Nonlinear Estimation

Chapter 7
ESTIMATION OF NONLINEAR SYSTEMS OF EQUATIONS

In Chapter 5, you learned how to estimate various types of linear single equation models in TSP. These models were
specified implicitly by listing the dependent variable and independent variables after the name of the estimation method
(OLSQ, 2SLS, LIML, or AR1). Although this shorthand method of specifying a model is convenient, you have to be
more specific about the form of your models in order to estimate nonlinear equations.

Two procedures in TSP estimate general nonlinear regression models: LSQ and FIML. LSQ is a minimum distance
estimator that can be used to compute nonlinear single equation least squares, nonlinear two-stage least squares,
nonlinear multivariate regression, SUR (seemingly unrelated regressions), nonlinear three-stage least squares, and some
Generalized Method of Moments (GMM) estimators.

FIML obtains full information maximum likelihood estimates for a nonlinear simultaneous equation model whose
disturbances are jointly normally distributed. For maximum likelihood on models with alternative distributions, use the
ML procedure discussed in Chapter 9. Both LSQ and FIML can be used on linear as well as nonlinear models. Except
for the single equation estimates, even the linear models are nonlinear from the estimating point of view, since the
covariance of the residuals is a nonlinear function of the parameters.

In this chapter we describe how to specify the equations of a model to be estimated and then discuss estimation with
LSQ and FIML. In Chapter 8 we discuss hypothesis testing with applications for LSQ and FIML, and in Chapter 10
we describe the minimization techniques and convergence options used in all the nonlinear procedures.
7.1. Specifying the model: FRML, FORM, IDENT, PARAM, CONST
The FRML statement is used to define TSP equations for estimation or other computationss. To use FRML, you supply
an equation in algebraic form (as in GENR) except that it is preceded by a name given to the equation when it is stored.
Equations are referred to by their names when estimated and can be printed with the PRINT command.
For example, FRMLs from the complete illustrative model at the end of Chapter 3 are

FRML CONSEQ, CONS=A+B*GNP ;

FRML INVEQ, [FLAMBDA*I(-1) + ALPHA*GNP/(DELTA+R) ;

FRML INTRSTEQ, R=D+F*(LOG(GNP)+LP-LM) ;

FRML PRICEQ, LP=P(-1)+PSI*(LP(-1)-(LP(-2))*PHI*LGNP+TREND*TIME+PO ;

The rules for composing FRMLs are the same as for GENRs (see Chapter 3). The first FRML, CONSEQ), could be used
to estimate a simple linear regression of CONS on GNP and a constant term by specifying two additional statements:

PARAM A,B; LSQ CONSEQ;
There is an implied additive disturbance term during estimation with LSQ or FIML; the model estimated above is:
CONS, =« + PGNP, + ¢,

If you are using simple linear equations, the FORM command can be used to choose parameter names automatically.
For example, the command

FORM CONSEQ CONS C GNP;
would form an equation and declare parameters; this is equivalent to the two statements

FRML CONSEQ CONS = CONSEQO + CONSEQ1*GNP;
PARAM CONSEQO CONSEQI;
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7. Estimation of Nonlinear Systems of Equations

FRMLs can also be used to specify functions of estimated parameters for testing (ANALYZ, Section 8.7), to specify
formulas for equation substitution (EQSUB, Section 9.5) or differentiation (DIFFER, see the Reference Manual), and
to specify log-likelihood equations (ML, Section 9.5). When used in this way, the equations do not have an implied
additive disturbance.

Logical expressions may be included in FRMLs, but be aware that this will generally introduce a finite number of points
at which your equation will not be differentiable. You can estimate or simulate with such an equation, but gradient
methods may have difficulty converging if you happen to land on one of those points. The usual proofs of consistency,
efficiency, and asymptotic normality will not go through in this case. However, such equations can be convenient when
performing model simulations, and you may find them useful.

There are two ways to define a TSP equation: with the dependent variable on the left-hand side as in a GENR (a
normalized equation), or as an unnormalized expression with no equal sign and no left-hand variable. An example of
the latter would be

FRML CONSEQ2, CONS-A-B*GNP ;
This equation specifies the same model as above, but as though it were written
€, = CONS, - o. - PGNP, .

