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 PREFACE 

 

This document provides a “big picture” overview of the central issues in using regressions 

to estimate the effect of one variable one another and in interpreting the results of regressions. My 

hope is that it will be useful both to students who have not yet taken a course in econometrics but 

who are encountering papers that use regressions, and to students ones who are taking (or have 

taken) an econometrics course but who want a discussion that focuses on the key issues without 

going into technical details. It is absolutely not a substitute for a course in econometrics (such as 

Economics 140 or 141 at Berkeley). It says nothing about the theory and statistics underlying 

regressions, and only scratches the surface of using and interpreting them. Anyone interested in 

empirical relationships in economics (or in any other non-experimental setting) should take such 

a course. At the same time, my experience is that many econometrics courses are not completely 

successful in conveying the ideas this document emphasizes. Thus while it is not a substitute for 

an econometrics course, my hope is that it can be a useful complement to one. 

I am indebted to Christina Romer for innumerable helpful conversations that were 

invaluable in preparing these notes, and to our past Graduate Student Instructors for helpful advice 

about teaching this material. I am especially grateful to my students for their questions, patience, 

and encouragement. 

The document may be downloaded, reproduced, and distributed freely by instructors and 

students as long as credit is given to the author and the copyright notice on the title page is included.
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I  Introduction 

Economics is a deeply empirical field. Economists are interested in many questions about 

the world: What is the impact of monetary policy on the unemployment rate? How does the price of 

gasoline affect the quantity demanded? How does political instability affect economic growth? What 

is the effect of wages on the quantity of labor supplied? And much more. 

A tool that economists often employ to analyze empirical questions is a regression. In 

essence, a regression is just a way of summarizing the relationship between two or more variables 

in some set of data. The purpose of these notes is to provide a brief introduction to regressions, with 

an emphasis on two issues. The most important is when they can and cannot be used to shed light 

on the effect of one variable on another. We will not discuss other possible uses of regressions, such 

as making predictions. The other is how to interpret the results of a regression. 

 For concreteness, these notes focus on a specific economic question: What is the effect of 

the number of years of schooling that an individual obtains on their wage? 

 The implicit assumption behind this question is that an individual’s wage depends on their 

years of schooling and other factors. It is helpful to express this assumption in terms of a very simple 

model of the determinants of individuals’ wages: 

 

(1)   ln𝑊𝑊𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏𝐸𝐸𝑖𝑖 + 𝑢𝑢𝑖𝑖 . 

 

Here i indexes individuals, E denotes years of education, and W denotes the wage. Thus, the model 

says that an individual’s wage depends on their years of schooling (this is the bEi piece of [1]). It 

also says that the wage is affected by other factors (the ui piece). These other factors might include 

luck, family connections, inherited characteristics, and abilities acquired through means other than 
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formal education. Because those other factors are not our focus, the equation lumps them all 

together.1  

 The fact that the model assumes that the log of the wage is a linear function of E is not 

critical. We will return to it briefly in Section VII. But for now, one implication is worth noting. 

Exponentiating both sides of (1) gives us  

 

(2)   𝑊𝑊𝑖𝑖 = e𝑎𝑎e𝑏𝑏𝑏𝑏𝑖𝑖e𝑢𝑢𝑖𝑖 . 

 

Thus the model in equation (1) implies that raising Ei by one raises Wi by a factor of eb. For small 

values of b, eb is approximately 1 + b. For example, if b = 0.1, eb is 1.105, so that each year of 

education raises an individual’s wage by about 10 percent. b is sometimes referred to as the “rate of 

return” to education. 

 If you start to think about it, you are likely to soon find objections to the question, “What is 

the effect of an individual’s years of schooling on their wage?” The effects of merely sitting in a 

classroom for a school year on earnings (as opposed to, for example, paying attention to what the 

teacher is saying, participating in class, doing the assigned homework, and studying) is probably 

zero or even negative. Even if we specify that we mean the full range of education provided by 

schooling rather than just time spent in school, the effects surely vary—perhaps greatly—depending 

on the quality of the school, the ability and motivation of the student, and the fit between the school 

and the student. 

                                                 
1 It would be more precise to say that the effects of the other factors are shown by a + ui rather than just by ui. The 
reason for including a is that in working through the mathematics of regressions, it is often helpful to assume that the ui 
term has a mean of zero. Including a allows us to assume this without assuming that the mean effect of other factors (a 
+ ui) is zero. a is referred to as the constant term in the model. These notes generally include constant terms in the 
equations but say little about them. 
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 Thus, it is helpful to be more precise about our question. A better formulation is: What is the 

average effect, for students who could plausibly get slightly more or slightly less education, of an 

additional year of education that is of average quality in the relevant setting (the United States, for 

example)? 

 In principle, one way to answer this question would be to run a randomized experiment. The 

first step would be to identify some students who were close to the margin of getting more or less 

education. For example, suppose we could find some high school seniors who planned to enroll in 

a four-year college if they were admitted to their local university and in a junior college if they were 

not, and who were close to the cutoff for admission to the university. Or suppose we could find 

some 16-year olds agonizing over whether to complete high school, and who could easily be swayed 

by minor factors, such as whether they happened to talk first to a parent or to a friend about the 

decision. The next step would be to randomly divide the students into two groups, and require the 

members of one group to get the larger amount of education and the other to get the smaller amount. 

The final step would be to wait a decade or so and collect data on the students. We could then 

estimate the effect of an additional year of schooling on wages—the parameter b in equation (1)—

by dividing the difference in the average wage of the two groups (or, more precisely, the difference 

in the average log wage of the two groups) by the difference in the years of schooling in the two 

groups. 

 Of course, conducting such an experiment is impossible (as well as grossly immoral). Thus, 

the challenge we face in trying to figure out how schooling affects wages is to use data that are not 

from experiments to answer that question. 
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II  Ordinary Least Squares Regression 

 When we cannot run an experiment, a natural possibility is to ask what the relationship in 

the data is. Figure 1 is a scatterplot of the log wage against years of education in one dataset. That 

is, each point shows years of schooling and the log wage for one person. (Importantly, all the “data” 

presented in these notes are artificially generated, not real data. That is helpful for explaining the 

basic issues that arise with regressions, but leaves out the complications that always occur with any 

actual data. Section VII discusses a few of those complications.) Faced with these data, we can ask: 

Looking across these individuals, on average how much are wages higher when schooling is one 
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Figure 1.  Scatterplot of Log Wages against Years of Education 
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year higher? 

 A regression—technically, an ordinary least squares, or OLS, regression—is the usual tool 

that economists use to summarize such relationships. What an OLS regression does is find the 

straight line that fits the data best.2 

 There is some terminology associated with regression equations such as (1). The variable on 

the left-hand side of the equation (ln Wi in our case) is the left-hand side or dependent variable. The 

variable on the right-hand side (Ei) is the right-hand side or independent variable. The parameters 

(a and b) are the coefficients. The coefficient corresponding to the intercept of the linear relationship 

(a) is the constant. And the term capturing the factors that are not being explicitly modeled (ui) is 

the residual. 

