MIXED MNL MODELS FOR DISCRETE RESPONSE

Daniel McFadden and Kenneth Train

December 12, 1996Revised May 15, 2000)

Abstract: This paper considers mixed, or random coefficients, multinomial logit (MMNL) models for
discrete response, and establishes the following results: Under mild regularity conditions, any discrete
choice model derived from random utility maximization has choice probabilities that can be
approximated as closely as one pleases by a MMNL model. Practical estimation of a parametric mixing
family can be carried out by Maximum Simulated Likelihood Estimation or Method of Simulated
Moments, and easily computed instruments are provided that make the latter procedure fairly efficient.
The adequacy of a mixing specification can be tested simply as an omitted variable test with
appropriately defined artificial variables. An application to a problem of demand for alternative vehicles
shows that MMNL provides a flexible and computationally practical approach to discrete response
analysis.

Acknowledgments Both authors are at the Department of Economics, University of California,
Berkeley CA 94720-3880. Correspondence should be directed to mcfadden@econ.berkeley.edu. We
are indebted to the E. Morris Cox fund for research support, and to Moshe Ben-Akiva, David
Brownstone, Denis Bolduc, Andre de Palma, and Paul Ruud for useful comments. This paper was first
presented at the University of Paris X in June 1997.

Keywords: Logit, Random Utility, RUM, Simulation

ForthcomingJournal of Applied Econometrics



MIXED MNL MODELS FOR DISCRETE RESPONSE

Daniel McFadden and Kenneth Train
I. INTRODUCTION

Define amixed multinomial logit (MMNLodel as a MNL model wittandom coefficiente drawn
from a cumulative distribution functio@(e;0):

(1) Pe(i]x,0) = [ Le(i;x,e)-G(do;0) with  Le(i;x,e) = exi"‘/zjeC e .

In this setupC = {1,...,J} is the choice set; theare 1xK vectors of functions of observed attributes of
Iternative i and observed characteristics of the decision-makernx wifR,,...x,); « is a Kx1 vector of
random parameterkg(i;x,«) is a MNL model for the choice s€t and0 is a vector of deep parameters

of the mixing distributionG. The random parametessmay be interpreted as arising from taste
heterogeneity in a population of MNL decision-makers. Iilentain alternative-specific variables,
then the corresponding componentscofcan be treated as alternative-specific random effects.
Alternately, the model may simply be interpreted as a flexible approximation to choice probabilities
generated by a random utility model. The mixing distribu®may come from a continuous
parametric family, such as multivariate normal or log normal, or it may have a finite support.GWhen
has finite support, MMNL models are also callet&nt classnodels. Equation (1) describes a single
decision, but extension to dynamic choice models with multiple decisions is straightforward, with
mixing over the parameters of a product of MNL models for each component decision.

The MMNL model was introduced by Boyd & Mellman (1980) and Cardell & Dunbar (1980),
although an earlier literature had considered the mathematically similar problem of aggregating the
MNL model over a distribution of explanatory variables; see Talvitie (1974), Westin (1974), McFadden
& Reid (1975), and Westin & Gillen (1978). There is a lengthy literature investigating various aspects
of the MMNL model; see Beggs (1988), Brownstone & Train (1998), Dubin & Zeng (1991), Enberg,
Gottschalk, & Wolf (1990), Follmann & Lambert (1989), Formann (1992), Gonul & Srinivasan (1993),
Jain, Vilcassim, & Chintagunta (1994), Montgomery, Richards, & Braun (1986), Revelt & Train (1998),
Steckel & Vanhonacker (1988), Warren & Strauss (1979), .Tvefadden, & Goett (1987), and Train
(1998,1999). Chesher & Santos (1995) have developed specification tests for MMNL that are relatives
of ones proposed here. This paper establishes the following results:

o Under mild regularity conditions, MMNL models are random utility maximization (RUM)
models, and any discrete choice model derived from a RUM model has choice probabilities that
can be approximated as closely as one pleases by a MMNL model. (Section II)

o Numerical integration or approximation by simulation is usually required to evaluate MMNL
probabilities. Maximum Simulated LikelihodSLE) or Method of Simulated Momer{td SM)

can be used to estimate the MMNL model. (Section III)

o The adequacy of a mixing specification can be tested simply as an omitted variable test with
appropriately defined artificial variables. (Section 1V)

o An application to a problem of demand for alternative vehicles shows that MMNL provides a
flexible and computationally practical approach to discrete response analysis. (Section V)