Unnormalized FRMLs are used by FIML, LSQ, and SIML to handle models that are nonlinear in the endogenous
variables; for example, to specify an orthogonality condition for GMM estimation (see section 7.2.5). Here is an
example of this kind of equation, where the dependent variable is a general expression:

yt/qt =0 + et
This equation should be defined as:
FRML EQR, Y/Q - A;

If it were written as FRML EQR Y/Q = A; , the = sign would be interpreted as a logical operator: FRML EQR, Y/Q
.EQ. A; , which means something entirely different from what was intended.

The primary difference between using normalized and unnormalized equations in LSQ or FIML is that unnormalized
equations do not have a well-defined left-hand side variable associated with them, so certain goodness-of-fit statistics
such as R? cannot be computed.

ANALYZ and EQSUB also accept unnormalized equations but for different purposes. SOLVE will not accept
unnormalized equations and returns an error message if it encounters one.

A special form of FRML (IDENT) is available to specify identities in a FIML model. These identities do not contain
parameters to be estimated, nor do they have disturbances, but they are necessary to complete the model, that is, to insure
that the model has a square Jacobian matrix (as many equations as there are endogenous variables). This condition is
necessary for both FIML and SIML. (SIML actually treats FRMLs and IDENTS identically, but it may be useful to use
IDENT statements instead of FRMLs for documentation purposes.) Identities are given exactly like FRMLs except that
they begin with the word IDENT instead of FRML. For example, the illustrative model is completed by a single identity
relating GNP and consumption:

IDENT GNPID GNP=CONS+I+G ;
Information about the symbols in a FRML is provided in separate PARAM and CONST statements, for parameters to
be estimated and constants, respectively. It is usually desirable to provide plausible numerical values for the parameters

as starting points for estimations. Constants must be assigned values before estimation. For example, in the illustrative
model (see Chapter 3),
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PARAM A,-18,B,.62,LAMBDA,.6,ALPHA, 1,D,-20,F,8,PSI,.3,PHL,.1,TREND,-.002,P0.-.6 ;
CONST DELTA,15 ;

The parameters need not be in order and may be defined in several PARAM and CONST statements. The only
difference between a PARAM and a CONST is that PARAMs are estimated and CONSTs are not. Once parameters
have been declared in a PARAM statement, they retain their estimability even if they are given new values by SET or
UNMAKE commands. Parameters also retain their values from the most recent estimation. Parameters can be fixed
at their current values by declaring them in a CONST statement. This will revise them to be treated as fixed until they
are specified on a new PARAM statement.

7.2. Nonlinear least squares: LSQ

LSQ estimates single and multiple equation linear and nonlinear regression models. Depending on the number of
equations and the specification of instrumental variables, several different econometric estimators are available with
the LSQ command. Each estimator has a slightly different objective function which is minimized by means of iterative
methods for nonlinear models. Details on the iterative techniques are in Chapter 10.

7.2.1. Single equation least squares

If LSQ is supplied with the name of just one FRML, and no instruments are specified, single equation least squares is
the resulting estimator. For example,

LSQ CONSEQ;

estimates the consumption equation described earlier, assuming that A and B have been declared as PARAMs, and the
series CONS and GNP have been properly defined over the current sample. In this example, the model is linear, so LSQ
does not iterate, and the results are exactly the same as the command

OLSQ CONS C GNP;

OLSQ is easier to use for this model if you only want single equation estimation, but using LSQ automatically sets up
starting values for a subsequent multiple equation estimation (which requires specifying the FRMLs).

For nonlinear least squares, the objective function is the sum of squared residuals (SSR). Minimizing SSR is equivalent
to maximizing the likelihood function if the error in the equation is additive and normally distributed. The iteration
technique is Gauss's method: derivatives of the equation residual with respect to each parameter are formed analytically.
The current residual is regressed on the derivatives, and the resulting regression coefficients are the proposed changes
in the parameters. It is possible to show that these coefficients will be zero if and only if the current parameters are at
a local minimum of SSR. If the model was linear and the parameters had zero starting values, the first iteration would
involve regressing the dependent variable (which equals the current residual) on the independent variables (which equal
the derivatives of the residual with respect to the parameters, with a change of sign). For general nonlinear models, both
the current residual and the derivatives will be functions of the current parameter values, but the procedure works the
same, iterating until the derivatives are orthogonal to the residuals and the SSR is minimized.

