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Abstract

When models of portfolio credit risk are calibrated to historical ratings performance
data, parameters that capture cross-obligor dependence can be (and often are) fit
directly to estimated default correlations. The accuracy of our measures of credit
value-at-risk therefore rests on the precision with which default correlations can be
estimated. In practice, data are always scarce. The rating system may cover many
obligors, but performance data span, at most, two or three decades. Nonetheless,
the moments-based estimators commonly used by practitioners make minimal use of
parameter restrictions. In this paper, we demonstrate that these estimators perform
quite badly on the sample sizes typically available, and generally produce a large
downward bias in estimated default correlations. Models calibrated in this manner
are thus likely to understate value-at-risk quite significantly.

Our main theme concerns the trade-off between precision and robustness in the
calibration of default correlation parameters. We show how economically meaningful
assumptions about the unobserved process that determines when obligors default
can be used to generate natural restrictions on cross-obligor default correlations.
We demonstrate how these restrictions can be imposed when maximum likelihood
methods are used to calibrate parameters to historical ratings performance data, and
then assess the associated improvements in small sample behavior of the estimators.
We apply our various estimators to Moody’s and S&P ratings performance data.



1 Introduction

In well diversified loan portfolios, aggregate credit risk is driven by correlations in

defaults and ratings changes across obligors. Holding the composition of loans in a

portfolio constant, if credit events are largely independent then portfolio losses can

be easily and precisely forecast. As cross-obligor correlations increase, our ability

to diversify away credit risk at the aggregate level is reduced, so the greater the

year-to-year variability in aggregate performance the greater the value-at-risk. When

models of portfolio credit risk are calibrated to historical ratings performance data,

parameters that capture cross-obligor dependence can be (and often are) fit directly

to estimated default correlations. The accuracy of our measures of credit value-at-risk

therefore rests on the precision with which default correlations can be extracted.

In measuring cross-obligor default correlations data scarcity is a serious and un-

avoidable problem. Though publicly and privately available databases can provide

information on the default histories of large numbers of rated obligors, these data

span, at most, just a few decades. Without long time-series of performance data

there may be significant uncertainty in measurements of the default probabilities as-

sociated with individual rating grades. These uncertainties are greatly magnified for

estimates of default correlations. Parametric restrictions serve as a partial substitute

for data, but offer no free lunch. If the restrictions arise naturally from the underlying

economics of credit risk, then they allow more precise estimation of model parame-

ters from a given amount of data. However, the more powerful the restrictions, the

greater the risk that the model will oversimplify reality, and thereby produce less

robust estimators.

This paper shows how economically meaningful assumptions about the unobserved

process that determines when obligors default can be used to generate restrictions

on cross-obligor default correlations. We demonstrate how these restrictions can be

imposed by using maximum likelihood methods to estimate model parameters from

historical ratings performance data. We explore the small sample properties of these

estimators, and apply them to data on Moody’s and S&P ratings.

Starting from a simple but widely used structural default model, Section 2 shows

how parametric restrictions on default correlations naturally follow from assumptions

about the economic factors driving changes in obligor asset values. We assume de-

faults are well described by a simple two-state (default/no default) Merton (1974)
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default model similar to that underlying the popular CreditMetrics credit risk model

(Gupton, Finger and Bhatia 1997). In this framework, each obligor earns some ran-

dom return on its assets at the horizon. If the return is sufficiently negative, the value

of the obligor’s assets falls beneath the value of its fixed liabilities, and the obligor

defaults. The realized returns are a weighted sum of a set of common risk factors

(representing systematic risk) and a shock idiosyncratic to an obligor. Default cor-

relations are determined by obligors’ “factor loadings,” which measure sensitivity of

asset values to the common risk factors. Limiting the number of common risk factors

and restricting the way factor loadings vary among obligors generates economically

meaningful restrictions on cross-obligor default correlations.

Section 3 shows how factor loadings and other parameters of the structural model

can be estimated from ratings performance data using maximum likelihood methods.

Because they depend on nonlinear optimization techniques the maximum likelihood

estimators we propose are somewhat more computationally demanding than more

commonly used method of moments estimators, but unlike method of moments esti-

mators they easily lend themselves to imposing structural parameter restrictions.

Assuming the structural default model is correctly specified the estimators we

propose will be asymptotically consistent. Loosely speaking this means that estimated

parameters will get closer and closer to the true parameter values as the number of

years of rating performance data gets increasingly large. Unfortunately, in practice

we are unlikely to observe ratings performance data over more than thirty years.

Given this data limitation, there is no guarantee maximum likelihood will produce

unbiased parameter estimates. Section 4 presents results for a Monte Carlo study of

the small sample properties of three different maximum likelihood estimators as well

as a simple method of moments (“MM”) estimator.

The three maximum likelihood estimators we study can be ordered by the restric-

tiveness of the assumptions they impose. The first, and most general, MLE allows for

the possibility that obligors in different rating grades may be sensitive to different risk

factors. The second MLE imposes the restriction that obligors in all rating grades

are sensitive to a single unique systematic risk factor, but allows factor loadings to

vary across grades. Finally, the most restrictive MLE requires that factor loadings be

constant across rating grades.

If the restrictions imposed by the last estimator are correct, the three MLE esti-

mators and MM estimator all are consistent. However, our Monte Carlo simulations
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show that all the estimators generate downward-biased factor loadings when small

samples are used. Not surprisingly, this bias is most severe for the least restrictive

estimators. We find that the biases associated with estimators that assume a single

systematic risk factor, while measurable, are much smaller than those associated with

estimators that allow for the possibility of multiple systematic risk factors.

The findings from our Monte Carlo study suggest that by imposing a single sys-

tematic risk factor assumption but allowing factor loadings to vary smoothly across

different types of obligors, one can obtain maximum likelihood estimators that are

not significantly biased in small samples but nonetheless permit a reasonable degree

of flexibility in the structure of default correlations across obligors. In Section 5 we

apply several such estimators to Moody’s and S&P ratings. Because the aggregate

ratings data we use only provides information on the credit rating and default ex-

perience of obligors, we assume that an obligor’s factor loading depends only on its

rating.

Arguments can be made for assuming any number of different functional relation-

ships between credit quality measures and factor loadings. For example, it seems

reasonable to expect that large obligors with more diversified business lines are more

sensitive to macroeconomic fluctuations than small obligors whose risks are more id-

iosyncratic. If large obligors are also higher quality, then we should observe that

factor loadings are a decreasing function of default probabilities. On the other hand,

we might view lower quality obligors as simply higher quality obligors who have fallen

on hard times. In the context of a one risk factor model, we cannot reject the hy-

pothesis that factor loadings are, in fact, constant with respect to credit quality.