II. AGENERAL APPROXIMATION PROPERTY OF MMNL

Economic theory often suggests that discrete responses are the result of optimization of payoffs to
decision-makers: utility for consumers, profit for firms. The following discussion will be phrased in
terms of utility-maximizing consumers. When unobserved heterogeneity in the population of consumers
is accounted for, this will lead to a class of response models bagaddom utility maximization
(RUM). A resource allocation to a consumer will specify quantities of goods and leisure, and for our
particular interest the attributes of a discrete alternative, such as an automobile model. We will consider
two sources of unobserved heterogeneity, features of alternatives that are not recorded by the analyst,
and unmeasured consumer characteristics that determine preferences.

Letqg = (9,1,z¢) denote a consumer’s resource allocation, whése vector of observed attributes
and( is a vector of unobserved attributes of a discrete alterngtiseg vector of quantities of other
goods, and is leisure. Assume that the domaingak a compact rectangle in a finite-dimensional
Euclidean space. Consumers have a vector of observed charactedstica vector of unobserved
characteristics; with (s,¢) determining preferences over resource allocations. Assume that the domain
of (S,¢) is a compact subset of a finite-dimensional Euclidean space. This is not a substantive restriction
for discrete choice analysis when the number of choice alternatives is bounded. Assume that consumer
preferences over resource allocations, are complete and transitive, with the continuity property that
if a sequence of allocations and consumer characteristics converges,€.c’) — (q493s,c), and
satisfiesq''>¢ . g%, thenqg'=,. g> For fixed §¢), this is the standard continuity condition on
preferences. Our condition extends this to require that consumers with similar characteristics will also
have similar preferences Together, these assumptions imply that preferences can be represented by a
utility function U(g,l,z,(,s,¢) that is continuous in its arguments; see Appendix Lemma 1.

We next consider the stochastic properties of unobserved elements in this formulation of the
consumer’s problem. Lef)(7,m) denote a fundamental probability space, wheres theo-field of
measurable subsets ands a probability measure. L&tdenote a subset &", andX:QxT — R"
denote aontinuous random fiejd.e., for each € T, X(-,t) is a random vector, measurable with respect
to, and for a set ab occuring with probability one¥(w,") is a continuous function oh. We will
often suppress the dependence of the random field and write it a((t). A continuous random field
has lim_, X(t) = X(t) with probability one, implying thax(t ) converges in distribution 9(t) ast '—

t. The CDF ofX(t) is F(x,t) = t({w € Q| X(w,t) < x}). We say thatX has aregular canonical
representationif there exists a continuous functid0,1]"<xT — R" and a uniformly distributed
continuous random fieletQxT — [0,1]" such thaX(t) = h(e(t),t) with probability one. We show in the
Appendix that a continuous random field whose CDF admits a positive continuous density has a regular
canonical representation. For exampl&(t) is a mean-zero Gaussian continuous random field with

a definite covariance matrfd(t), and® denotes the standard normal CDF, t&t) has a continuous
Cholesky facto\(t) and the mapping(t) = ®(A(t)2X(t)) is a uniformly distributed continuous random

field that inverts to the regular canonical represent2t{or= A(t)®*(e(t)).