A simple example of a nonlinear equation is the direct estimation of an AR1 model:
FRML CONSARI1 CONS = A + B*GNP + RHO*(CONS(-1) - (A + B¥*GNP(-1)));
PARAM A,B,RHO;

LSQ CONSARI;

Note that this method of estimating an AR(1) model drops the first observation, so that the AR1 procedure is more
efficient than using LSQ in small samples. See Section 5.6 for an easier way to generate FRMLs for AR (p) estimation..
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7.2.2. Multivariate regression and Seemingly Unrelated Regressions

If a model has two or more regression equations, it is likely that the disturbances from the two are correlated. If so, the
technique of multivariate regression generally gives more efficient estimates than regression applied separately to each
equation. Further, if two or more equations share the same parameter(s), they must be estimated jointly to impose these
cross-equation constraints. This is particularly useful in estimating systems of demand equations derived from a utility
function or a production function.

Multivariate regression is the simplest multiple equation estimator. It assumes there are no simultaneity problems with
endogenous variables on the right-hand side of the equations. 3SLS and FIML are appropriate for joint estimation of
equations with (or without) simultaneity; FIML will also estimate SUR models, often using less memory than LSQ.

An example of LSQ from the illustrative model (see Chapter 3) is
LSQ CONSEQ,INVEQ,INTRSTEQ,PRICEQ ;
This command specifies joint estimation of all four behavioral equations of the model.

The multivariate least squares method is a generalized least squares method: the disturbances of the model are assumed
to be independent across observations, but to have free covariance across equations. A consistent estimate of this
covariance matrix is formed in some way or supplied to the procedure, and this estimate is used to weight the
observations when the equations are re-estimated. The objective function can be written as

Q(b) =e(b)’ (S'®Iy) e(b)

where e(b) is the vector of stacked residuals (a function of the parameters b), S is an estimated covariance matrix of the
disturbances and I; is the identity matrix of order of the number of observations. If S is recomputed from b(i) at each
iteration, this estimator converges to the maximum likelihood estimator when the disturbances are multivariate normal.

Although any consistent estimator of S gives consistent parameter estimates for multivariate regression, the default
method recomputes S at each iteration. In the case of demand systems, for example, this method yields estimates that
are invariant with respect to which equation is dropped. However, S and b are not changed simultaneously in each
iteration (as they are in FIML), so convergence is not guaranteed. Convergence may be especially difficult to obtain
when the residuals are highly correlated and there are cross-equation constraints. FIML is recommended in this case.

If you want conventional Seemingly Unrelated Regressions estimates (not maximum likelihood), you can use SUR.
SUR obtains a consistent estimate of S, and then iterates only on b until convergence is obtained. More precise control
over the initial estimate of S and over iteration on S is possible with the WNAME= and MAXITW= LSQ options
(explained in detail in the Reference Manual).

7.2.3. Nonlinear two-stage least squares: INST=

A nonlinear equation from a simultaneous model can be estimated by LSQ using a method developed by Amemiya
(1974). The objective function for estimation is the sum of squared fitted residuals, where the fitted residuals are the
fitted values from a regression of the true residuals on the instrumental variables. If the equation is linear in its
parameters, this amounts to standard two-stage least squares, and LSQ will not iterate. If it is nonlinear, the estimates
are consistent but not generally asymptotically efficient (relative to nonlinear three-stage least squares or FIML).

Nonlinear two-stage least squares in TSP is invoked by the INST= option. INST is followed by a list of instrumental
variables in parentheses. For example, to estimate the investment function in the illustrative model (see Chapter 3),

LSQ(INST=(C,G,LM,TIME)) INVEQ ;
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7.2.4. Linear or nonlinear three-stage least squares: 3SLS

Three-stage least squares is an instrumental variable method for estimating a system of simultaneous equations where
there may be endogenous variables on the right-hand side as well as contemporaneous correlation of the disturbances.
The advantage of 3SLS over FIML is that the model does not have to be completely specified; the estimates for the
equations and parameters can be consistent even if the exact form of the rest of the model is unknown. For example,
you may have a set of equations describing the quantities demanded of certain goods as a function of the prices of goods.
Prices may be determined as part of a larger economy that you do not wish to model explicitly. With the choice of
suitable instruments, you could estimate the demand equations consistently without specifying the complete model.
FIML would require specification of the price equations.