 The results of using an OLS regression to estimate equation (1) with the data shown in Figure 

1 are: 

 

(3) ln Wi = 1.87  + 0.104 Ei,     N = 100. 
 (0.19)   (0.012) 

 
 

Here, the numbers in the top line (1.87 and 0.104) are the coefficient estimates, 𝑎𝑎� and 𝑏𝑏�, from the 

regression. That is, they are the intercept and slope of the straight line that best fits the data in Figure 

1. The numbers in parentheses below the coefficient estimates are the standard errors of 𝑎𝑎� and 𝑏𝑏.�  

                                                 
2 Concretely—but not importantly for our purposes—a straight line in our diagram takes the form 𝑎𝑎� + 𝑏𝑏�𝐸𝐸. Given such 
a line, for each individual in the sample there will generally be some difference between their actual log wage, ln𝑊𝑊𝑖𝑖 , 
and the value that the equation predicts for them, 𝑎𝑎� + 𝑏𝑏�𝐸𝐸𝑖𝑖 . What OLS does is find the values of 𝑎𝑎� and 𝑏𝑏� that make the 
sum of the squares of these differences as small as possible (hence the name, “least squares”). To learn about the 
conditions under which it makes sense to choose 𝑎𝑎� and 𝑏𝑏� to minimize the sum of squared differences, you will need 
to take an econometrics course. 
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“N” is the number of observations in our sample. For the moment, we will focus just on the 

coefficient estimates. We will come back to the standard errors in Section V. Figure 2 redraws 

Figure 1 with the regression line, ln Wi = 1.87 + 0.104Ei, added. 

 

III  Correlation Is Not Causation 

 Equation (3) tells us that in our dataset, when one individual has one more year of schooling 

than another, their log wage is on average higher by 0.104; that is, they earn on average about 10 

percent more. We can therefore say that in our data, one more year of education is on average 
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Figure 2.  Regression Line and Scatterplot of Log Wages against Years of Education 
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associated with an individual’s wage being higher by about 10 percent. Can we infer from this that 

these data are telling us that a good estimate of b in equation (1) is 0.104? That is, can we go from 

the statement that the data indicate that one more year of education is associated with the wage 

being on average 10 percent higher to the statement that the data indicate that one more year of 

education causes the wage to be on average 10 percent higher? 

 The answer to this question is emphatically no. All the regression does is summarize patterns 

or correlations in the data. If there is a relationship between two variables, a regression will show 

the relationship; but it does not tell us that one variable causes the other, or that causation goes in 

the opposite direction, or that a third variable is causing both—or some combination.  

 In equation (1), b is the amount that an additional year of education changes an individual’s 

wage, holding other influences on wages the same. But there is no guarantee that in practice, factors 

other than education that affect wages are not on average systematically different among individuals 

with more education. In fact, if you think about it, it is easy to find reasons that other influences on 

wages might vary systematically with the amount of education people receive. For example, 

individuals raised by well educated, wealthy parents are likely to obtain more education, but to have 

other advantages in the labor market—perhaps from more learning at home, or from more job 

opportunities through family connections. Individuals who are naturally more disciplined may get 

more education, but also be more productive workers for a given amount of education. Individuals 

who are healthier may be able to stay in school longer, but also to work harder when they get a job. 

And so on.  

 To see the problem more fully, go back to our model of what determines wages, equation 

(1), ln𝑊𝑊𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏𝐸𝐸𝑖𝑖 + 𝑢𝑢𝑖𝑖. Recall that ui reflects all factors other than the number of years of 

schooling that affect an individual’s wage. In the examples we just discussed, such as individuals 
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who are more disciplined both getting more education and earning more for a given amount of 

education, there is a positive correlation between the right-hand side variable in equation (1), Ei, and 

the residual, ui. That is, ui is on average higher when Ei is higher. When there is such positive 

correlation, the coefficient estimate from an OLS regression will overstate the true effect of the 

right-hand side variable on the left-hand side one. The technical term for this is that the estimate of 

b from the regression is a biased estimate of the true value of b—that is, of the effect of education 

on wages. 

 To understand why positive correlation between the right-hand side variable and the 

residuals leads OLS to overstate the effect of the right-hand side variable on the left-hand side one, 

suppose that the true value of b is zero—that is, that schooling has no impact at all on earnings—

but that ui is on average higher among individuals with more years of schooling. Thus, individuals 

who have more years of education on average earn more not because they get any benefit in the 

labor market from their additional education, but because they on average have other characteristics 

that cause them to earn more. What OLS does is choose the coefficient estimates, 𝑎𝑎� and 𝑏𝑏�, to fit 

the data as well as possible. Since individuals with more education on average earn more, OLS will 

choose a positive value of 𝑏𝑏�. That is, the coefficient estimate will overstate the true effect of 

education on wages. And this same logic carries over to cases where the true value of b is not zero. 

If the true value of b is positive, for example, positive correlation between Ei and ui will cause OLS 

to give a value of 𝑏𝑏� that is larger than the true value of b. 

 The name for this problem is omitted variable bias. All the factors that influence wages that 

are not included in the model are put into the ui term in (1); they are “omitted variables.” If their 

overall impact on the dependent variable (that is, ui) is systematically positively correlated with the 
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right-hand side variable (Ei), the regression coefficient, 𝑏𝑏�, will systematically overstate the true 

effect of the right-hand side variable on the left-hand side variable, b—that is, the coefficient 

estimate from the regression will be a biased estimate of the true coefficient.3 

 Note that the source of the problem is not just that there are omitted variables. Any empirical 

model will be incomplete, and so will have omitted variables. The problem arises only if there is 

systematic correlation between the omitted variables and the right-hand side variables. For example, 

think about the randomized experiment described in Section I. That experiment leaves out a huge 

amount of information about the determinants of individuals’ wages—all it considers is the variation 

coming from the fact we intervened to require a few individuals to get more education than they 

might have gotten otherwise, and a few to get less. But because that intervention was random, we 

know that it is not systematically correlated with the other influences on education. Thus, the 

experiment does not suffer from omitted variable bias.4 

 Note also it is possible for omitted variable bias to cause the regression coefficient to 

systematically understate rather than overstate the true effect of schooling on wages. Consider again 

the case where the true value of b is zero. But suppose we are in a setting where the individuals who 

get more education have fewer skills that are valued in the labor market; for example, they might 

lack social skills, or be interested mainly in arcane questions with little practical relevance. In that 

environment, we might find that even though in truth education has no effect on wages, individuals 

                                                 
3 “Systematic” correlation means correlation that is not just due to chance (technically, correlation that would not 
approach zero as the sample size became larger and larger). For now, we are discussing only systematic correlation, not 
chance correlation. We will discuss some issues raised by chance correlation in Section V. 
4 Again, our focus for the moment is on issues raised by systematic correlation. Because the assignment is random, it 
could happen to be correlated, either positively or negatively, with other influences just by chance. As a result, the 
estimate of b we get from the experiment will generally not be exactly equal to the true value of b. But it will not be 
systematically biased either above or below the true value. Again, we will come back to the issue of chance correlation 
in Section V. 
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with more education on average earn less. That is, in this case the correlation between the residual 

(ui) and the right-hand side variable (Ei) is negative, and so the regression estimate systematically 

understates the true effect of education. 

IV  Instrumental Variables 

 Omitted variable bias is a central challenge—indeed, it is the central challenge—to using 

regressions to determine the effect of one variable on another. The fundamental solution is to use 

instrumental variables (or IV) estimation. 

The basics of instrumental variables. To understand IV, return to our model of wage 

determination, ln𝑊𝑊𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏𝐸𝐸𝑖𝑖 + 𝑢𝑢𝑖𝑖 . But suppose that in addition to data on years of education 

and wages, we have data on a third variable (an “instrument”), Z, that has two characteristics. First, 

Z is correlated (either positively or negatively) with E. Second, it is not systematically correlated 

with factors other than E that affect wages—that is, with u. 

 If we have such a variable, we can use a two-step procedure to estimate the impact of 

schooling on wages. The first stage is to run an OLS regression of schooling on the instrument:  

 

(4)   𝐸𝐸𝑖𝑖 = 𝑐𝑐 + 𝑑𝑑𝑍𝑍𝑖𝑖 + 𝑣𝑣𝑖𝑖 . 