A primitive postulate of preference theory is that tastes are established prior to assignment of
resource allocations. Then, the distributio odnnot depend ay although in general it will depend
ons. We assume that=¢(s) is a continuous random field with a regular canonical representation, and
write it as¢(s) = hy(v(s),5), wherev(s) is a uniformly distributed continuous random field. Then

A random fielde is uniformly distributedf ¢(t) has a uniform distribution on [0/1] for each T; see Appendix Lemma 3.
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consumers with similar observed characteristics will have similar distributions of unobserved
characteristics. Another primitive postulate of consumer theory is that the description of a resource
allocation does not depend on consumer characteristics. Thus, consumers’ tastes and perceptions do not
enter the “objective” description of a resource allocation, although they will obviously enter the
consumer’s evaluation of the allocation. This postulate implies that the distributtaraohot depend
on (s,v), although it may depend an We will assume thdt is specified as a continuous random field
with a regular canonical representation, and write if(as= h(e(2),2), whereg(s) is a uniformly
distributed continuous random field. Then discrete alternatives that are similar in their observed
attributes will have similar distributions of unobserved attributes. Substituting the transforrhgtions
andh into the definition otJ, we can consider @anonical random utility modél(g,1,z,s,e(2),u(s)) that
is continuous in its arguments, wigiz) and v(s) independently uniformly distributed continuous
random fields.

Economic consumers make choices subject to dollar and time budgets. For discrete choice, if
assigned a discrete alternatxehe consumer will choose googsind leisurd to maximize utility
subject to these budgets. If the alternative requiresttime(z), the consumer’s 24 hour/day time
budget is 24 + + e +t, wheree is hours worked anit is hours of pure leisure. If only a porti@rof
the timet devoted to the alternative is equivalent to work, thef* + (1-A)t is the effective leisure
entering the utility function. Suppose the consumer faces a dollar budget

(2) atwe=pg+c,

wherea is non-wage income, is the cost of the discrete alternatiwas the wage, angis the vector
of goods prices. For the assigned alternative, maximum utility then satisfies

(3) U’(a-c,p,w,tA,zs,e(2),0(s))) = max JJ(g,24-e-tA,zs,(2),u(s))) subject tea+r we=pg+cC.

This function is aonditional indirect utility functiongiven the discrete alternative. With a monotone
transformation, we can assume that the range of utility is contained in the unit interval. For economic
applications, it will be important to distinguish the market variahl@s andw, which can be altered
by economic policy, from the observed consumer characteristics includged3milarly, the market
costc of the discrete alternative which can be altered by policy is distinguishedzfrohile t is a
component ok. An important implication of these distinctions is that for each realizatiefz)aéind
u(9), the conditional indirect utility function is characterized by the standard economic properties that
it is increasing ira - ¢, non-increasing inpw), and homogeneous of degree zero and quasi-convex in
(a-c,p,w). It will be convenient as a shorthand in the following analysis to rededings to absorb the
market variables, and write the conditional indirect utility functiob@ss,e(2),v(s)), keeping in mind
thate(2) andu(s) will not depend on the market variable componenisapids. LetZ andS denote the
domains ofz ands, respectively, and note that they are assumed to be compact subsets of finite-
dimensional spaces.

Consider choice over finite sets of discrete alterna®eqz, ...z}, distinguished by the consumer
(and the observer) in terms of their observed attritait@bich may include “brand names” or other
alternative-specific identifiers that influence the consumer’s evaluation. We will int&€m@stan

The conditional indirect utility function (3) is modified in obvious ways if the consumer cannot choose worg, ioeirs
time requirement for the discrete alternative is absent, or time required for consumption of other goods enters the time budget.
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ordered sequence, and denote the family of possible J-element choicegetZbyBy construction,
all the elements of € ¢, must be distinct. We assume ti#ats compact; this excludes cases where
alternatives are observationally indistinguishable in the limit. We assume that there is an upper bound
J* on the number of elements in a choice set. @fen Z,u...u¢;. is the universe of possible choice
sets. We assume that proper subsets of possible choice sets are also possible; in patiewr, if
contains elements andz”, then {',z"} € ¢,. For brevity,C = {z,...z} will sometimes be written as
c={1,..J3}.