To specify three-stage estimation use the INST= option and a list of equation names with 3SLS (or LSQ). For example,
to estimate part of the illustrative model by three-stage least squares,

3SLS(INST=(C,G,LM,TIME)) CONSEQ,INTRSTEQ,PRICEQ;
The output from this example is shown on the following pages. (Example 7.1)

The options for three-stage least squares are the same as those for univariate and multivariate regression. To request
iteration over the covariance matrix of the residuals, use the MAXITW= option (note: iteration has no demonstrated
statistical value in this case nor is convergence guaranteed). MAXITW=0 is the default.

3SLS estimates a set of equations by the same technique described for nonlinear two stage least squares, but considers
the covariances across equations as well. The criterion for estimation is the sum of squared transformed fitted residuals.
For each observation, fitted residuals are formed as the fitted values from regressions on instrumental variables. These
are transformed by multiplying by the square root of the covariance matrix of the residuals. The contribution of the
observation to the criterion is then the sum of squared values of these transformed fitted residuals.

For further details on the properties of this estimator, see Jorgenson and Laffont (1974) and Amemiya (1977). The
NL3SLS estimator discussed by Amemiya is slightly more general in its choice of instruments than Jorgenson-Laffont;
TSP uses the form specified by the latter where the same set of instruments is used for all equations. See GMM and
the MASK option in the Reference Manual for a way to specify different instruments for each equation. The method
of estimation is described in Berndt, Hall, Hall, and Hausman (1975). If the model is linear in its parameters and
variables, three-stage least squares estimates are asymptotically efficient.

The three-stage estimation criterion requires an estimate of the residual covariance matrix. TSP obtains this by carrying
out an initial estimation with the covariance matrix set equal to an identity matrix. If there are no parameters in common
among the equations, these initial estimates are just the two-stage estimates. Then the covariance matrix is estimated
from the true (not fitted) residuals from the initial estimates. Unless the user specifies otherwise, this estimate of the
covariance matrix will be held fixed while the parameters are re-estimated to obtain three-stage least squares estimates.

7.2.5. Generalized Method of Moments

3SLS coincides with the GMM estimator of Hansen (1982) when the errors are serially independent and the same
instruments are used for each equation. In Hansen's notation, the GMM estimator sets the orthogonality conditions
u(b,y,X) & z as close to zero as possible using the estimated variance of this vector as the metric. To perform this type
of estimation in LSQ, define each element of the vector u as a normalized or unnormalized equation using FRML. The
vector of Z's are specified as instruments in the INST list. The nonlinear three stage least squares estimates obtained
are consistent and asymptotically efficient, and are also numerically identical to those obtained by the corresponding
GMM estimator (for the default NOHET and NMA=0 options).

As an example, consider the simplest version of the Hansen-Singleton model [Hansen and Singleton (1982); for a simple