2 A Structural Default Model

In this analysis we work within a two-state version of the widely-used CreditMetrics

framework. Assume we have a set of obligors, indexed by i. Associated with each

obligor is a latent variable Yi which represents the normalized return on an obligor’s

assets. Yi is given by

Yi = Zωi + ξiεi. (1)
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where Z is a K-vector of systematic risk factors. These factors capture unanticipated

changes in economy-wide variables such as interest rates and commodity prices that

affect asset returns across all industries. We assume that Z is a mean-zero normal

random vector with variance matrix Ω. We measure the sensitivity of obligor i to

Z by a vector of factor loadings, ωi. εi represents obligor-specific risk. Each εi is

assumed to have a standard normal distribution and is independent across obligors

and independent of Z. Without loss of generality, the covariance matrix Ω is assumed

to have ones on the main diagonal (so each Zk has a standard normal marginal

distribution), and the weights ωi and ξi are scaled so that Yi has a mean of zero

and a variance of one. The obligor defaults if Yi falls below the default threshold γi.

By construction, then, the unconditional probability of default (“PD”) of obligor i is

equal to the standard normal CDF evaluated at γi.

To allow the model to be calibrated using historical data of the sort available from

the rating agencies, we group the obligors into G homogeneous “buckets” indexed by

g. In the applications that follow the buckets comprise an ordered set of rating grades.

In principle, however, a bucketing system can be defined along multiple dimensions.

For example, a bucket might be composed of obligors of a given rating in a particular

industry and country. Within a bucket, each obligor has the same default threshold

γg so that the PD of any obligor in grade g is

p̄g = Φ(γg), (2)

where Φ(z) is the standard normal CDF.

The vector of factor loadings is assumed to be constant across all obligors in a

grade. so we can re-write the equation for Yi as

Yi = Xgwg + εi

√
1 − w2

g . (3)

where

Xg =

∑
k Zkωg,k√
ω′

gΩωg

is a univariate bucket-specific common risk factor. By construction, each Xg is nor-

mally distributed with mean zero and unit variance. The G-vector X = (X1, . . . , XG)

has a multivariate normal distribution. Let σgh denote the covariance between Xg
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and Xh. In general, we expect σgh > 0. The factor loading on Xg for obligors in

bucket g is

wg =
√

ω′
gΩωg,

which is bounded between zero and one. We eliminate ξi from equation (1) by im-

posing the scaling convention that the variance of Yi is one.

The advantage of writing Yi in terms of Xg and wg rather than Z and ωg is that

we then only need to keep track of one risk factor per bucket. We can think of Xg

as summarizing the total effect of Z on obligors in bucket g, and wg as describing

the sensitivity of those obligors to the bucket-specific common risk factor. In the

discussion that follows, the term risk factors should be taken to refer to Xg. The

term structural risk factors will be used to identify the elements of Z because they

reflect underlying economic variables. Likewise factor loadings will refer to wg and

structural factor loadings will refer to ωg.

Correlation in default rates across obligors is driven by correlations in the risk

factors. It can be shown that the correlation in defaults between an obligor in bucket

g and an obligor in bucket h is

ρgh =
F (γg, γh; wgwhσgh) − p̄gp̄h√

p̄g(1 − p̄g)
√

p̄h(1 − p̄h)
(4)

where F (z1, z2; s12) denotes the joint CDF for a mean-zero bivariate normal random

vector with unit variances and covariance s12. In the special case where both obligors

lie in the same bucket, the within-bucket default correlation is

ρg =
F (γg, γg; w

2
g) − p̄2

g

p̄g(1 − p̄g)
. (5)

Given sufficient data, it is possible to estimate all G(G + 1)/2 default correlations

defined by equations (4) and (5). However, when data are scarce many of these

parameters may be unidentified or poorly identified, obviating the need to limit the

number of parameters that are estimated. This can be accomplished by imposing ex

ante restrictions on the factor loadings and risk factor correlations.

Although our default model assumes within-bucket homogeneity and imposes ex-

plicit distributional assumptions on the common and idiosyncratic risk factors, in
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some respects it is actually quite general. Importantly, no restrictions are imposed

on the correlation in default rates across buckets. In this regard the model is, in fact,

more general than the credit risk model underlying the proposed Basel II internal

ratings based capital standard. IRB capital charges are portfolio-invariant. That

is, the charge for a lending instrument depends only on its own properties, and not

those of the portfolio in which it is held. Gordy (2001) shows that portfolio-invariance

requires that there be a single common systematic risk factor X for all buckets.

Assuming that correlations in asset values are driven by a single systematic risk

factor is equivalent to imposing the following restriction in the parameterization of

ρgh.

R 1 (One Risk Factor) σgh = 1 for all (g, h) bucket pairs.

R1 is equivalent to requiring that X1 = X2 = . . . = XG. A sufficient condition for R1

is that there is exactly one structural risk factor (i.e. K = 1). One can easily imagine

circumstances under which this condition will not hold. For example asset values for

obligors in different industries or countries likely depend on different structural risk

factors. Nonetheless, if a portfolio is relatively homogeneous, or if sectoral distinctions

among obligors cannot be observed from available data, this restriction can serve as

a reasonable approximation.

While R1 imposes a restriction on the correlation among reduced form risk fac-

tors, it does nothing to restrict the sensitivity each obligor’s asset value to those

factors. A different reduced form factor loading is associated with each bucket, and

no restrictions are imposed on the cross bucket relationship between factor loadings.

In practice it may be reasonable to assume that factor loadings vary smoothly with

obligor default probabilities (or equivalently with obligor default thresholds). This

assumption can be imposed by expressing factor loadings as a continuous function of

default thresholds.

R 2 (Smooth Factor Loadings) wg = Λ (λ(γg)) for all g, where Λ(·) is a contin-

uous, strictly monotonic link function that maps real numbers onto the interval [-1,1]

and λ(·) is a continuous index function that maps default thresholds onto the real line.

The choice of the link function is rather arbitrary. In the analysis that follows we

use the simple arctangent transformation

Λ(λ) =
2

π
arctan(λ).
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This function is linear with unit slope in a neighborhood of λ = 0 and asymptotes

smoothly toward positive (negative) one as λ approaches positive (negative) infinity.

The specification of the index function is more important than the choice of the link

because it can be used to restrict the way w varies with γ. If the index function

is monotonic in γ than mapping from γ to w will be monotonic as well. The more

parsimonious is the index function, the more restrictive is the implied relationship

between the default thresholds and the factor loadings.

The strongest restriction one can impose on the factor loadings is to assume that

they are constant across all obligors.

R 3 (Constant Factor Loading) wg = wh for all (g, h) bucket pairs.

Together, R1 and R3 imply that the structural factor loadings are constant across

buckets. Note that R3 is a special case of R2 in which the index function λ(g) is a

constant.