In a well-specified RUM model, there will be zero probability of ties in a choidé s€fz,,... z},
so that a realization = v(s) andg; = ¢(z) for j = 1,...,J of the random elements in the model almost
surely determines a unique choice. Whkis continuously differentiable, a sufficient condition for this
is that the Jacobian

oU(z;,8,e,,v)/0v dU(z;,8,e,,V)/0¢, ... 0

oU(z,,8,e5,v)/og, 0 ... 0U(z,,8,e;,0)/0¢,

have rank at least J-1, and that the support,ef,(.g, contain the space spanned by the Jacobian.
Ways to guarantee no ties include taste factors (determingdbyhe required dimension that interact
with a full-rank array of alternative attributes, or a full set of alternative-specific effects (determined by
the g), or some combination. The following result establishes that MNL mixtures can closely
approximate a very broad class of RUM models that have zero probability of ties:

Theorem 1. Let ze Z, with Z compact, denote the vector of observed attributes of a discrete
alternative, and & S, with S compact, denote the vector of observed characteristics of the consumer.
Suppose discrete choices are made from choiceGetyz,...z}, with at mostJ* alternatives,
contained in a compact univergl in which all alternatives are distinct. Let (z,...Z), and as a
shorthand letC = {1,...,J}. Suppose discrete responses maximize a canonical conditional indirect
utility function U(z,s,¢;,v) that is a bounded continuous function of its argumentteres; = £(z) and
v = u(s) are uniformly distributed continuous random fields. Assume there is zero probability of ties.
Let P.'(i|zs) denote the choice probabilities generated by maximization ot&rC. If ) is a small
positive scalar, then there exists a continuous functex(g,s) of dimensiorlxk for some integek,
with x = (X(z,,9),.--,X(z,5)), and a random utility model with choice probabilitiegiPx,0) of the MMNL
form (1), such that B'(i|zs) and P.(i|x,0) differ by at mosty for all s€ Sandz ¢ #*.

The proof is given in the Appendix. The construction in the proof shows that the random coefficients
o in (1) can be taken to be continuous polynomial transformations of the uniformly distributed
continuous random field€z) andu(s), and from the earlier discussion the indexing of these fields will
exclude economic market variables. Then, the distributienvafl not depend on observed variables
except through the correlations across similar alternatives. One implication of the theorem is that
MMNL can be used to approximate computationally difficult parametric random utility models simply
by taking the distributions underlying these models, suitably scaled, as the mixing distributions. These
can be interpreted as simulation approximations using a MNL kernel. For multinomial probit models,
Brownstone & Train (1998) and Ben-Akiva & Bolduc (1996) find in Monte Carlo experiments that



MMNL gives approximations that are as accurate and quick as direct simulation alternatives such as the
Geweke- Hajivassiliou-Keane (GHK) simulator; see Hajivassiliou & Ruud (1994).

The theorem is stated for a single choice, but applies by reinterpretation to multiple or dynamic
choice applications by treating each possible portfolio of choices as a distinct alternative. Alternately,
the theorem extends easily to a time-series of serially correlated RUM models approximated by serially
correlated mixtures of a product of MNL models for the individual decisions: MMNL probabilities for
a sequence of choices i from s@gsfor t = 1,...,T will have the forn®P.(iy,...,i;|X,0) = [ [].t
Le(ipXp0)-G(da;0), whereL(i;x, ) is a MNL probability for period t choice, witkh a vector of
functions of alternative attributes and consumer characteristics that may include state dependence on
historical choices, an@® is a distribution that can in general include the effects of unobserved
heterogeneity and serial correlation. When both state dependence and unobserved heterogeneity are
present, this model suffers from Heckman'’s initial values problem, and a latent class form of the model
with G depending on initial state can be interpreted as the Heckman-Singer semiparametric treatment
for this problem; see Heckman (1981), Heckman and Singer (1984, 1986), and Heckman, Lochner, &
Taber (1998). In particular, a MMNL model in this form can approximate a dynamic choice model
generated by a RUM model with a multivariate normal distribution of unobserved factors.