presentation of the Euler equation for this type of model, see Hall(1978)]: a consumption-based asset pricing model
where investors have a utility function of the constant relative risk aversion form. Denote consumption in period t as
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THREE STAGE LEAST SQUARES
EQUATIONS: CONSEQ@ INVE®R INTRSTEQ PRICEQ
INSTRUMENTS: C 6 LM TIME
OPTIONS FOR THIS ROUTINE
covoc = covu = DEBUG = FALSE
HETERO = FALSE INST = ¢ D001 ITEROC = FALSE
ITERU = FALSE KERNEL = LSASTART = FALSE
MAXITW =0 NMA =0 ROBUST = FALSE
WNAME =
MAXIMUM NUMBER OF ITERATIONS ON V-COV MATRIX OF RESIDUALS = 0
CONSTANTS :
DELTA
VALUE 15.00000
NOTE => The model is linear in the parameters-.
OPTIONS FOR THIS ROUTINE
GRADCHEC = FALSE HCOV = 6 HITER = 6
MARQRUARD = FALSE MAXIT = 20 MAXSQZ = 10
METHOD = PRINT = TRUE SILENT = FALSE
SQAZTOL = D0.10000 STEP = BARD SYMMETRI = FALSE
TOL = 0.0010000 VERBOSE = FALSE
Working space used: 4437
STARTING VALUES
BO Bl LAMBDA ALPHA DO
VALUE -23.2001L 0-E3999 0.E2323 1-14E7E -b-3908k
D1 PSI PHI TREND PO
VALUE 4.200019 -0-.43942 0.6300L -0.01&7498 -3.859kY
ITERATION NUMBER 1
F= 3k2L.7? FNEW= 35k1L-9 IS@z= 0 STEP= 1.0000 CRIT= 59.80k
BO Bl LAMBDA ALPHA DO
ESTIMATE -23.2001L 0-E3999 0.-E2323 1-14L7?k -L-3908k
CHANGES 3.485625 -0-0038124 0.07195k -0.21414 -0.10849
D1 PSI PHI TREND PO
ESTIMATE 4.20009 -0-43942 0-E300L -0-0L8798 -3.859kLY
CHANGES 0.080951 1.-40209 -0.kEE7E 0.020838 4.07317
CONVERGENCE ACHIEVED AFTER 1 ITERATIONS
2 FUNCTION EVALUATIONS.

Example ?7-.1: Three Stage Least Squares
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END OF TWO STAGE LEAST SQUARES ITERATIONS (SIGMA=IDENTITY)- THREE STAGE
LEAST SAQUARES ESTIMATES WILL BE OBTAINED USING THIS ESTIMATE OF SIGMA:
RESIDUAL COVARIANCE MATRIX
CONSE® INVEQ INTRSTE® PRICE®
CONSE® 14b.8LERLE
INVEQ -bk-47420 185.2L175
INTRSTE® L.42782 -0.2529k 1.12389
PRICE® -0-0778A80 0-13425 0.004015k6 0.00050308
WEIGHTING MATRIX
CONSE® INVEQ INTRSTE® PRICE®
CONSE® 0.082517 0.03k33k -0.010321 0.0L4k59
INVEQ 0.080277 -0.00240k4 -0.032191
INTRSTE® 0.94958 -0.2091L
PRICE® 51 -28Lu4Y
Working space used: 4437
ITERATION NUMBER L
F= 33.574 FNEW= 33.029 IS@Z= 0O STEP= 1.0000 CRIT= O-544k3
BO Bl LAMBDA ALPHA DO
ESTIMATE -19.7Lu487 0-63E18 0-69519 0-932k2 -b-4993Y4
CHANGES -1.84942 D.002057Y4 0.013003 -0.038817 -0.075091
D1 PSI PHI TREND PO
ESTIMATE 4.28104 0.962k7 -0.03k751 0.0020400 0.21353
CHANGES 0.057388 0-1594k -0.053kk9 0-001L4703 0.33005
CONVERGENCE ACHIEVED AFTER 1 ITERATIONS
4 FUNCTION EVALUATIONS.
THREE STAGE LEAST SQUARES
RESIDUAL COVARIANCE MATRIX
CONSE® INVEQ INTRSTE® PRICE®
CONSE® 147.57391
INVEQ -b7-94115 18k -02L93
INTRSTE® 1.40383 -0.47859 L.12388
PRICE® -0-1155L 0-178kL19 0.003392k 0.000b44L3
WEIGHTING MATRIX
CONSE® INVEQ INTRSTE® PRICE®Q
CONSE® 0.082517 0.03633k -0.010321 0.-0L4L59
INVEQ 0.080277 -0.00240k8 -0.032191
INTRSTE® 0-94954 -0.2091L
PRICE® 5l .28kLu4Y
Example 7-1: (Continued. page 2)-