3 Maximum Likelihood Estimators

For the remainder of this paper, we assume that we have access to historical perfor-

mance data for a credit ratings system. For each of T years and G rating grades,

we observe the number of obligors in grade g at the beginning of year t (a “grade-

cohort”), and the number of members of the grade-cohort who default by year-end.

We assume that the default threshold γg and the factor loading wg are constant across

time for each rating grade, and that the vector of risk factors X is serially indepen-

dent. The task at hand is to estimate γg and wg for each rating grade. Given these

parameter estimates we can recover PDs and default correlations using equation (2),

(4), and (5).

Let ng and dg denote the number of obligors and the number of defaults in grade

g, and let n and d be the corresponding G-vectors containing data for all grades.

Throughout this derivation, we assume the random process that generates the ob-

served number of obligors in each grade is independent of the process that generates

the observed number of defaults in each grade. This allows us to treat n as a fixed

parameter in the likelihood function for d.

Conditional on Xg defaults in grade g are independent, and each default event
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can be viewed as the outcome of a Bernoulli trial with success probability

pg(Xg) = Φ

(
γg − wgXg√

1 − w2
g

)
. (6)

The total number of defaults conditional on Xg follows the binomial distribution

L(dg|Xg) =

(
ng

dg

)
pg(Xg)

dg (1 − pg(Xg))
ng−dg . (7)

Since defaults are conditionally independent across grades, the joint likelihood of d

conditional on X is simply the product of the G conditional likelihoods defined in (7).

The unconditional likelihood for d is thus,

L(d) =

∫
�G

G∏
g=1

((
ng

dg

)
pg(xg)

dg (1 − pg(xg))
ng−dg

)
dF (x). (8)

F (x) is the multivariate normal CDF of X. Equation (8) is a function of the parame-

ters w = (w1, . . . , wG), γ = (γ1, . . . , γG), and Σ, the variance matrix of X containing

(G − 1)G/2 free covariance parameters.

In principle, we could maximize the product of (8) across T observations with

respect to all 2G + (G − 1)G/2 free parameters simultaneously. This would provide

unrestricted full information maximum likelihood estimates of the parameters. In

practice, however, this strategy is computationally feasible only when G is small.

Unless the common factor covariance parameters are of particular interest, a limited

information approach that does not involve estimating the elements of Σ is preferable.

Integrating Xg out of equation (7) yields the marginal likelihood

L(dg) =

∫
�

(
ng

dg

)
pg(x)dg (1 − pg(x))ng−dg dΦ(x). (9)

This function depends only on the parameters wg and γg, so estimates of w and γ

can be obtained by maximizing the marginal likelihood for each grade, one grade at a

time. This procedure yields our least restrictive maximum likelihood estimator that

imposes no restrictions in the parameters of the default model described in Section 2.

Because this estimator does not utilize information about the potential correlation in
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default rates across grades, it is not asymptotically efficient (except in the unrealistic

special case where σgh = 0 for all g �= h).

R1 implies that the effect of X on all obligors can be represented by a single

standard normal scalar variable X. Under this restriction we can rewrite (8) as

L(d) =

∫
�

G∏
g=1

((
ng

dg

)
pg(x)dg (1 − pg(x))ng−dg

)
dΦ(x). (10)

Maximizing this likelihood over w and γ yields a full information likelihood estimator

that imposes the one risk factor restriction.

Rather than estimate the elements of w directly one can substitute the formula in

R2 into equation (10) and maximize the resulting equation over γ and the parameters

of the index function λ(γ). This procedure yields a FIML estimator that imposes both

the one risk factor and the smooth factor loading restrictions. Similarly, R1 and R3

can be imposed by replacing the vector w in equation (10) with a single loading w

and maximizing the resulting likelihood with respect to γ and the scalar w.

If both R1 and R3 hold, then all the maximum likelihood estimators described in

this section are consistent. Furthermore, the estimator that imposes R1 and R3 is

efficient in the sense that it achieves the lowest possible asymptotic variance among

consistent estimators. It is important to emphasize, however, that in finite samples

some or all of these maximum likelihood estimators may be biased. In the next section

we use Monte Carlo simulations to investigate the small sample properties of these

estimators and to compare them with a simple method of moments estimator used in

previous research.

4 Monte Carlo Simulations

If many decades of ratings performance data were available, the asymptotic results of

the previous section would pose a clear trade-off. On one hand, the more restrictive

maximum likelihood estimators yield more precise estimates if the restrictions they

impose are valid; on the other hand, the less restrictive estimators are more robust

to specification errors. When ratings performance data are in short supply (i.e. T is

small) the tradeoff becomes more complicated because less efficient, more robust es-

timators may also be biased. Monte Carlo simulations provide a method for studying
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the potential small sample biases associated with the estimators we propose.

The following four estimators are examined in this analysis.

• MM – an unrestricted method of moments estimator.

• MLE1 – the limited information maximum likelihood estimator.

• MLE2 – the full information maximum likelihood estimator that imposes R1.

• MLE3 – the full information maximum likelihood estimator that imposes R1

and R3.

MM has been used in previous research and is described in detail by Gordy (2000).

It is included in this analysis to provide a benchmark for assessing the maximum

likelihood estimators.

In each Monte Carlo simulation, we constructed a synthetic dataset intended to

represent the type of historical data available from the major rating agencies. Data

were simulated for three rating grades. Grade “A” corresponds to medium to low

investment grade (S&P A/BBB), grade “B” corresponds to high speculative grade

(S&P BB), and grade “C” corresponds to medium speculative grade (S&P B). Table

1 summarizes characteristics of these three grades.1 Simulated defaults in each grade

were generated according to the stochastic model described in Section 2 with R1 and

R3 imposed.

Two sets of Monte Carlo simulations were undertaken. In the first, 500 synthetic

datasets were generated for four different values of T : 20, 40, 80, and 160. In each

case a “true” factor loading of 0.45 was assumed. These simulations were intended

to shed light on the properties of our estimators as the number of years of default

data increase. Though estimates of both factor loadings and default thresholds were

obtained for each simulated dataset, we will postpone discussing default thresholds

for the time being. Table 2 summarizes the means, standard deviations, and root

mean squared errors (“RMSE”) for the estimates of w given each of the four sample

sizes.2 Figure 1 displays the median and the 5th and 95th percentiles of the estimated

parameter values.
1S&P grade-cohorts are somewhat larger than we have assumed, but are similar in the relative

preponderance of higher grade obligors.
2Root mean squared error measures the geometric distance between estimated parameter values

and the true values and takes into account both average bias and variance. It is defined as follows.
Let ŵi denote the parameter estimate generated from the ith Monte Carlo simulation, let w0 denote
the true parameter and let N be the total number of simulations. RMSE =

(
1
N

∑
i(ŵi − w0)2

)1/2
.
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Not surprisingly, properties of all four estimators improve as T increases. The

means become closer to 0.45 and the variances and RMSEs decrease. Also as expected,

for large values of T the more restrictive estimators are more tightly clustered around

0.45 than the less restrictive estimators. These findings simply verify the asymptotic

results described in Section 3. More surprising is the rather poor performance of MM

and MLE1 when T is small. Though all four estimators appear to be downward-

biased in small samples, the bias of MM and MLE1 is substantially worse than that

of MLE2 and MLE3.