 

The purpose of this regression is not to find the effect of Z on E. Rather, it is just to find the portion 

of E that is correlated (for whatever reason) with Z. Let �̂�𝑐 and �̂�𝑑 be the estimates of c and d from 

this regression, and let 𝐸𝐸�𝑖𝑖  be the “fitted value” for observation i—that is, �̂�𝑐 + �̂�𝑑𝑍𝑍𝑖𝑖—from the 

regression. 

 The second stage is an OLS regression of the wage not on years of education, but on the 
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fitted value of E from the first-stage regression. To understand the reason for doing this, write Ei as 

𝐸𝐸�𝑖𝑖 + 𝑣𝑣�𝑖𝑖  (where 𝑣𝑣�𝑖𝑖  is defined as 𝐸𝐸𝑖𝑖 − 𝐸𝐸�𝑖𝑖 ). Substituting this for Ei in our model of wage 

determination, ln𝑊𝑊𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏𝐸𝐸𝑖𝑖 + 𝑢𝑢𝑖𝑖 , gives us:  

 

(5)    ln𝑊𝑊𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏�𝐸𝐸�𝑖𝑖 + 𝑣𝑣�𝑖𝑖� + 𝑢𝑢𝑖𝑖 

     = 𝑎𝑎 + 𝑏𝑏𝐸𝐸�𝑖𝑖 + (𝑏𝑏𝑣𝑣�𝑖𝑖 + 𝑢𝑢𝑖𝑖) 

≡ 𝑎𝑎 + 𝑏𝑏𝐸𝐸�𝑖𝑖 + 𝜂𝜂𝑖𝑖, 

 

where ηi is defined as 𝑏𝑏𝑣𝑣�𝑖𝑖 + 𝑢𝑢𝑖𝑖 . 

 Equation (5) shows that to determine whether the second stage regression—the regression 

of ln Wi on 𝐸𝐸�𝑖𝑖—will give us a valid estimate of b, we need to know whether η is systematically 

correlated with 𝐸𝐸� . 𝐸𝐸� is a linear function of Z. Thus, asking whether η is correlated with 𝐸𝐸� is the 

same as asking whether η is correlated with Z. Now, η has two pieces, 𝑏𝑏𝑣𝑣� and u. 𝑣𝑣� is the residual 

from the OLS regression of E on Z. By construction, it is therefore uncorrelated with Z.5 And one 

of our two assumptions about Z is that it is not systematically correlated with u. Thus, there is no 

systematic correlation between either piece of η and 𝐸𝐸� , and so the regression gives us a valid 

estimate of b—that is, of the true effect of schooling on wages.6 

 Intuitively, what IV does is to estimate the relationship between education and wages using 

only a portion of the variation in education. Our worry is that for some of the things that cause 

                                                 
5 A basic fact about OLS regression is that the coefficients that minimize the sum of squared differences between the 
actual values of the dependent variable and the fitted values (see n. 2) make the regression residual uncorrelated with 
the right-hand side variable. 
6 This exposition sweeps some important issues under the rug (mainly ones involving “consistency” and “finite-sample 
bias” and the standard errors). They are covered in econometrics courses. 
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education to vary across individuals, such as differences in parental resources or in personal 

discipline, forces that cause wages to be higher for a given amount of education are on average 

stronger when education is greater. As a result, if we estimate the relationship between education 

and wages using all the variation in education, we get an estimate that exceeds the true effect of 

education. But suppose we can find something that is associated with variation in education where 

the forces that cause wages to be higher for a given amount of education are not on average stronger 

or weaker when education is greater. Then if we ask how wages vary with that specific component 

of education, we will get a good estimate of the actual effect of education on wages. 

 Valid instruments. So far, this discussion probably seems like the famous joke about the 

economist and the can opener. We have assumed the existence of a wonderful tool—in this case, 

the instrument—that allows us to solve our problem. But we have not said anything about where to 

find such a tool.7 And indeed, for IV to work, we need a valid instrument—in our case, a variable 

correlated with E and not systematically correlated with u. And in most situations, finding a valid 

instrument is not easy. 

 To understand what a valid instrument might be like, return to our example from Section I 

of a group of individuals who were on the margin of getting additional education, and who we could 

randomly allocate into one group that that did get the extra education and one that did not. Now 

define a variable that is +1 for the individuals who were randomly allocated to get more education 

and −1 for those who were randomly allocated to not get more education. And if there are any 

individuals in the sample who were not on the verge of getting more education, let the variable equal 

0 for them. The variable would be a valid instrument for our regression. The individuals for whom 

                                                 
7 If you do not know the joke, type “economist can opener” into any search engine. 
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it is +1 on average get more education than those for whom it is −1. Thus it is correlated with E. 

And because it is chosen randomly, it is not systematically correlated with other factors influencing 

education (that is, with u). 

 Unfortunately (from the point of view of estimating the effects of one variable on another), 

true randomization is rare in economics. Economists have therefore devoted a great deal of effort to 

trying to find cases where allocations are similar to what they would be with randomization. One 

famous study used the fact that the amount of education students are legally required to obtain varies 

with their birthdate.8 For example, in a state where students start kindergarten in September if they 

turn five before September 1, a student born on August 31 will start school almost a year younger 

than one born on September 1. If students are legally required to stay in school until they turn 

sixteen, this means that the student born on August 31 is legally required to obtain one more year of 

schooling than the one born on September 1. As a result, individuals born in late August typically 

receive slightly more education than ones born in early September. And since whether a child is 

born in late August or early September is effectively random, these differences in the amount of 

education these individuals receive is almost surely not due to other differences between the two 

groups. Another well known study focused on a major program in Indonesia in the 1970s of building 

schools in areas where they were previously lacking. Because the timing of the program varied 

greatly across regions of the country, relatively small differences in when and where individuals 

were born led to substantial differences in the amount of education they received.9 

 Example. Consider again our example of wages and schooling, but now suppose we have 

                                                 
8 Joshua D. Angrist and Alan B. Krueger, “Does Compulsory School Attendance Affect Schooling and Earnings?” 
Quarterly Journal of Economics 106 (November 1991): 979–1014. 
9 Esther Duflo, “Schooling and Labor Market Consequences of School Construction in Indonesia: Evidence from an 
Unusual Policy Experiment,” American Economic Review 91 (September 2001): 795–813. 
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data on an instrument, Z, that is correlated with years of education and that we are confident is not 

systematically correlated with the residual. For concreteness, we assume that the instrument is 

similar in spirit to the examples we discussed in the introduction: among some high school students 

who are on the margin of going to community college, a few are pushed more or less at random in 

to not going, and so to getting less education than they would otherwise, and a few are pushed into 

going. Thus in the example, the instrument takes on only three possible values: 0 (for the individuals 

who are not subject to the intervention, which is a large majority of the sample), −1 (for the students 

who are pushed to get less education), and 1 (for the students who are pushed to get more). 

 Figure 3 shows the first stage of IV: it is a scatterplot of E against Z, together with the 

regression line from a regression of E on a constant and Z. Three things are worth noting. First, the 

scatterplot is somewhat peculiar-looking; this reflects the facts that the instrument has only three 

possible values and that years of schooling only takes on integer values. (In the figure, the size of 

each point is proportional to the number of observations.) Second, and more importantly, there is a 

clear relationship between the two variables, which is necessary for Z to be useful as an instrument. 

Third, and also importantly, the relationship is not particularly tight: there is a lot of variation in E 

that is not correlated with Z. That makes sense. The reason we need to use IV is that there are many 

factors that affect how much education individuals get that are likely to be correlated with other 

factors that affect their wages. Thus there is a lot of variation in E that we do not want to use to 

estimate the impact schooling on wages, because we think that it would lead to a biased estimate. 