7. Estimation of Nonlinear Systems of Equations

COVARIANCE MATRIX OF TRANSFORMED RESIDUALS

CONSE® INVEQ INTRSTE® PRICE®
CONSE® 27.13077
INVEQ -0-204719 2k-92743
INTRSTE® -0.0592k3 -0.4B1EE 27.04051
PRICE® -4.%.59EL 3.11028 -0.2E982 31 .47350
E'HH'E = 33.0294
Number of Observations = 27
Standard
Parameter Estimate Error t-statistic
BO -21.5k43 8.92k3k -2.41580
Bl -b38235 -010190 L2.6309
LAMBDA 708188 «157971 4.48301
ALPHA -89380k -4LE509 1-91595
DO -b-574u4Yy 1.1832k -5.55k19
D1 4.33843 -895L22 9.31021
PSI 1.12213 .31931L4 3.5L421
PHI -.09042L -194599 -4EU4ES5L
TREND .351033E-02 -b?3L0O4YE-D2 - 521127
PO 5435841 1-14972 -4564899
Standard Errors computed from quadratic form of analytic first
derivatives (Gauss)
Equation CONSER
Dependent variable: CONS
Mean of dependent variable = 519.033 Std. error of regression = 1l2.1480
Std- dev. of dependent var. = 1L47.459 R-squared = .9929499
Sum of squared residuals = 3984.50 Durbin-Watson statistic = .4kLL537
Variance of residuals = 1L47.574
Equation INVER®
Dependent variable: I
Mean of dependent variable = 12k.504 Std. error of regression = 13.k392
Std- dev. of dependent var. = 37.8154 R-squared = .ALLEU4ET
Sum of squared residuals = 5022.73 Durbin-Watson statistic = 1-52125
Variance of residuals = 18L.027
Equation INTRSTE®
Dependent variable: R
Mean of dependent variable = 4.2774L Std. error of regression = 1.0k0L3
Std- dev. of dependent var. = 2.21592 R-squared = .?7L2323
Sum of squared residuals = 30.3448 Durbin-Watson statistic = 1-4bE41L
Variance of residuals = 1.1.2388
Equation PRICER
Dependent variable: LP
Mean of dependent variable = -.302748 Std. error of regression = -025380
Std- dev. of dependent var. = .2339Ek9 R-squared = .987859
Sum of squared residuals = .017392 Durbin-Watson statistic = 2-10372
Variance of residuals = .EU441L3ILE-03
Example 7-1: (Continued. page 3)-
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C, and the one period return on asset j as x;. Then the representative agent model of intertemporal utility maximization
implies the following population Euler equations in equilibrium:

Et {[B(Ct/ct-l)a th - 1] th} =0

where b is the discount rate and the z,,, m=1,...,M are in the agent's information set at time t (they may include such
things as lagged asset prices and consumption). In Hansen's notation u, is the expression in the square brackets and the
Z's are the instruments.

This version of the Hansen-Singleton model can be easily estimated in the 3SLS procedure of TSP; the estimates
coincide with GMM estimates, provided there is no serial correlation in the u's (which will be true if the assets in u are
stocks or other one period assets). Here is how to set up the problem when there are two assets and you wish to use four
lags as instruments:

LIST LAGXS X1(-1)-X1(-4) X2(-1)-X2(-4) ;

LIST UEQS U1EQ U2EQ ;

FRML U1EQ BETA*(CONS/CONS(-1))**ALPHA * X1(-1) - 1 ;
FRML U2EQ BETA*(CONS/CONS(-1))**ALPHA * X2(-1) - 1 ;
PARAM BETA 1 ALPHA -1 ;

GMM(HET,INST=LAGXS) UEQS ;

The preceding GMM example allows for conditional heteroskedasticity of the disturbances (the option HET for the
GMM distance matrix), but not for serial correlation. If the asset returns in the previous example were based on
multi-period rather than one-period returns, there is no reason to expect that the covariance of the marginal utility of
consumption with these returns will not be correlated across the periods comprising the multi-period returns (see Hansen
and Singleton, section 2 for a further discussion of this point). In this case the estimates obtained by GMM will be
consistent but not asymptotically efficient, since they use the "wrong" covariance matrix of the orthogonality conditions
as a weighting matrix. For this case, options for the GMM command allow you to compute the correct weighting matrix
automatically.