In real-world applications, we could never hope to observe 80 or 160 years of

default data. In fact, for most applications T = 20 is probably optimistic. S&P

historical performance data, described in Brand and Bahar (1999), contain less than

20 years of data. Moody’s performance data go back to 1970, but there is believed to

be an important break in the time-series at 1983 due to a change in Moody’s rating

methods. Banks’ internal rating systems typically contain even shorter time-series,

though larger grade-cohorts. To explore the small-sample properties of our estimators

in greater detail, a second set of Monte Carlo simulations was run with T fixed at

20. Four groups of 1,500 synthetic datasets were simulated for a grid of “true” factor

loadings from 0.15 to 0.60.3

Table 3(a) and 3(b) show the distributions of estimated default thresholds and

implied default probabilities. Even when T is small, all four estimators generally pro-

duce very accurate estimates of default thresholds and, therefore, of the corresponding

PDs.4

Tables 4(a) through 4(d) describe the distributions of estimated factor loadings.

Several strong patterns can be seen in these tables. Most striking, is the large down-

ward bias associated with MM and MLE1. This problem is particularly significant

for high quality grades when the true factor loadings are high. MLE2 and MLE3 are

also biased downward, but the magnitude of the bias is less severe. In contrast to the

3For a small number of trials, the simulated data did not permit identification of all model
parameters. In other trials, the optimization routines used to calculate the maximum likelihood
estimators failed to converge. For these reasons, the number of estimated parameters for each
configuration of parameter values was sometimes less than 1,500. See Appendix A for details on
identification and convergence problems in this Monte Carlo study.

4As a technical aside, we note that it should be preferable to estimate default thresholds, rather
than the PDs directly. Because the distribution of γ̂ is more likely to be approximately symmet-
ric, test statistics (including confidence intervals) should be well-behaved. PDs, by contrast, are
bounded at zero, so estimated PDs for the higher quality grades are likely to have highly asymmet-
ric distributions.
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results for MM and MLE1, the magnitude of the bias for MLE2 does not appear to

depend on the grade in any systematic way.

Based on the root mean squared error criterion, MLE3 clearly outperforms the

other three estimators; and more generally, the more restrictive estimators outper-

form the less restrictive estimators. The greatest gain in efficiency appears to occur

when R1 is imposed. Because it incorporates information on cross-grade default cor-

relations, MLE2 produces substantially more accurate estimates of high-grade factor

loadings than MLE1 or MM.

Overall, the Monte Carlo results indicate that when the number of years of default

data is relatively modest, we may pay a significant price for failing to impose true

parameter restrictions. The substantial small sample bias and high root mean squared

error associated with unrestricted estimators must therefore be weighed against the

potential bias that would result from imposing invalid parameter restrictions.

5 Estimation Using Public Ratings Data

Our Monte Carlo study demonstrates that when data are limited, failing to impose

reasonable restrictions on cross-obligor default correlations can lead to significant

biases in parameter estimates. Much of this bias can be eliminated by imposing a

single systematic risk factor assumptions and by assuming that asset correlations

vary smoothly with obligor default thresholds. In this section we apply the maximum

likelihood estimators described in Section 3 to rating performance data from Moody’s

and S&P.

For each dataset, we estimate four models. The first imposes no restrictions and

corresponds to MLE1 in the Monte Carlo study. Given our Monte Carlo results,

we can reasonable expect parameter estimates from this model to have substantial

biases. The second model imposes R1 and relatively flexible form or R2 in which

factor loadings depend on the quadratic index function of default thresholds

λ(γ) = β0 + β1γ + β2γ
2.

The third model is identical to the second, but imposes the additional restriction that

the index function is linear in γ (i.e. β2 = 0). The fourth and most restrictive model

assumes a constant factor loading (i.e. β1 = β2 = 0). This model corresponds to
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MLE3 in the Monte Carlo study. Estimators generated by this model should exhibit

very little bias if the assumptions imposed by the model are reasonably accurate.

Data from Standard and Poor’s covers the 17 year period from 1981 to 1997, while

a larger dataset from Moody’s covers the 29 year period from 1970 to 1998. Each

dataset reports the number of obligors in a particular rating grade at the beginning of

a year and the number of defaults that occur by year’s end. The S&P data includes

information for seven major grades from AAA to CCC, and the Moody’s data includes

information the seven comparable grades from Aaa to Caa. In both cases, no defaults

are observed for the top two grades. Therefore the analysis of S&P data is limited

to grades A through CCC, and the analysis of Moody’s data is limited to grades A

through Caa.

Tables 5 and 6 show estimated default thresholds for each of the model specifica-

tions described in Section 2. Standard errors are reported in parentheses. The most

important fact to take away from these tables is that all four specifications gener-

ate comparable parameter estimates with similar standard errors. This is consistent

with our Monte Carlo results showing that estimated default thresholds are relatively

insensitive to the parameterization of factor loadings.

Estimated factor loadings are shown in Tables 5(a) and 5(b). Note that while

standard errors fall as increasingly strong restrictions are imposed on the cross-grade

relationship between among loadings, parameter estimates are biased if these restric-

tions are not valid. We can investigate whether the cross-grade parameter restrictions

are consistent with observed data by comparing the restricted and unrestricted model

specifications. Tables 6(a) and 6(b) report the estimated coefficients of the index

function for each of the three restricted models. In both datasets, the higher order

parameters in the quadratic and linear index models are not significantly different

from zero.

The bottom rows of Tables 6(a) and 6(b) show the results of likelihood-ratio

specification tests comparing each of the three index models with the unrestricted

factor loading models. In each case the likelihood-ratio statistic tests the maintained

hypothesis that the restricted model is true against the alternative hypothesis that

some less restrictive relationship between factor loadings and default thresholds holds.

In interpreting these tests note that a p-value of greater than 0.05 indicates that the

null hypothesis cannot be rejected at the 95% confidence level. For both the S&P and

the Moody’s data, all three index models appear to be consistent with the available
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performance data. The quadratic and linear index models do not do significantly

better jobs describing the observed data than the constant index models.

6 Conclusion

So far as we are aware, this paper offers the first comparative study of alternative

methods of estimating default correlations from historical ratings performance data.

