginal cost. The profit
maximizing costs ¢* then satisfies

c* = (&% up)™* Gw),

or
¢* = {up[G(w)] “}ra-w,

and profits are given by
w=py—c*¥=((1—- ww)e*=1- M)#ul(l—n){p[G(w)]—,L}uu_m'

The profit polar production frontier function y =g"(x) is derived by
substitution of (1,y,x) for (m,p,w), respectively, in the above expression,
and solving for y gives

g"(x)= A[GR)]* = A-g*(x),

where
A=[p*A—-p)'™]"'>1. (20)

Similarly, if y = f(x) is homothetic, its cost function is separable in the
form C = h{y)G(w), where (3 log h(y))/(d log y)> 1. Similar manipula-
tions give the regular cost polar production function as y = g“(x)=
H“[G(x)); the homothetic cost polar function of Section 3 is of the
form y = H*[G(x)]; and the profit polar function is y = H"{G(x)],
where the functions H, H" and H'™ are different functions of a
single variable. Therefore, the family of isoquant surfaces given by each
of the three polar transformations is the same, but their output-
denominations are different. (However, all three polar functions are also
homothetic.)

In the case of multiple outputs with separability of outputs from
inputs, the original production frontier is given by h(y) = f(x). The unit
profit frontier of the profit polar function is given by h(p) = f(w), and is
also separable. (The polar production frontier is generaily not separable,
however.) Hence “direct separability” implies “indirect separability’” of
the polar function.” Clearly, the converse is also true, due to the
uniqueness of the profit polar function. That is, (indirect) separability of

20p direct and indirect separability and related concepts, see Houthakker (1960, 1965),
Sameulson (19652, 1969b), Gorman (1968b), Goldman and Uzawa (1964), Pollak (1972), and
Lau (1969a and Chapter 1.3 in this volume).



Symmetric Duality and Polar Production Functions 129

the original unit profit frontier, implies (direct) separability of the polar
production frontier.

The separable cost polar function defined in Section 3 [namely a
production frontier with costs ¢ = G[h{y);w], where c is implicitly given
by 1/h(y) = f((1/c)w)], is generally different from the profit polar frontier
in the direct separability case. An analysis similar to the foregoing shows
that these two polar transformations coincide, except for a scale factor,
if and only if both h(y) and f(x) are homogeneous. The analysis of
additional special cases may be carried out along similar lines.”?

6. Some Extensions and an Application

The process of polar transformation of single-output production
functions through cost functions, may be generalized further to joint-
production frontiers, under two cases of short-run profit maximization:

(i) If either a single output z, = ¥, or a single input zo = X, is fixed. The
polar transformation of the variable profits function Q(p;w;zo) yields
then a polar production frontier Q(y;x;1/zg)= 1, and conversely.

(i) If the production frontier is “separable as between the variable
elements (y;x) and the fixed elements z, (either inputs or outputs or
both). That is, F(y;x) = h(zo). The polar variable profit function 7 is
then given by F(p/#;w/%) = 1/h(20)-

The Factor Requirement Function™ defined for the case of a single
input, is an obvious special case of (i), and may yield a revenue polar
transformation, in complete analogy to the cost polar analysis. Proofs of
the above cursory statement are analogous to those given in Sections
2-5.

As a final example of an application of the polar transformation,
consider two alternative definitions of the elasticity of substitution
which are different from each other, and from the widely used Allen-
Uzawa elasticities of substitution,* if three or more variable factors are

present:
(1) The Direct Elasticity of Substitution D;, for a (twice continuously

2For additional results on relations between production and profit functions, see Lau
(Chapter 1.3). Modifications of such results, so as to apply to polar relattons, are

straightforward.
3Gee McFadden (Chapter 1.1) and Diewert (1974b) for duality theorems with respect to

the factor requirement function.
4gee McFadden (1963) for definitions of these concepts. The D; were defined by Hicks

(1946). See Hanoch (Chapter I1.3).
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differentiable) production function y = f(x), is defined by

D= (e +57)/ (3 1) @

where Dj is interpreted as dlog(x/x;)/dlog(p;ip:), for constant output
and other input quantities.

(2) McFadden’s Shadow Elasticity of Substitution S;, defined through
the cost function ¢ = G(y;p). If the unit cost function is given in the
“indirect reciprocal production function” form 1/y = g(p), it may be
shown that S;(p) is given by

s (43 4)/ G5 @

where S; is interpreted as d log(xi/x;)/d log(p;/p;), for other prices, output
and unit cost held constant. Thus,

dlog(Gi/Gi) _ dlog(gisi)
dlog(pip;) dlog(pip;y

Si=S;=

which is analogous to

1 _ dlog(fi/f)

—15,; d log(x,/xJ
Applying the cost polar transformation, the polar direct and indirect
production functions are y = g(x) and 1/y = f(p), respectively; hence the
elasticities Dy, S; of the polar function satisfy Dj;(x) = 1/S;(x); Si(p)=
1/D;(p), where S;( ) and Dy( ) are the functions defined by (22) and

(21), respectively.
For example, the D; for CRESH [Hanoch (1971)] are given by *

D,-j = a,-a,-/(s,-ag + s;a,—),
where s; = p,—{,-/E pix; are the cost shares.
Thus, the S; for the CDE polar function (Chapter 11.3) are given by
§ij = (s;a; + s;a;) aiq; = si(1/a;) + si(1/a;)

(since the cost shares s; are symmetric in x and p).

Similar applications may be used for the generalized elasticities of
transformation and the profit polar production frontier. Examples of a
number of particular polar pairs of functional forms are presented and

%See Hanoch (1971, p. 12, n. 2), and Hanoch (Chapter I1.3).
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discussed in Chapter I11.3. Other widely used polar pairs of production
function are: Diewert’s (1971) Generalized Linear and Generalized
Leontief Production Functions; the Transcendental-logarithmic (Trans-
log) models of Christensen, Jorgenson and Lau (1973, 1975), and the
polar pair of Quadratic functions [e.g., Lau (1974)]. The resuits of the
present analysis, however, imply the existence and validity of the polar
function generated by any functional form used previously, either in the
direct or in the indirect mode. Thus the available choice of functional
forms in production models is considerably enriched.