Suppose that in the previous problem you wanted to use a covariance estimate that incorporates moving average
disturbances of second order. You would use the NMA option to specify this:

GMM(HET,NMA=2,INST=LAGXS) UEQS ;

Among others, Newey and West (1987) pointed out that the original estimate proposed by Hansen and Singleton in this
case is frequently not positive definite in finite samples and proposed the use of declining weights to guarantee positive
semi-definiteness. TSP offers two choices of spectral density kernels (KERNEL=BARTLETT or PARZEN) to compute
these weights; the default choice is BARTLETT.

7.3. Full information maximum likelihood: FIML

FIML is the asymptotically efficient estimator for linear and nonlinear simultaneous models, under the assumption that
the disturbances are multivariate normal. When this assumption fails, FIML may still be asymptotically efficient; see
White (1982) or Gourieroux, Montfort, and Trognon (1984) for a discussion of when this will be true.

Because FIML operates on the model as a whole, the model must be complete -- it must have as many equations as
endogenous variables. Thus in addition to the behavioral equations containing unknown parameters, FIML must be
supplied with any identities that involve the endogenous variables. Identities provide a convenient way of entering

repeated sums and differences of endogenous variables into several equations; another way is the EQSUB command.

In FIML, the endogenous variables are listed in parentheses after the ENDOG= keyword. The corresponding
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instruments are then defined implicitly. For example, the illustrative model is estimated by FIML;
FIML(ENDOG=(CONS,LR,LP,GNP)) CONSEQ,INVEQ,INTRSTEQ,PRICEQ,GNPID;

The objective function for FIML is the negative of the log likelihood function, which involves the log of the determinant
of the residual covariance matrix, and the log of the determinant of the Jacobian (the derivatives of the residuals with
respect to the endogenous variables). If there no simultaneity and no nonlinear functions of the endogenous variables
appear in the equations, the Jacobian term drops out, and the model is equivalent to multivariate regression.

FIML can be used to estimate nonlinear LIML models (see Section 5.5 for linear LIML). In addition to the nonlinear
equation of interest, FRMLs must be specified for each of the remaining endogenous variables. To make this a LIML
model, these FRMLs are linear in the instruments and there are no constraints among their parameters. For example,
to estimate the nonlinear AR1 equation of Section 7.2.1 with LIML:

FRML CONSAR1 CONS= A + B*GNP + RHO*(CONS(-1) - (A+B*GNP(-1));

PARAM A,B,RHO;

FORM GNPL GNP C G LM TIME CONS(-1) GNP(-1); ? Equation for GNP as f (instruments)
LSQ(SILENT) CONSARI; ? To obtain starting values for parameters
LSQ(SILENT) GNPL;

FIML(ENDOG=(CONS,GNP)) CONSAR1,GNPL; ? Estimate LIML model

The standard errors for the FIML structural parameters are computed from the matrix of sums of squares of the outer
products of the gradient of the likelihood function with respect to both the structural parameters and the unique elements
of the inverse residual covariance matrix (the BHHH matrix). These standard errors are consistent and generally larger
than those calculated in versions of TSP prior to 4.1, which were computed from the submatrix for the structural
parameters only. For instance, the example above has nine structural parameters and three covariance parameters

(NEQ*(NEQ+1)/2).

Note: Calzolari and Panattoni (1988) studied eight alternate FIML standard error formulas and demonstrated the
consistency and good small-sample performance of the TSP Version 4.1 (and later) FIML standard errors. The 4.0
and earlier standard errors are not technically consistent, but they were shown to have reasonably good small-sample
properties. Also, the R ("Gauss") matrix was shown to be inconsistent for nonlinear models. This matrix was used
by TSP 4.0 when the number of parameters was larger than the number of observations (in which case the BHHH
matrix will be singular, since its rank is less than its order). The R matrix is still used for iterations, but it is not
available for standard errors because of this inconsistency. The best solution to the singularity of the BHHH matrix
in small samples would be computation of the analytic second derivatives, and this will be available in future
versions of TSP. If you can't wait for this, try doing FIML explicitly using the ML procedure (you will have to
program the likelihood function of the multivariate normal simultaneous equations model).
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