The bias and precision of each estimator is assessed using Monte Carlo simulations of

ratings performance datasets similar in size and grade construction to actual rating

agency sources. Our findings suggest there would be significant benefit to shifting

from the grade-by-grade method of moments estimators commonly used to a joint

maximum likelihood methodology.

Our simulations of the method of moments (MM) estimator suggest adequate

performance in estimating PDs, but reveal significant bias towards zero in estimates

of factor loadings. The downward bias is most severe for higher quality grades. Our

joint MLE methodology (MLE2) is similar to MM in that it allows factor loading

to vary freely across grades, but shows minimal bias and reduced standard errors.

MLE2 outperforms MM because it is able to utilize information on cross-grade default

correlations.

If one is willing to impose the assumption of a common value for factor loadings

across grades, then one can do better still. The gain in performance from the restricted

estimator (MLE3) is not large for lower quality grades, but for higher quality grades

the standard error on the factor loading can drop by roughly 40%. Of course, this

restricted estimator would provide misleading results if factor loading did indeed vary

across grades.

In applied work, an estimator that blends the characteristics of MLE2 and MLE3

can be used. This estimator allows for the possibility that higher quality obligors

have systematically higher or lower factor loadings than lower quality obligors, while

still capturing the benefits of imposing structure on the relationship between PDs

and factor loadings. Instead of fixing a single common value for all factor loading

as in MLE3, factor loadings are expressed as a simple parametric function of default

probabilities. This approach permits greater flexibility in fitting data than MLE3,

but affords greater efficiency than MLE2.

In addition to the aforementioned efficiency gains, MLE3 or a blended version of

14



MLE2 and MLE3 provides two practical advantages over the less restrictive estima-

tors. First, by limiting the number of parameters that must be estimated, cross-bucket

restrictions on factor loadings go a long way toward solving identification problem that

arise when the number of obligors in a bucket is small or when defaults are infrequent.

When very few defaults are observed in a bucket, estimating all the parameters of the

more general default models becomes difficult or impossible. Such circumstances may

arise, for example, when buckets consist of a large number of narrowly-defined rating

grades.5 Second, and perhaps more important, making factor loadings a (possibly

constant) parametric function of default thresholds ensures that a bucket’s factor

loading can be calculated directly from its PD. This provides a natural means for

assigning factor loadings to bank rating grades that straddle or fall between rating

agency grades.

The application to Moody’s and S&P ratings data presented in this paper demon-

strates the feasibility of the maximum likelihood approach to estimating default cor-

relations in a real world setting. Though our empirical results are not definitive, we

find that relatively strong restrictions on the way factor loadings vary across rating

grades are not inconsistent with observed data.

A broader conclusion to be drawn from this study concerns them importance of

using information efficiently. For the foreseeable future, we will never have as much

data on ratings performance as we would wish. Reasonable cross-grade parameter

restrictions allow us to squeeze information out of our data as efficiently as passible.

Research currently in progress seeks to expand the approach developed here to make

use of information on ratings transition histories, rather than just default histories.

This research should help to refine measurements of credit risk for higher quality

rating grades, where defaults are rare but downgrades are common.

5See Appendix A for additional details on identification issues.
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Default No. of
Grade PD Threshold Obligors

A 0.0015 -2.9677 400
B 0.0100 -2.3263 250
C 0.0500 -1.6449 100

Table 1: Characteristics of simulated rating grades
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Figure 1: Median estimated factor loadings by sample size (error bars show 5th and
95th percentiles).

16



M
M

M
L
E

1
M

L
E

2
M

L
E

3
T

A
B

C
A

B
C

A
B

C
A

ll
M

ea
n

0.
32

51
0.

39
36

0.
43

03
0.

37
48

0.
42

72
0.

43
90

0.
43

56
0.

43
89

0.
44

27
0.

43
74

20
S
td

.
D

ev
.

0.
14

35
0.

09
95

0.
09

17
0.

17
62

0.
10

53
0.

08
52

0.
13

19
0.

09
07

0.
07

73
0.

07
43

R
M

S
E

0.
19

01
0.

11
43

0.
09

37
0.

19
14

0.
10

77
0.

08
58

0.
13

25
0.

09
13

0.
07

75
0.

07
53

M
ea

n
0.

37
21

0.
41

66
0.

43
82

0.
41

51
0.

44
29

0.
44

62
0.

44
18

0.
44

26
0.

44
44

0.
44

54
40

S
td

.
D

ev
.

0.
10

78
0.

07
92

0.
06

98
0.

12
69

0.
07

17
0.

06
09

0.
08

85
0.

06
10

0.
05

50
0.

05
29

R
M

S
E

0.
13

29
0.

08
59

0.
07

07
0.

13
15

0.
07

20
0.

06
10

0.
08

88
0.

06
14

0.
05

53
0.

05
30

M
ea

n
0.

40
03

0.
43

01
0.

44
39

0.
43

29
0.

44
68

0.
44

99
0.

44
55

0.
44

81
0.

44
97

0.
44

86
80

S
td

.
D

ev
.

0.
07

79
0.

06
11

0.
04

98
0.

08
37

0.
05

12
0.

04
32

0.
06

19
0.

04
54

0.
04

01
0.

03
96

R
M

S
E

0.
09

23
0.

06
42

0.
05

01
0.

08
53

0.
05

13
0.

04
32

0.
06

20
0.

04
54

0.
04

00
0.

03
96

M
ea

n
0.

42
61

0.
44

27
0.

45
03

0.
45

27
0.

45
36

0.
45

48
0.

45
73

0.
45

63
0.

45
71

0.
45

48
16

0
S
td

.
D

ev
.

0.
05

90
0.

04
68

0.
03

58
0.

05
95

0.
03

68
0.

03
20

0.
04

67
0.

03
69

0.
03

33
0.

03
11

R
M

S
E

0.
06

36
0.

04
74

0.
03

58
0.

05
95

0.
03

69
0.

03
24

0.
04

72
0.

03
74

0.
03

41
0.

03
15

T
ab

le
2:

D
is

tr
ib

u
ti

on
of

es
ti

m
at

ed
fa

ct
or

lo
ad

in
gs

b
y

sa
m

p
le

si
ze

fo
r

w
=

0.
45

.

17



M
M

M
L
E

1
M

L
E

2
M

L
E

3
w

A
B

C
A

B
C

A
B

C
A

B
C

M
ea

n
-2

.9
83

-2
.3

31
-1

.6
47

-2
.9

82
-2

.3
31

-1
.6

47
-2

.9
81

-2
.3

31
-1

.6
47

-2
.9

82
-2

.3
31

-1
.6

47
0.

15
S
td

.
D

ev
.