In the proof of the theorem, a polynomial approximation to the true random utility function is
perturbed by adding scaled i.i.d. Extreme Value Type | disturbangesdding MNL as the base model
to which mixing is applied. At this step, one could have used other distributions ¥pattt®ugh most
alternatives are not as computationally tractable as MNL. For example, one might take thes
scaled i.i.d. standard normal. When the mixing distribution is multivariate normal, this can be
interpreted as the method for simulation of the MNP model proposed by Stern (1994). Adopting i.i.d.
standard normals for the base model adds one dimension of numerical integration, and requires
computation of a product of univariate nhormal CDF's for each integration point and each decision-
maker. This requires more computation than a MNL base model; see Train (1995). One can use
classical orthogonal polynomials, Fourier series, neural nets, or waveldiasisx(zs), k = 1,2,...
for the approximation. Judicious choice of a basis can make the approximation more parsimonious and
easier to identify econometrically than simple polynomials, and may make it easier to impose or check
monotonicity and quasi-convexity properties of a conditional indirect RUM. In applications, it is often
desirable to make the leading terms in the basis expressions that occur in standard parametric economic
consumer models such as a Stone-Geary specification. Then, a satisfactory approximation may be
achieved without a large number of additional terms.

There are two approximation results available in the literature that are somewhat different than
Theorem 1. Discrete choice models continuous in their arguments can be approximated by MNL models
in which the scale value of each alternative is a general function of all variables for all choices; see
McFadden (1984). This approximation, sometimes called "mother logit", does not require that the
discrete choice model come from a random utility model, and the MNL approximation is not guaranteed
to be consistent with RUM. Thus, this approximation can be useful for testing a RUM/MNL
specification against alternative models that are not necessarily RUM, but is not useful for
approximations within the RUM family. Dagsvik (1994) establishes, for a general class of RUM that
have a representation in which the random effect is additive and independes)t tifdt the random
utility process can be approximated by a generalized extreme value process. Specialized to the current
problem, this shows that this class of random utility models can be approximated by generalized extreme
value RUM. This is a powerful theoretical result, but its practical econometric application is limited



by the difficulty of specifying, estimating, and testing the consistency of relatively abstract generalized
extreme value RUM.

One limitation of Theorem 1 is that it provides no practical indication of how to choose parsimonious
mixing families, or how many terms are needed to obtain acceptable approximatRuts ().
However, Monte Carlo studies indicate that fairly simple mixing structures, with random coefficients
following a factor analytic structure of relatively low dimension, and relatively simple mixing families,
such as latent class models with relatively few classes, are sufficiently flexible to capture quite complex
patterns of heterogeneity; see Bolduc, Fortin, & Gordon (1996) and Brownstone & Train (1998). The
specification tests described in Section |V are one practical adaptive approach to obtaining satisfactory
approximations. In principle, one can combine a method of sieves for specification,of the x variables
with a latent class structure for the mixing distribuii®to develop a fully nonparametric approach to
estimation of random utility models for discrete choice.

A second limitation of the theorem is that while it guarantees the existence of a satisfactory MMNL
approximation, it leaves open the possibility that identification conditions for regular maximum
likelihood estimates of the MMNL model may fail, or that estimates may blow up. The first possibility
is the usual local and global identification problem, reduced but not eliminated by judicious choice of
the basis and careful global search in estimation. The second possibility of estimates blowing up arises
if the linear approximation and mixing distribution happen texzt so that the true random utility
model satisfied)'(z,s,e,v) = % o with x a vector of polynomials im and s and: distributedG(«;0).