In addition, it is very unlikely that we will have an instrument that captures all the variation in E 

that is not correlated with the residual. This too will reduce the amount of variation in E that is 

correlated with Z. In actual empirical work (such as the two studies cited above), it is common for 

the instruments to capture only a very small portion of the variation in the independent variable. 
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That does not make them invalid instruments; the only problem it creates is that it tends to mean 

that we need a large sample to learn very much from the estimates. 

 Figure 4 is the scatterplot corresponding to the second stage of the IV estimation. That is, it 

is a scatterplot of ln W not against years of schooling (E), but against the portion of years of 

schooling correlated with the instrument (the fitted values from the first-stage regression, 𝐸𝐸�). The 

figure shows a positive relationship, but one with a slope that is smaller than the simple relationship 

shown in Figure 1. This is what one would expect if there is omitted variable bias that causes OLS 

to overstate the effect of schooling on wages and if we have found an instrument that solves the 
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problem. 

 The results of the IV estimation in our example are: 

 

(6) ln Wi = 2.44  + 0.070 Ei,     N = 2500. 
 (0.28) (0.019) 

 

As before, the numbers in the top line are the coefficient estimates, and the numbers in parentheses 

below the coefficient estimates are the standard errors of those estimates. Consistent with what we 
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have been saying, the IV estimate of the impact of an additional year of schooling on wages (0.070) 

is quite a bit less than the OLS estimate (0.104). Figure 4 also shows the line corresponding to this 

regression, ln Wi = 2.44 + 0.070𝐸𝐸�𝑖𝑖. 9F

10 

 

V  Interpreting Regressions 

 Point estimates and standard errors. Suppose we have a regression we believe estimates 

the impact of the right-hand side variable on the left-hand side one. That is, suppose that we have 

either an OLS regression that we believe does not suffer from omitted variable bias or an IV estimate 

where we believe that the instrument is valid (in the sense of not being systematically correlated 

with the residual). How should we interpret the results of the regression? 

 For concreteness, we will discuss this issue in the context of the IV estimates reported in 

equation (6). There are two key numbers in (6). The first is 0.070 in the top line. This is 𝑏𝑏�—the 

estimate of b in our simple model of wage determination in equation (1). 0.070 is the number most 

consistent with the statistical relationship we are estimating. 𝑏𝑏� is referred to as the “point estimate” 

of the effect of education on wages. It tells us that our best estimate of b is 0.070—that is, that on 

average an additional year of schooling raises wages by about 7 percent. 

 The other important number in (6) is 0.019 in the second line. Recall that the key 

characteristic of a good instrument is that it is not systematically correlated with the omitted 

variables (that is, with ui). A more formal way of stating this characteristic is that the correlation 

will approach zero as the sample size becomes larger and larger. But in any given sample, there will 

                                                 
10 Notice that the sample size in the IV regression (equation [6]) is much larger than in the earlier OLS regression 
(equation [3])—2500 rather than 100. The reason we assumed a larger sample is related to the point above that when 
the instrument is only mildly correlated with the independent variable, we usually need a large sample to learn much 
from the estimates. 
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be some correlation just by chance. Consider the example of looking at children born right around 

September 1. In any sample, it could be that for the children born just after September 1, on average 

the factors other than education that affect earnings just happen to be somewhat larger or somewhat 

smaller than they are for those born just before September 1. 

 The result of this random variation in the correlation between the instrument and the omitted 

variables is that even when we have a valid instrument, the estimated coefficient, 𝑏𝑏�, will differ 

randomly from the true effect, b. The standard error—in our case, 0.019—is an estimate of the size 

of those random differences. Specifically, under certain assumptions (the details of which are 

covered in econometrics courses), the standard error is a good estimate of the standard deviation of 

the difference between 𝑏𝑏� and b. 

 Confidence intervals. The point estimate and standard error can be combined to form a 

confidence interval for b. If the instrument is valid, 𝑏𝑏� will on average equal b; that is, the mean of 

𝑏𝑏� − 𝑏𝑏 is zero. The chances of 𝑏𝑏� − 𝑏𝑏 being more than two standard errors away from its mean are 

small—about 5 percent. For that reason, researchers often focus on the two-standard error 

confidence interval—that is, the range from 𝑏𝑏� minus two times the standard error to 𝑏𝑏� plus two 

times the standard error. In equation (6), the two-standard error confidence interval is from 0.070 − 

2•0.019 to 0.070 + 2•0.019, or (0.032,0.108). The two-standard error confidence interval is 

sometimes referred to as the 95 percent confidence interval.11 

 It is important to be clear about what the two-standard error confidence interval means. What 

it shows is the range of values of b for which (under the assumption that the instrument is valid) it 

                                                 
11 Once again, we have swept some details under the rug. As described in econometrics courses, the width of the 95 
percent confidence interval is not exactly plus or minus twice the standard error, and the factor we need to multiply the 
standard error by to construct the 95 percent confidence interval differs slightly depending on the number of observations 
and the number of right-hand side variables. 
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would not be extremely surprising to obtain the estimate of 𝑏𝑏� that we did. For example, suppose 

the true value of b is 0.045. Then the value of 𝑏𝑏� is about 1.3 standard deviations away from b. A 

departure of this size or larger would occur about 20 percent of the time, and so would not be 

particularly surprising. Thus the regression results do not provide strong evidence against the view 

that b is 0.045. On the other hand, suppose the true value of b is 0.025. Then 𝑏𝑏� is about 2.4 standard 

deviations away from b. A departure of this size or larger would occur only about 2 percent of the 

time, and so would be very surprising. Thus the regression results provide strong evidence against 

the view that b is 0.025. 

 More generally, the data provide strong evidence against any proposed value of b that is less 

than 0.032 or greater than 0.108 (in the sense that we would be quite unlikely to get a value of 𝑏𝑏� 

that far from the true value of b), but they do not provide such strong evidence against proposed 

values of b between 0.032 and 0.108. We say that the data reject the hypothesis (“at the 5 percent 

level”) that, say, b = 0.01 or b = 0.12, but they fail to reject (again, at the 5 percent level) the 

hypothesis that, say, b = 0.05 or b = 0.10. 

 There are three common errors in interpreting confidence intervals. The first is to jump from 

the statement that the data fail to reject a hypothesis to the statement that they accept a hypothesis. 

Even if some value of b that we are especially interested in (perhaps zero, or perhaps the estimate 

from the OLS regression) lies in the 95 percent confidence interval, so are many other values. Thus 

regression results can never point to one specific value of the parameter as being the correct one. 

 The second error is to jump from the statement that 95 percent of the time 𝑏𝑏� will lie within 

two standard errors of the true value of b to the statement that there is a 95 percent chance that the 

true value of b is in the 95 percent confidence interval. In fact, however, the likelihood of various 



 

 
20 

possible b’s depends not just on the results of the regression, but on all the information we have 

about possible values of b. 

 This point is subtle, so it may help to consider a simpler example. Suppose you get a 50-cent 

coin at the bank. You are interested in the likelihood of a flip of the coin coming up heads; call this 

likelihood q. You flip the coin 6 times, and it comes up heads each time. The chance of getting 6 

heads in a row is less than 5 percent if q is less than about 0.607, and more than 5 percent if q is 

greater than that. Should you therefore think there is a 95 percent chance that the true value of q is 

greater than 60.7 percent—that is, that there is a 95 percent chance you have gotten a very unfair 

coin? Surely not! Before you did the coin flips, you had good reasons to think the true value of q 

was very close to 50 percent. The coin looks pretty symmetric, and even though you have never 

flipped that particular coin before, you have flipped many other coins, and seen or heard about many 

other flips, and all that evidence points to the outcomes of flips being very close to 50-50. Thus, 

even though getting 6 heads in a row would not be very surprising if the true value of q were, say, 

0.8, and would be quite surprising if the true value of q were 0.5, the totality of evidence you have 

will almost certainly lead you to think that it is much more likely that q is 0.5 than that it is 0.8. That 

is, you would be making a big mistake (and potentially a very costly one if you bet on the outcome 

of future coin flips) if you decided that you were 95 percent sure that the coin was very unfair. 