0.
09

6
0.

06
3

0.
06

0
0.

09
6

0.
06

3
0.

06
0

0.
09

7
0.

06
3

0.
06

0
0.

09
6

0.
06

3
0.

06
0

R
M

S
E

0.
09

7
0.

06
3

0.
06

0
0.

09
7

0.
06

3
0.

06
0

0.
09

7
0.

06
4

0.
06

0
0.

09
7

0.
06

3
0.

06
0

M
ea

n
-2

.9
92

-2
.3

35
-1

.6
51

-2
.9

87
-2

.3
34

-1
.6

51
-2

.9
85

-2
.3

35
-1

.6
53

-2
.9

88
-2

.3
34

-1
.6

51
0.

30
S
td

.
D

ev
.

0.
12

4
0.

09
3

0.
08

7
0.

12
5

0.
09

4
0.

08
8

0.
12

5
0.

09
3

0.
08

8
0.

12
4

0.
09

4
0.

08
8

R
M

S
E

0.
12

6
0.

09
3

0.
08

7
0.

12
6

0.
09

4
0.

08
8

0.
12

6
0.

09
4

0.
08

8
0.

12
6

0.
09

4
0.

08
8

M
ea

n
-3

.0
12

-2
.3

49
-1

.6
59

-3
.0

08
-2

.3
43

-1
.6

57
-2

.9
95

-2
.3

45
-1

.6
61

-3
.0

05
-2

.3
50

-1
.6

64
0.

45
S
td

.
D

ev
.

0.
17

5
0.

13
8

0.
12

4
0.

17
3

0.
13

7
0.

12
3

0.
16

3
0.

12
7

0.
11

7
0.

16
5

0.
13

2
0.

12
0

R
M

S
E

0.
18

0
0.

14
0

0.
12

4
0.

17
7

0.
13

8
0.

12
4

0.
16

5
0.

12
9

0.
11

8
0.

17
0

0.
13

4
0.

12
2

M
ea

n
-3

.0
42

-2
.3

58
-1

.6
53

-3
.0

46
-2

.3
60

-1
.6

53
-3

.0
09

-2
.3

45
-1

.6
52

-3
.0

14
-2

.3
60

-1
.6

67
0.

60
S
td

.
D

ev
.

0.
23

8
0.

20
2

0.
16

5
0.

21
3

0.
18

6
0.

15
5

0.
18

1
0.

15
5

0.
13

3
0.

18
5

0.
15

9
0.

13
7

R
M

S
E

0.
24

9
0.

20
5

0.
16

5
0.

22
7

0.
18

9
0.

15
5

0.
18

6
0.

15
6

0.
13

3
0.

19
1

0.
16

3
0.

13
9

T
ru

e
V

al
u
e

-2
.9

68
-2

.3
26

-1
.6

45
-2

.9
68

-2
.3

26
-1

.6
45

-2
.9

68
-2

.3
26

-1
.6

45
-2

.9
68

-2
.3

26
-1

.6
45

T
ab

le
3(

a)
:

D
is

tr
ib

u
ti

on
of

es
ti

m
at

ed
d
ef

au
lt

th
re

sh
ol

d
s

b
y

“t
ru

e”
fa

ct
or

lo
ad

in
gs

.

18



M
M

M
L
E

1
M

L
E

2
M

L
E

3
w

A
B

C
A

B
C

A
B

C
A

B
C

M
ea

n
0.

14
9

1.
00

0
5.

00
8

0.
14

9
1.

00
0

5.
00

8
0.

15
0

0.
99

9
5.

00
8

0.
14

9
1.

00
0

5.
00

8
0.

15
S
td

.
D

ev
.

0.
04

5
0.

16
6

0.
61

6
0.

04
5

0.
16

7
0.

61
6

0.
04

5
0.

16
7

0.
61

8
0.

04
5

0.
16

7
0.

62
0

R
M

S
E

0.
04

5
0.

16
6

0.
61

6
0.

04
5

0.
16

6
0.

61
5

0.
04

5
0.

16
7

0.
61

8
0.

04
5

0.
16

7
0.

61
9

M
ea

n
0.

14
9

1.
00

2
4.

99
8

0.
15

1
1.

00
7

5.
00

3
0.

15
2

1.
00

3
4.

98
6

0.
15

1
1.

00
8

5.
00

6
0.

30
S
td

.
D

ev
.

0.
05

8
0.

24
7

0.
89

6
0.

05
9

0.
25

2
0.

90
9

0.
06

1
0.

24
8

0.
90

8
0.

05
9

0.
24

9
0.

91
1

R
M

S
E

0.
05

8
0.

24
7

0.
89

6
0.

05
9

0.
25

2
0.

90
9

0.
06

1
0.

24
8

0.
90

8
0.

05
9

0.
24

9
0.

91
1

M
ea

n
0.

15
0

0.
99

9
4.

98
5

0.
15

2
1.

01
4

5.
00

6
0.

15
5

1.
00

0
4.

95
3

0.
15

1
0.

99
0

4.
92

3
0.

45
S
td

.
D

ev
.

0.
09

5
0.

37
9

1.
28

6
0.

08
9

0.
38

1
1.

26
4

0.
08

5
0.

33
8

1.
19

8
0.

08
3

0.
35

1
1.

22
2

R
M

S
E

0.
09

5
0.

37
9

1.
28

6
0.

08
9

0.
38

1
1.

26
3

0.
08

5
0.

33
8

1.
19

8
0.

08
3

0.
35

1
1.

22
4

M
ea

n
0.

15
6

1.
04

1
5.

14
4

0.
14

5
1.

01
5

5.
12

1
0.

15
2

1.
02

0
5.

07
8

0.
15

0
0.

98
4

4.
92

6
0.

60
S
td

.
D

ev
.

0.
14

5
0.

58
2

1.
75

7
0.

10
8

0.
52

5
1.

64
6

0.
08

5
0.

39
9

1.
37

2
0.

08
5

0.
38

7
1.

36
9

R
M

S
E

0.
14

5
0.

58
3

1.
76

2
0.

10
8

0.
52

5
1.

65
0

0.
08

5
0.

40
0

1.
37

4
0.

08
5

0.
38

7
1.

37
0

T
ru

e
V

al
u
e

0.
15

0
1.

00
0

5.
00

0
0.

15
0

1.
00

0
5.

00
0

0.
15

0
1.

00
0

5.
00

0
0.

15
0

1.
00

0
5.

00
0

T
ab

le
3(

b
):

D
is

tr
ib

u
ti

on
of

es
ti

m
at

ed
d
ef

au
lt

p
ro

b
ab

il
it

ie
s

b
y

“t
ru

e”
fa

ct
or

lo
ad

in
gs

(i
n

p
er

ce
n
ta

ge
p
oi

n
ts

).