Then by scaling down the i.i.d. Extreme Value perturbatiohs (@,s,e,v), one can make the MMNL
approximation converge . (i|zs). This corresponds to approaching the maximum likelihood by
scaling the MNL coefficients by a factdr — « in Pc(i|x,0,) = [L(i|%,0-9)-G(de;0); a finite
maximand does not exist. This is rarely a practical problem, since any specificatamd& adopted

in an application will almost certainly miss features of the true random utility modely anid be
determined by a search to achieve a best approximation to the influence of these omitted factors.
Alternatively, if the exact model contains additive i.i.d. Extreme Value | components, the problem
cannot arise. Suppose a random utility madiét,sg,v) andC = {z,...z}. Let F(u|zs) be the CDF

of (U'(z,s),...J (z,5)). A necessary and sufficient condition for additive i.i.d. Extreme Value |
components is thaE(-log(t,),...,-log(t)) have the properties of a multivariate Laplace Transform:

derivatives of all orders with(-1)™""™-3™""™F(-log(t,),...,-log(t,))/d™,..0™, > 0 ; see Appendix

Lemma 4. In practice, it is difficult to find CDFs satisfying this condition, and difficult to test the
condition, so that the likely possibility that the model is not exact is the best guarantee for convergence
of estimators..

. SIMULATION OF THE MMNL MODEL

A tractable empirical form for the MMNL model.P|Xi0) = [L(i;x,a)-G(dw;0) is obtained by
takinga = B + AC, wheref is a Kx1 vector of "mean” coefficients, is a KxM matrix of factor
loadings, with exclusion restrictions for identification, @nd a Mx1 vector of factor levels that are
independently distributed with a "standard” den§ify. (This specification includes models with
alternative-specific random effects: take x to include alternative-specific dummies and introduce factors
that load on these dummies.) Let vec(B) denote the operation that stacks the columns of an array B into
a vector, defingg = vec(A’), let0’ = (B’,y") denote the vector of parameters of this model, ar@jj let

6



denote the true value 6f Definex.({) = Zjec X Le(i;x,B+AL) and letq(C) = - X:(0). LetEy,

denote an expectation with respect to the densifycohditioned on the event that i is chosen; i.e., the
densityLq(i;x,B+AC) f(C)/ [Lc(i;x,B+AL)F(C)dC. ThenPe(i[x,0) = ELc(i;x,p+AL), Vglog P(i|x,0) =
Eqi%c(€)" andv,log P(i|x,0) = vecE,; {xc(0)).

Simulation of the MMNL Probabilities and their Derivatives

If the integralP.(i|x,0) = E, Lc(i;x,B+A{) can be obtained analytically, or by computationally
feasible numerical integration of low dimension, then conventional maximum likelihood can be used
to estimateé). Otherwise, it is possible to simul&gli|x,0) and its derivatives, and use these simulation
approximations for statistical inference. Make Monte Carlo digwp = 1,...,r, fronf(C). LetE,
denote an empirical expectation with respect to a simulation sample of size r. Then,

(4) P(i[x.0) = Y 51 Le(ix,B+AL) = E, Le(iix,p+AQ)

is a positive, unbiased estimatorR{(i |x,0) that is continuous and continuously differentiable to alll
orders in6. The derivatives of logP.(i|x,0) involve conditional expectationg&,; b(() =
{Eb0)-L(i;x,B+AQ)} Pc(i|x,0) for various function®({). These expectations are simulated by

(5) Ei b(0) = {Eb(C)Lc(i;x,B+AQY PCI(ix,0),

which is again continuously differentiable to all order®inThis can be interpreted as importance
sampling with draws fronf(() as the comparison density. The simul&gb(¢) is not unbiased in
general because of the appearance of the simuatrx,0) in the denominator. Similarly, the
simulator logP/'(i|x,0) of log P(i|x,0) is not unbiased because of the nonlinear transformation.
However, all the simulators above are consistent whener It is possible to get unbiased, but no
longer continuous, estimates qf B(C) using an acceptance/rejection procedure that accepts draws that
would produce i as the choice. Some computations require the second derivativ€s @fd); these

are given in Appendix Lemma 5. In applications, these second derivatives can alternately be obtained
by numerical differentiation of the formulas for the first derivatives.