 The third common error in interpreting confidence intervals is to think there is something 

special about whether a candidate value of b is a little inside or a little outside the interval. In fact, 

the chances of getting any given 𝑏𝑏� are a smoothly decreasing function of its distance from the true 

value of b. As a result, the chance of getting a 𝑏𝑏� that is 2.01 standard errors below the true value of 

b is barely smaller than the chance of getting a 𝑏𝑏� that is 1.99 standard errors below. More generally, 
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the strength of the evidence against a potential value of b is a smoothly increasing function of its 

distance from 𝑏𝑏�: the data provide only moderate evidence against possible values of b that are 

roughly one standard error away from 𝑏𝑏�; strong but not overwhelming evidence against values that 

are roughly two standard errors away from 𝑏𝑏�; extremely strong evidence against values that are 

roughly three standard errors away; and so on. 

 t-statistics. Another statistic about regression coefficients that is often reported is the t-

statistic, which is the ratio of the point estimate to the standard error. In fact, in many papers the 

numbers shown in parentheses underneath the point estimates are t-statistics rather than standard 

errors. 

 To see the usefulness of a t-statistic, suppose the true value of some coefficient is zero. Then 

(under the assumption that the regression does not suffer from omitted variable bias), the point 

estimate from your regression will on average be zero, but it can be either positive or negative just 

by chance. It turns out that when the true coefficient is zero (and, again, there is no omitted variable 

bias), the t-statistic will have a distribution that is approximately normal with a mean of zero and a 

standard deviation of 1. Thus if the true coefficient is zero, there is only about a 5 percent chance 

that the t-statistic will be outside the range from −2 to +2. 

 The terminology that goes with this is that if the t-statistic is below −2 or greater than +2, 

we say that the coefficient is statistically significant; if it is between −2 and +2, we say that the 

coefficient is statistically insignificant. That is, saying that a coefficient is statistically significant is 

shorthand for saying that the data reject the hypothesis that the coefficient is zero; saying that it is 

statistically insignificant is shorthand for saying that the data fail to reject that the coefficient is zero. 

 As with confidence intervals, there are three common errors in interpreting t-statistics. The 
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first is to jump from a statement that a coefficient is statistically insignificant to the statement that 

the data indicate that the coefficient is zero. This is an example of the error of confusing failing to 

reject a hypothesis with accepting a hypothesis. If a coefficient is statistically insignificant, then (by 

the definition of statistical insignificance) we cannot reject the null hypothesis that it is zero. But 

there is a range of hypotheses about the coefficient that we cannot reject, not just the hypothesis that 

the coefficient is zero: we cannot reject the hypothesis that the coefficient equals any value in the 

two-standard error confidence interval.  

 The second common error is to think that it is important whether a t-statistic is more or less 

than two (in absolute value). Just as nothing special changes when we move from just inside to just 

outside the two-standard error confidence interval, nothing special changes when a t-statistic crosses 

2: the evidence against the hypothesis that the true value of the coefficient is zero provided by a t-

statistic of 2.01 is only very slightly stronger than the evidence provided by a t-statistic of 1.99. 

 The third common error is to jump from a finding that a coefficient is statistically significant 

to the conclusion that we have found something that is economically important. A finding that a 

coefficient is statistically significant provides support for the view that the true value of the 

coefficient is different from zero. But it tells us nothing about how large the difference is. To do 

that, we need to look at the point estimate and the standard error—that is, we need to look at the 

confidence interval. 

 Again, because these issues are often a source of confusion, it may help to consider an 

example. As usual, consider the relationship between wages and years of education. To keep the 

focus on the issues we are discussing here, suppose we have a regression that we are confident does 

not suffer from omitted variable bias. Now consider two possible results from the regression. In the 

first, the point estimate is 0.0010, with a standard error of 0.0001. In the second, the point estimate 
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is 0.2, with a standard error of 0.5. These numbers imply that in the first case, the t-statistic is 10, 

while in the second, it is 0.2. Thus the coefficient in the first regression is extremely statistically 

significant, and that from the second is extremely insignificant. But notice that it would be 

completely wrong to conclude that the first regression shows an important effect of schooling on 

wages and that the second shows no effect. The two-standard error confidence interval from the first 

regression is 0.0010 − 2•0.0001 to 0.010 + 2•0.001, or (0.0008,0.0012). Thus, while the data provide 

strong evidence against the view that the impact of an additional year of education on wages is 

exactly zero, they also provide strong evidence against the hypothesis that the true effect equals any 

value greater than 0.0012—that is, that an additional year of schooling raises wages by more than 

about 0.12 percent. Thus the correct conclusion to draw from the first regression is that it provides 

strong evidence that the impact of schooling on wages is very small.  

 Conversely, the two-standard error confidence interval from the second regression is 

(−0.8,1.2). Thus in this case, while we cannot reject a coefficient of zero, we also cannot reject the 

hypothesis that the coefficient is 1 (so that each additional year of schooling leads to more than a 

doubling of wages)—or the hypothesis that it is −0.7 for that matter (so that each additional of 

schooling causes wages to fall more than in half).12 Thus in this case, the correct conclusion to draw 

from the regression is not that it shows no impact of schooling on wages, but that these data are 

close to completely uninformative about any economically interesting hypothesis about the impact 

of schooling on wages. 

 A good way to avoid these errors is to always focus on point estimates and confidence 

                                                 
12 Recall that the regression is of the natural log of the wage on years of education, and that its implications for the level 
of the wage are given by 𝑊𝑊𝑖𝑖 = e𝑎𝑎e𝑏𝑏𝑏𝑏𝑖𝑖e𝑢𝑢𝑖𝑖  (equation [2]). e1 ≃ 2.72, so a coefficient of 1 implies that an additional year 
of schooling raises wages by a factor of 2.72, or 170 percent. e−0.7 ≃ 0.497, so a coefficient of −0.7 implies that a year 
of schooling lowers wages by slightly more than 50 percent. 



 

 
24 

intervals and their quantitative interpretation, not on t-statistics and statistical significance. In the 

examples we just discussed, focusing on confidence intervals (from −0.0008 to 0.0012 for the first 

regression, and from −0.8 to 1.2 for the second) and thinking about the economic interpretation of 

those numbers (for example, that a coefficient of 0.0012 implies an impact of schooling on wages 

that is very small for all practical purposes, and a coefficient of 1 implies an impact that is enormous) 

would have led immediately to the correct interpretation of the regressions. 

 A corollary of this discussion is that in reporting regression results, it is better to report 

standard errors rather than t-statistics in parentheses with the point estimates. In keeping with this, 

most modern papers report standard errors, not t-statistics. 

 

VI  Multivariate Regressions 

 So far, we have only discussed regressions with one independent variable. But regressions 

with multiple independent variables are often useful. 

 To see the potential value of multivariate regressions, return yet again to our discussion of 

schooling and wages. Suppose the amount of education an individual gets depends mainly on two 

factors: the economic circumstances of the family they grew up in, and happenstance (that is, a set 

of factors that are effectively random). The economic circumstances of the individual’s family are 

likely to be correlated with forces other than schooling that influence how much the individual earns. 

For example, someone coming from a wealthier family is likely to live in an area with higher quality 

public schools, to get better health care, to have a stronger network of connections that are helpful 

in finding a job, and so on. On the other hand, the random factors that affect the amount of schooling 

an individual gets—for example, whether they happen to be talking to someone who had a good or 

a bad experience with college just as they are deciding whether to apply—are likely to be much less 
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correlated with other influences on the individual’s wages. 