19



M
M

M
L
E

1
M

L
E

2
M

L
E

3
A

B
C

A
B

C
A

B
C

A
ll

M
ea

n
0.

11
61

0.
12

22
0.

13
21

0.
12

20
0.

11
80

0.
12

57
0.

16
43

0.
13

83
0.

14
12

0.
13

41
S
td

.
D

ev
.

0.
11

46
0.

08
37

0.
07

61
0.

11
74

0.
08

13
0.

07
36

0.
10

32
0.

07
03

0.
06

38
0.

05
33

R
M

S
E

0.
11

95
0.

08
82

0.
07

82
0.

12
06

0.
08

74
0.

07
75

0.
10

42
0.

07
12

0.
06

44
0.

05
56

P
er

ce
n
ti
le

2.
5

0.
00

00
0.

00
00

0.
00

00
0.

00
13

0.
00

10
0.

00
19

0.
00

95
0.

00
99

0.
01

42
0.

01
11

5.
0

0.
00

00
0.

00
00

0.
00

00
0.

00
21

0.
00

28
0.

00
42

0.
02

00
0.

01
94

0.
02

73
0.

03
18

50
.0

(M
ed

.)
0.

09
63

0.
13

38
0.

14
05

0.
09

55
0.

12
12

0.
13

14
0.

15
44

0.
13

79
0.

14
31

0.
13

87
95

.0
0.

30
69

0.
24

95
0.

24
53

0.
33

90
0.

25
40

0.
24

30
0.

34
50

0.
25

70
0.

24
38

0.
21

73
97

.5
0.

34
31

0.
27

36
0.

26
37

0.
38

14
0.

27
72

0.
26

22
0.

38
17

0.
27

93
0.

25
95

0.
23

05

T
ab

le
4(

a)
:

D
is

tr
ib

u
ti

on
of

es
ti

m
at

ed
fa

ct
or

lo
ad

in
gs

fo
r

w
=

0.
15

.

20



M
M

M
L
E

1
M

L
E

2
M

L
E

3
A

B
C

A
B

C
A

B
C

A
ll

M
ea

n
0.

21
72

0.
26

47
0.

28
00

0.
23

54
0.

27
23

0.
27

79
0.

28
98

0.
28

47
0.

28
50

0.
28

49
S
td

.
D

ev
.

0.
13

06
0.

07
91

0.
07

52
0.

15
19

0.
08

63
0.

07
57

0.
11

73
0.

07
73

0.
07

07
0.

06
21

R
M

S
E

0.
15

46
0.

08
66

0.
07

78
0.

16
50

0.
09

06
0.

07
88

0.
11

77
0.

07
88

0.
07

23
0.

06
39

P
er

ce
n
ti
le

2.
5

0.
00

00
0.

10
34

0.
13

03
0.

00
40

0.
08

20
0.

11
79

0.
04

76
0.

13
07

0.
13

77
0.

16
05

5.
0

0.
00

00
0.

13
44

0.
15

83
0.

00
81

0.
12

16
0.

14
98

0.
08

92
0.

15
29

0.
16

60
0.

17
93

50
.0

(M
ed

.)
0.

23
83

0.
26

67
0.

28
09

0.
23

93
0.

27
50

0.
28

13
0.

29
00

0.
28

41
0.

28
76

0.
28

71
95

.0
0.

40
12

0.
39

34
0.

39
63

0.
47

84
0.

40
72

0.
39

68
0.

48
62

0.
41

15
0.

39
61

0.
38

58
97

.5
0.

42
84

0.
41

68
0.

42
66

0.
54

29
0.

42
46

0.
41

99
0.

52
80

0.
43

33
0.

41
71

0.
40

18

T
ab

le
4(

b
):

D
is

tr
ib

u
ti

on
of

es
ti

m
at

ed
fa

ct
or

lo
ad

in
gs

fo
r

w
=

0.
30

.

21



M
M

M
L
E

1
M

L
E

2
M

L
E

3
A

B
C

A
B

C
A

B
C

A
ll

M
ea

n
0.

31
58

0.
38

68
0.

41
50

0.
35

91
0.

42
09

0.
42

51
0.

42
89

0.
43

19
0.

42
78

0.
42

80
S
td

.
D

ev
.

0.
14

57
0.

09
54

0.
09

19
0.

17
32

0.
10

22
0.

08
65

0.
12

55
0.

08
80

0.
07

96
0.

07
53

R
M

S
E

0.
19

80
0.

11
44

0.
09

83
0.

19
55

0.
10

62
0.

09
00

0.
12

72
0.

08
98

0.
08

26
0.

07
84

P
er

ce
n
ti
le

2.
5

0.
00

00
0.

19
98

0.
24

52
0.

01
19

0.
20

26
0.

25
53

0.
14

85
0.

24
75

0.
26

85
0.

28
13

5.
0

0.
00

00
0.

23
33

0.
27

34
0.

02
38

0.
24

84
0.

28
38

0.
20

61
0.

28
16

0.
29

24
0.

29
86

50
.0

(M
ed

.)
0.

33
90

0.
38

49
0.

41
15

0.
38

49
0.

42
58

0.
42

77
0.

43
62

0.
43

54
0.

43
18

0.
43

09
95

.0
0.

51
45

0.
55

20
0.

57
20

0.
61

84
0.

57
80

0.
55

98
0.

62
15

0.
56

77
0.

55
27

0.
54

95
97

.5
0.

53
93

0.
59

06
0.

60
55

0.
64

93
0.

61
27

0.
57

88
0.

64
99

0.
59

68
0.

57
77

0.
57

02

T
ab

le
4(

c)
:

D
is

tr
ib

u
ti

on
of

es
ti

m
at

ed
fa

ct
or

lo
ad

in
gs

fo
r

w
=

0.
45

.

22



M
M

M
L
E

1
M

L
E

2
M

L
E

3
A

B
C

A
B

C
A

B
C

A
ll

M
ea

n
0.

38
56

0.
49

41
0.

55
66

0.
43

74
0.

55
17

0.
57

40
0.

53
84

0.
57

21
0.

57
67

0.
57

33
S
td

.
D

ev
.

0.
16

86
0.

11
12

0.
10

38
0.

20
04

0.
10

95
0.

08
42

0.
11

93
0.

08
91

0.
07

49
0.

07
21

R
M

S
E

0.
27

28
0.

15
35

0.
11

25
0.

25
80

0.
11

96
0.

08
81

0.
13

42
0.

09
33

0.
07

84
0.

07
68

P
er

ce
n
ti
le

2.
5

0.
00

00
0.

29
47

0.
36

58
0.

01
07

0.
31

60
0.

39
30

0.
25

48
0.

37
55

0.
40

81
0.

40
04

5.
0

0.
00

00
0.

32
19

0.
39

06
0.

02
48

0.
36

10
0.

42
67

0.
31

12
0.

41
22

0.
43

77
0.

43
68

50
.0

(M
ed

.)
0.

41
49

0.
48

96
0.

55
03

0.
47

69
0.

56
80

0.
57

47
0.

56
06

0.
58

43
0.

57
95

0.
58

22
95

.0
0.

60
07

0.
68

52
0.

73
66

0.
68

03
0.

70
37

0.
70

20
0.

68
90

0.
70

08
0.

69
17

0.
67

42
97

.5
0.

63
04

0.
72

67
0.

76
63

0.
69

70
0.

72
14

0.
72

94
0.

70
37

0.
72

44
0.

71
50

0.
68

95

T
ab

le
4(

d
):

D
is

tr
ib

u
ti

on
of

es
ti

m
at

ed
fa

ct
or

lo
ad

in
gs

fo
r

w
=

0.
60

.

23



Unrestricted Quadratic Linear Constant
Model Index Index Index

A −3.3340 −3.3183 −3.3376 −3.3370
(0.1562) (0.1619) (0.1577) (0.1522)

BBB −2.9179 −2.9033 −2.9193 −2.9196
(0.1118) (0.1192) (0.1176) (0.1119)

BB −2.3309 −2.3296 −2.3400 −2.3394
(0.0919) (0.0842) (0.0867) (0.0820)

B −1.6716 −1.6611 −1.6704 −1.6701
(0.0599) (0.0647) (0.0685) (0.0663)

CCC −0.9361 −0.9252 −0.9337 −0.9351
(0.0836) (0.0818) (0.0827) (0.0828)

Table 5: Estimated default thresholds for S&P data.

Unrestricted Quadratic Linear Constant
Model Index Index Index

A −3.7697 −3.7717 −3.7654 −3.7731
(0.2546) (0.2558) (0.2590) (0.2547)

Baa −3.0004 −3.0063 −3.0067 −3.0110
(0.1026) (0.1064) (0.1127) (0.1033)

Ba −2.2418 −2.2518 −2.2534 −2.2488
(0.0741) (0.0676) (0.0720) (0.0676)

B −1.5217 −1.5293 −1.5284 −1.5315
(0.0550) (0.0571) (0.0595) (0.0621)

Caa −0.8561 −0.8743 −0.8690 −0.8618
(0.0758) (0.0734) (0.0736) (0.0793)

Table 6: Estimated default thresholds for Moody’s data.
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Unrestricted Quadratic Linear Constant
Model Index Index Index

A 0.2754 0.2956 0.2568 0.2375
(0.1748) (0.1389) (0.0849) (0.0449)

BBB 0.2468 0.2729 0.2514 0.2375
(0.1092) (0.0884) (0.0708) (0.0449)

BB 0.2976 0.2500 0.2438 0.2375
(0.0746) (0.0546) (0.0546) (0.0449)

B 0.2223 0.2366 0.2349 0.2375
(0.0478) (0.0472) (0.0466) (0.0449)

CCC 0.2557 0.2395 0.2250 0.2375
(0.0718) (0.0690) (0.0577) (0.0449)

Table 5(a): Estimated factor loadings for S&P data.

Unrestricted Quadratic Linear Constant
Model Index Index Index

A 0.2347 0.3236 0.3680 0.2807
(0.2878) (0.1936) (0.0861) (0.0417)

Baa 0.2895 0.3230 0.3359 0.2807
(0.0994) (0.0858) (0.0661) (0.0417)

Ba 0.3338 0.3063 0.3020 0.2807
(0.0533) (0.0455) (0.0477) (0.0417)

B 0.2592 0.2738 0.2676 0.2807
(0.0400) (0.0395) (0.0396) (0.0417)

Caa 0.2507 0.2287 0.2347 0.2807
(0.0623) (0.0588) (0.0499) (0.0417)

Table 5(b): Estimated factor loadings for Moody’s data.
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Quadratic Linear Constant
Index Index Index

Index Parameters
Constant Term (β0) 0.4488 0.3484 0.3815

(0.3967) (0.1581) (0.0813)
Linear Term (β1) 0.0867 −0.0241

(0.4278) (0.0801)
Quadratic Term (β2) 0.0309

(0.1137)
Specification Test vs. Unrestricted Model
Likelihood-Ratio 1.4316 1.4462 1.9132
Restrictions 2 3 4
P-value 0.4888 0.6847 0.7512

Table 6(a): Index model parameter estimates for S&P data.

Quadratic Linear Constant
Index Index Index

Index Parameters
Constant Term (β0) 0.2261 0.3065 0.4718

(0.3250) (0.1418) (0.0801)
Linear Term (β1) −0.1960 −0.0919

(0.3621) (0.0799)
Quadratic Term (β2) −0.0287

(0.0976)
Specification Test vs. Unrestricted Model
Likelihood-Ratio 1.7460 1.8172 3.1205
Restrictions 2 3 4
P-value 0.4177 0.6112 0.5379

Table 6(b): Index model parameter estimates for Moody’s data.
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Appendix

A Identification and Convergence Problems

In the main Monte Carlo study four sets of 1,500 synthetic datasets were constructed
with w set to 0.15, 0.30, 0.45, and 0.60. For some of these datasets, one or more of
the estimators described in Section 3 failed to generate a full set of model parameters.
The table below shows the fraction of simulations for which one or more parameters
could not be estimated.

w MM MLE1 MLE2 MLE3
0.15 0.005 0.000 0.000 0.000
0.30 0.005 0.003 0.003 0.000
0.45 0.007 0.038 0.043 0.007
0.60 0.061 0.281 0.311 0.121

For grades where the PD implied by γg is small, a simulated dataset may con-
tain a very small number of defaults. This outcome is particularly likely when w is
large. When fewer than two defaults are observed in a grade, the unrestricted model
parameters are not identified. In essence, the data contain too little information to
estimate separate default thresholds and factor loadings for each grade. Thus, MM
and MLE1 cannot be used.

Even when model parameters are strictly identified by the data, the optimization
algorithm used to obtain maximum likelihood estimators may fail to converge to a
solution. Often such convergence problems arise when the matrix of second partial
derivatives of the log-likelihood function (the Hessian matrix) is nearly singular. Work
by Rothenberg (1971) shows that such singularity may result when model parame-
ters are “nearly” unidentified. In general, highly correlated observations contain less
information that is helpful in identifying model parameters than independent data.
For this reason, it is perhaps not surprising that convergence problems are greater for
higher values of w. Identification problems can be overcome by imposing parametric
restrictions such as R3. This helps explain why MLE3 is more likely to converge to a
solution than MLE1 or MLE2.
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