 This discussion implies that if we had a measure of happenstance, it would make a good 

instrument for years of education: it is correlated with the amount of education individuals get, and 

it is not likely to be systematically correlated with other influences on their wages. Unfortunately, 

we are unlikely to have such a measure. But we may have reasonably good measures of families’ 

economic circumstances, such as their incomes. This suggests another approach. In our example, 

the portion of the amount of education that individuals get that is not the result of economic 

circumstances would be a good instrument for schooling. Thus, we could first run a regression of 

years of schooling on a constant term and family income. We could then find the residuals that came 

out of the regression, and use that variable as an instrument for schooling. Since the residual is not 

correlated with family income, it may be a reasonably good proxy for the influence of happenstance 

on schooling—and thus a good instrument.13 

 This approach is perfectly reasonable. But there is a much easier way to do the same thing: 

we can just run a regression of wages on both years of schooling and family income. That is, we can 

estimate, simply by ordinary least squares with no use of instrumental variables, the regression: 

(7)   ln𝑊𝑊𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏1𝐸𝐸𝑖𝑖 + 𝑏𝑏2𝑌𝑌𝑖𝑖 + 𝑢𝑢𝑖𝑖 , 

 

where Yi is a measure of the income of the family that individual i grew up in. It turns out (and one 

can prove) that the estimate of b1 from this regression is identical to the coefficient estimate you 

                                                 
13 In symbols, the starting point would be to run the regression 𝐸𝐸𝑖𝑖 = 𝑓𝑓 + 𝑞𝑞𝑌𝑌𝑖𝑖 + 𝑒𝑒𝑖𝑖  by ordinary least squares, where Yi 
is a measure of the income of the family that individual i grew up in. Then, letting 𝑓𝑓 and 𝑞𝑞� denote the coefficient 
estimates from the regression, one would compute �̂�𝑒𝑖𝑖 = 𝐸𝐸𝑖𝑖 − �𝑓𝑓 + 𝑞𝑞�𝑌𝑌𝑖𝑖�, and use �̂�𝑒𝑖𝑖 as an instrument in our original 
regression of wages on years of schooling. 
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would get from the instrumental variables approach we just described. Intuitively, when we run the 

regression in (7), we are asking how ln W varies with E, holding Y fixed. The answer to this question 

is determined by the relation between ln W and the variation in E in our data that is not associated 

with variation in Y. Likewise, if we took the instrumental variables approach, we would be finding 

the relation between ln W and the variation in E that is not correlated with Y. Thus it makes sense 

that the two methods give the same answer. But the regression of wages on schooling and family 

income is much simpler—rather than three steps (the first regression to construct the instrument plus 

the two regressions of instrumental variables), it has only one. For this and other reasons, it is the 

preferred approach. 

 A regression with more than one independent variable is known as a multivariate or multiple 

regression. The main purpose of multivariate regressions, as with instrumental variables, is to focus 

on a subset of the variation in the key independent variable (in our case, years of schooling) in order 

to estimate the causal effect of the key variable on the dependent variable (in our case, wages). Any 

independent variables other than the key one are known as control variables. In our case, the only 

control variable is family income. Thus we would say that we are estimating the relationship 

between wages and schooling controlling for family income. 

 One important implication of this discussion is that the estimate of the coefficient on the key 

variable and the estimates of the coefficients on the control variables should be interpreted very 

differently. The estimate of the coefficient on the key variable (in our case, the estimate of b1) is 

intended to be an estimate of the key variable’s causal impact on the dependent variable. The 

estimates of the coefficients on any control variables (in our case, the estimate of b2), on the other 

hand, are not intended to be estimates of the control variables’ causal impact on the dependent 

variable. Rather, as we have been discussing, the purpose of including the controls is only to affect 
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what portion of the variation in the key variable is used to estimate its relationship with the 

dependent variable. That is, the purpose of including the control variables is to help us get a better 

estimate of the key variable’s causal impact. There is therefore no particular reason to think that the 

values of the coefficients we get on those variables will be good estimates of their causal impact on 

the dependent variable. In the case of our example, family income is likely to be correlated with 

many other factors that affect wages. That is, as a way of estimating the effect of family income on 

wages, equation (7) almost certainly suffers from omitted variable bias, and is thus a poor approach. 

But again, that is not why we included family income in the regression. 

 A related implication of this discussion is that the purpose of a multivariate regression is not 

to “explain” as much of the variation in the dependent variable as possible. In deciding whether to 

include a potential control variable, the crucial question is whether it is likely to reduce omitted 

variable bias, not whether it makes the regression “better” in some other way. If, for example, we 

had some imperfect measure of the “chance” influences on how much education individuals 

received, it would be a terrible idea to include it as a control variable in (7). Controlling for some of 

the effects of chance on schooling would mean that a larger portion of the variation in schooling 

that was left to use to estimate b1 was the result of factors other than chance, and thus would probably 

make omitted variable bias worse. 

 A final implication of this discussion is that including control variables is unlikely to fully 

solve omitted variable bias. The problem is that we almost certainly will not be able to control for 

all the factors that cause the bias. In the case of schooling and wages, although family income affects 

the amount of schooling individuals get and is correlated with many factors other than schooling 

that affect that earnings, it does not completely capture all those factors. We saw back in Section III 

that there is a wide range of possible sources of omitted variable bias in a regression of wages on 
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schooling, including some that involve things that are very difficult to measure. Thus a realistic goal 

in choosing control variables is to reduce omitted variable bias, not eliminate it. For that reason, 

when one is available, a persuasive instrument is generally the best way to address omitted variable 

bias and obtain reliable estimates of causal effects. 

VII  A Little Bit about Some Other Complications 

 Actual empirical work is more complicated than the picture we have painted so far. Here we 

briefly discuss a few of the more important issues. 

 Actual data are messy. The “empirical” results presented in these notes are based on 

artificially created data, not any actual datasets. There is a simple reason for this: all actual datasets 

are messy. There are often typos and other outright errors. When the value of a variable is missing 

for an observation, in some datasets it is entered as zero, or as some crazy value, such as −9999. 

There may be ambiguities in how variables are defined. And more. 

 In addition, virtually all datasets have outliers—that is, extreme values of some variables. 

Extreme observations can be a powerful source of evidence. For example, the experience of North 

Korea provides almost incontrovertible evidence that bad institutions and bad government are 

harmful to an economy. But outliers should be treated with caution. Ordinary least square 

regressions put very large weight on them. And the forces that create an outlier may also cause the 

residual for that observation to have an especially high variance, implying that the observation 

should get even less weight. And an outlier may reflect a data error rather than a genuine data point. 

 The main message here is simple: treat your data with care. Read the data definitions and 

documentation attentively. Plot your data in some way. Dig into the specifics of any extreme 

observations to try to figure out if they are data errors or genuine—and if they are genuine, how 
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important they are to your results. One useful rule is that whenever you have an empirical finding 

(for example, a result suggesting a quantitatively large, statistically significant impact of schooling 

on wages), you should be able to explain what it is in the data that is producing that finding based 

on simple summary statistics (such as means, standard deviations, and correlations) and graphs (such 

as scatterplots). 

 Another message is that just as these notes are no substitute for an econometrics course, 

learning the theory of econometrics is no substitute for actually doing empirical work—either on 

your own, or even better, as a research assistant for an experienced empirical researcher. 

 Standard errors are hard too. These notes focus on the challenges of estimating parameters, 

such as the impact of schooling on wages. All we have said about standard errors is that “under 

certain assumptions,” they are estimates of the amount of variation in the parameter estimates that 

could arise just by chance. That simple statement sidesteps a very important issue: just as there are 

difficulties in estimating parameter values, there are difficulties in estimating standard errors. 

 Going into the specifics of those difficulties and how to address them would take us further 

into econometric theory than is appropriate for these notes. One issue involving standard errors is 

sufficiently important and comes up sufficiently often, however, that it is worth mentioning. 

Conventional standard errors are computed under the assumption that the residual is independent 

across observations. That is, if we take two observations in the dataset, knowing the value of one of 

the u’s tell us nothing about the value of the other one. That assumption is often wrong. For example, 

if our dataset has multiple students from the same school district, there may be common influences 

on their wages that are left out of the regression. To give another example, in a dataset that involves 

data that evolve over time, such as outcomes for the economy as a whole, the influences that are 

omitted from the model may change slowly from one period to the next. The reason this is important 
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is that in some cases, positive correlation of the residuals of related observations can cause the 

standard errors that are conventionally reported to be too low—sometimes dramatically so. In short, 

standard errors should be treated with caution, and it is important to learn about the pitfalls 

associated with estimating them and about how to address those challenges. 

 Nonlinearities and functional forms can be important. Equation (1) assumes that there is a 

linear relationship between years of education and the log of the wage. But perhaps the actual 

relationship is more complicated. Perhaps the percentage increase in the wage from each additional 

year of schooling declines as the amount of schooling rises. Or perhaps some years of education 

(such as the last few years of high school or the first few years of college) are especially valuable. 

Or perhaps beyond some point, further education actually leads to lower wages. 

 The fact that theory rarely tells us the correct functional form of a relationship reinforces the 

case for treating your data with care and using graphs to visualize your data. For example, if the 

relationship between the dependent and the independent variable is highly nonlinear, that may be 

apparent from a simple scatterplot. 

 Two questions that it often makes sense to think about concerning functional forms are 

whether to enter data in levels or in logs, and whether (in cases where you have observations over 

time) to enter them in levels or in changes. It often makes sense to take the log of a variable before 

using it in a regression. For example, consider our idea of using family income to capture the 

influences of the circumstances individuals grew up in on the amount of schooling they get, and so 

improve our estimates of the impact of schooling on wages. Entering income in levels (as we did in 

equation [7]) causes the difference between an income of $2 million and an income of $1 million to 

be 50 times as large as the difference between an income of $40,000 and an income of $20,000. 

Entering them in logs makes the two differences equally large. Although there is no way to be sure 
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which approach will better capture the influences of family circumstances, there is a good chance 

that the log approach will do better. And when we have time series data, regressions that do not use 

changes in the variables often suffer severely from various problems, including the issue of 

correlation in the residual across related observations. As a result, although regressions using 

changes must still grapple with omitted variable bias, they are often a better starting point. 

 The discussion in this section is intended only to scratch the surface of issues that come up 

in doing empirical work in practice. As you learn more econometrics and do empirical work of your 

own, you will quickly discover that there are many more complications than just those we have 

discussed here. 

 

VIII  Summary and Main Messages 

 1. An OLS regression is a way of choosing coefficient values that provide the best fit to 

some set of data. 

 2. Correlation is not causation. 

 3. Correlation between the effects of variables omitted from the regression and the right-

hand side variable causes omitted variable bias. 

 4. Instrumental variables regression (with a valid instrument) can address the problem of 

omitted variable bias. 

 5. Statistical significance is not the same as economic significance. Always focus on point 

estimates, standard errors, and confidence intervals and their economic interpretation, not on t-

statistics and statistical significance. 

 6. Empirical work is complicated. 

 7. You should take a course in econometrics. 
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PROBLEMS 
 
 1. (Supply and demand.) Suppose your goal is to estimate the elasticity of supply for 
blueberries. Your model of blueberry supply is ln𝑄𝑄𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏 ln𝑃𝑃𝑡𝑡 + 𝑒𝑒𝑡𝑡, where Qt is the quantity 
of blueberries bought and sold in month t and Pt is the price of blueberries in month t. (The reason 
for entering the variables in logs is that we are interested in estimating the elasticity of demand 
rather than the slope of the demand curve.) You are considering trying to estimate b by an ordinary 
least squares regression of ln𝑄𝑄𝑡𝑡 on a constant and ln𝑃𝑃𝑡𝑡. 
 
 a. The condition for a regression to give us a good estimate of the impact of the independent 
variable on the dependent one is that the residual is not systematically correlated with the 
independent variable. Is there likely to be systematic correlation between 𝑒𝑒𝑡𝑡 and ln𝑃𝑃𝑡𝑡? (Hint: Your 
answer should involve supply and demand diagrams and discussing the effects of shifts of the 
curves.) 
 
 b. Suppose that in addition to data on Q and P, you have data on two other variables. The 
first, X, is a variable (such as the weather in blueberry-growing areas) that shifts the demand curve 
for blueberries but is not systematically correlated with factors that shift supply. The second, Z, is a 
variable (such as income in blueberry-consuming areas) that shifts the supply curve for blueberries 
but is not systematically correlated with factors that shift demand. Suppose you were going to use 
either X or Z as an instrument and estimate the regression by instrumental variables rather than 
ordinary least squares. Which one would you use, and why? 
 
 2. Suppose you estimate equation (1), ln𝑊𝑊𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏𝐸𝐸𝑖𝑖 + 𝑢𝑢𝑖𝑖 ,  by instrumental variables 
using an instrument you believe is valid and obtain the following results:  
 
 ln Wi = 1.07  + 0.139 Ei. 
 (0.36) (0.041) 
 
What is the point estimate of b? What does the point estimate imply about how much an additional 
year of schooling raises wages? What is the standard error of the estimate of b? The one-standard 
error confidence interval for b? The two-standard error confidence interval for b? The t-statistic for 
b? 
 
 3. Suppose your goal is not to estimate the effect of education on wages, but to predict how 
much an individual earns. Concretely, suppose that the data on the wage that one individual in our 
dataset is missing by chance. If you had to guess that individual’s wage, would you use the results 
of the OLS regression, which are 1.87 + 0.104Ei, or the results of the IV regression, which are 2.44 
+ 0.070Ei? Why? 
 
 4. Explain what is wrong with the following argument: “I had a dataset giving years of 
schooling and wages for a sample of workers. I estimated the OLS regression ln𝑊𝑊𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏𝐸𝐸𝑖𝑖 +
𝑢𝑢𝑖𝑖  for that sample. After running the regression, I computed the correlation between years of 
schooling (Ei) and the regression residual (𝑢𝑢�𝑖𝑖, defined as ln𝑊𝑊𝑖𝑖 − (𝑎𝑎� + 𝑏𝑏�𝐸𝐸𝑖𝑖), where 𝑎𝑎� and 𝑏𝑏� are 
the coefficient estimates from the regression). It was exactly zero. Thus, since there is no correlation 
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between the right-hand side variable and the residual, I know that my regression does not suffer 
from omitted variable bias.” 
 
 5. (Classical measurement error.) Actual data are often not completely accurate. To see 
the possible effects of measurement error, consider the following example. Let 𝐸𝐸𝑖𝑖∗ denote the true 
value of 𝐸𝐸𝑖𝑖. Wages are determined by ln𝑊𝑊𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏𝐸𝐸𝑖𝑖∗ + 𝑢𝑢𝑖𝑖 . For simplicity, assume that 𝑢𝑢𝑖𝑖 is not 
systematically correlated with 𝐸𝐸𝑖𝑖∗,  so we do not have to worry about omitted variable bias. 
Unfortunately, however, there is measurement error: what we observe is not 𝐸𝐸𝑖𝑖∗ but 𝐸𝐸�𝑖𝑖, where 𝐸𝐸�𝑖𝑖 =
𝐸𝐸𝑖𝑖∗ + 𝑣𝑣𝑖𝑖 . v is not systematically correlated with either E* or u. This type of measurement error is 
known as classical measurement error. 
 Our goal is to figure out whether running a regression of (log) wages on measured schooling 
will give a good estimate of the impact of schooling on wages, b.  
 
 a. If we write ln𝑊𝑊𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏𝐸𝐸�𝑖𝑖 + 𝛿𝛿𝑖𝑖, what is 𝛿𝛿𝑖𝑖 in terms of 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 , and b? (Hint: Use the 
facts that we are defining 𝛿𝛿𝑖𝑖  by 𝛿𝛿𝑖𝑖 ≡ ln𝑊𝑊𝑖𝑖 − �𝑎𝑎 + 𝑏𝑏𝐸𝐸�𝑖𝑖�,  that ln𝑊𝑊𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏𝐸𝐸𝑖𝑖∗ + 𝑢𝑢𝑖𝑖 ,  and that 
𝐸𝐸�𝑖𝑖 = 𝐸𝐸𝑖𝑖∗ + 𝑣𝑣𝑖𝑖.) 
 
 b. Assume b > 0. In the equation ln𝑊𝑊𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏𝐸𝐸�𝑖𝑖 + 𝛿𝛿𝑖𝑖, is there systematic correlation 
between the residual, 𝛿𝛿𝑖𝑖, and the independent variable, 𝐸𝐸�𝑖𝑖? If so, is it positive or negative? (Hint: 
Is 𝑣𝑣𝑖𝑖 positively or negatively correlated with itself?) What will be the relationship between the true 
value of b and the estimate of b we tend to get from the regression? 
 
 c. What happens if the true value of b is negative? If it is zero? 
 
 6. (Another type of measurement error.) Suppose, as in Problem 5, that wages are 
determined by ln𝑊𝑊𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏𝐸𝐸𝑖𝑖 + 𝑢𝑢𝑖𝑖 . Unfortunately, there are two components of education, 𝐸𝐸𝐴𝐴 
and 𝐸𝐸𝐵𝐵 ,  so that 𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑖𝑖𝐴𝐴 + 𝐸𝐸𝑖𝑖𝐵𝐵 ,  and we only have data on one of the components, 𝐸𝐸𝐴𝐴 . (For 
example, 𝐸𝐸𝐴𝐴 might be years of traditional schooling and 𝐸𝐸𝐵𝐵 years of home schooling.) Both 𝐸𝐸𝐴𝐴 
and 𝐸𝐸𝐵𝐵  are not systematically correlated with u. Our goal is to figure out whether running a 
regression of (log) wages on 𝐸𝐸𝐴𝐴 will give a good estimate of the impact of schooling on wages, b. 

 a. If we write ln𝑊𝑊𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏𝐸𝐸𝑖𝑖𝐴𝐴 + 𝛿𝛿𝑖𝑖, what is 𝛿𝛿𝑖𝑖 in terms of 𝑢𝑢𝑖𝑖 , 𝐸𝐸𝑖𝑖𝐵𝐵, and b? 
 
 b. We know that an OLS regression is a good way to estimate a causal effect if the residual 
is not systemically correlated with the right-hand side variable. In the equation ln𝑊𝑊𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏𝐸𝐸𝑖𝑖𝐴𝐴 +
𝛿𝛿𝑖𝑖, is there systematic correlation between the residual, 𝛿𝛿𝑖𝑖, and the independent variable, 𝐸𝐸𝑖𝑖𝐴𝐴, if: 
 
   i. 𝐸𝐸𝐴𝐴 and 𝐸𝐸𝐵𝐵 are not systematically correlated? 
 
  ii. 𝐸𝐸𝐴𝐴 and 𝐸𝐸𝐵𝐵 are systemically negatively correlated? 
 
 7. (Measurement error in the dependent variable.) Suppose that wages are determined 
by ln𝑊𝑊𝑖𝑖

∗ = 𝑎𝑎 + 𝑏𝑏𝐸𝐸𝑖𝑖 + 𝑢𝑢𝑖𝑖. Assume that 𝑢𝑢𝑖𝑖 is not systematically correlated with 𝐸𝐸𝑖𝑖 , so we do not 
have to worry about omitted variable bias. Unfortunately, however, now there is measurement error 
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in wages: what we observe is not ln𝑊𝑊𝑖𝑖
∗ but 𝑍𝑍𝑖𝑖 , where 𝑍𝑍𝑖𝑖 = ln𝑊𝑊𝑖𝑖

∗ + 𝑣𝑣𝑖𝑖 . v is not systematically 
correlated with E. 
 As usual, our goal is to figure out whether running a regression of measured (log) wages on 
schooling will give a good estimate of the impact of schooling on wages, b. Use the approach you 
took in Problem 5 to answer this question. 
 

8. As we have discussed, although it is not good practice, some papers report only point 
estimates and t-statistics and do not report standard errors. You are reading a paper that is trying to 
estimate the multiplier for government purchases—that is, the impact of a one-unit increase in 
government purchases on real GDP. Here are five possible results it might report about its estimates 
of the multiplier: 
    Point estimate t-statistic 
 #1 0.01 10.0 
 #2 0.001 0.1 
 #3 3.0 0.5 
 #4 3.0 2.0 
 #5 3.0 6.0 
(Thus, for example, an entry of 3.0 in the first column would correspond to an estimate that the 
multiplier is 3.) 

Here are 5 possible interpretations of the regression results: 
a. Strong evidence that fiscal policy has large effects on real GDP.  
b. Moderate evidence that fiscal policy affects GDP; not much evidence about whether the 

effect is large or small.  
c. Little useful evidence about the effects of fiscal policy on GDP.  
d. Strong evidence that fiscal policy affects GDP – but that the effect is small. 
e. Strong evidence that the effects of fiscal policy on GDP are not large. 

Which interpretation goes with which result? (Note: (1) Each interpretation goes with exactly one 
of the results. (2) You can assume that the regressions do not suffer from omitted variable bias.) Be 
sure to explain your answers. 

 9. Consider Problem 1. Suppose you were to going to use ordinary least squares, but you 
were going to include either X or Z as a control variable. That is, your decision is whether to run the 
regression ln𝑄𝑄𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏 ln𝑃𝑃𝑡𝑡 + 𝑐𝑐𝑋𝑋𝑡𝑡 + 𝑒𝑒𝑡𝑡 or the regression ln𝑄𝑄𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏 ln𝑃𝑃𝑡𝑡 + 𝑐𝑐𝑍𝑍𝑡𝑡 + 𝑒𝑒𝑡𝑡. Your 
goal continues to be to estimate the elasticity of supply for blueberries. Which variable would you 
include as the control, and why? 
 
 10. (An example of sample selection bias.)14 You are interested in whether countries that 
were poor a century ago have grown faster than countries that were relatively rich. There are four 
types of countries: countries started either rich or poor, and then grew either slowly or rapidly. 
Unfortunately, countries that started poor and grew slowly have not constructed income data that go 
back a century. 

                                                 
14 This problem is based on J. Bradford DeLong, ‘‘Productivity Growth, Convergence, and Welfare: Comment,’’ 
American Economic Review 78 (December 1988): 1138–1154. 
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 In the sample of countries with data that are available, are the countries that started poor 
more likely to have grown rapidly than the countries that started rich? Is the frequency of rapid 
growth in your dataset in the countries that started rich a good estimate of the fraction of all countries 
that started rich that grew rapidly? Is the frequency of rapid growth in your dataset in the countries 
that started poor a good estimate of the fraction of all countries that started poor that grew rapidly? 
Explain your answers. 