In the statistical procedures to be discussed next, it will be critical that the simulators satisfy a
condition ofstochastic equicontinuityvhich requires that they not "chatter'tashanges. This is easily
accomplished by keeping the drafydixed during iterative procedures that adjisthis can be done
by storing thef, or by regenerating them from fixed seeds.

Maximum Simulated Likelihood Estimation (MSLE)

Maximum Simulated Likelihood Estimation (MSLE) finds an estimdtgrthat maximizes the
simulated log likelihoodg, log R.' (i|x,0), with E, denoting empirical expectation for a random sample
of size N. Hajivassiliou & McFadden (1997) show that under mild regularity conditions and a stochastic
equicontinuity property, andN™? _, « as N—, «, the MSLE estimata,, is asymptotically equivalent
to the classical maximum likelihood estimator. However, estimators that are relatively free of
simulation bias in moderate samples are likely to require r considerably largefthan N . Monte Carlo
draws need not be independent across observations, or across the simulators of different derivatives that
may be used in iterative search fiy. It is also possible to allow dependence across the different
simulation draws, provided there is sufficient mixing for them to satisfy an central limit property. In



particular, Train (2000) has found that patterned pseudo-random numbers such as Halton sequences give
estimators that in Monte Carlo studies give lower mean square errors than independent random draws.
We give an estimator for the asymptotic covariance matriadnly for the case of independent
simulators across observations. Define the arrays

(6)  I'\(6) = E\Voolog R'(i[x,0)  and Ay(0) = E\{Velog R (i[x,0)K Velog R (i[x,0)}’

As r - o, bothI'\(0,) andA(0,) converge td(0,) = E\{Vylog P (i|x,0,)H Velog P (i|x,0,)} ",

so thafl'y(6,)* andA (6, )" are consistent estimators of the asymptotic covariance estimator. However,

for finite r, A\(0,) is larger thady(0,) due to simulation noise, aig,(0,) decreases as r increases.
ConsequentlyA(6,)™* may substantially underestimate the covariance of the estimator when r is finite,
and may suggest erroneously that increasing r decreases the precision of the estimator. For this reason,
we recommend theobust asymptotic covariance matrix estimaliy(0,)*Ay(0 )T (6 )* that is
associated with quasi-maximum likelihood estimation; see Newey & McFadden (1994, p. 2160).

Method of Simulated Moments

Let d denote an indicator that is one when i is chosen, zero otherwise, dre (dt,....d). A
classical method of moments estimatorfaran be based on the condition thatgbeeralized residual
d - E.Lc(i;x,B+AQ), evaluated at the true parameters, is orthogonal in the populationitstnynent
vectorW,(x,0) that has the dimension 6f Write this moment as

(7) mE:dx) = Y o {d - E/Lc(i;x,B+AD}Wi(x,0).

Define 5(0;x) = Vylog P (i|x,0). When W§,0) = 5(6;x), m(0;d,x) reduces to the score of an
observation and the classical method of moments estimator coincides with the maximum likelihood
estimator. However, any instrument vector ¥9J whose covariance matrix witg(0;x) is of
maximum rank can be used to obtain estimators that are consistenfZand N asymptotically normal, but
in general less than fully efficient. A Method of Simulated Moments (MSM) estimator for MMNL is
obtained by replacing.(i|x,0) in the generalized residual by thebiasedsimulatorP.'(i|x,0) and
usingstatistically independersimulators (as necessary) to obtain the instrument vegtafo\or a
simulatorm’(0;d,x) of m(0;d,x). The MSM estimatod,, is a root ofe,m(0;d,x). McFadden (1989)

shows that under mild regularity conditions, including stochastic equicontinuity, the MSM estimator
0, is consistent and asymptotically normal. It is not necessary for this result that r increase with N, so
long as the simulators of the generalized residuals are independent or satisfy a weaker condition that is
sufficient for a central limit theorem to operate across observations. Th&a(tay X, (0,) P (6y)*
consistently estimates the asymptotic covariance matfiy,offhere

%c(€)
veq(xc(0))

!

P(0) = Ey Dic {VePc(i

Xie)}Wil = _EN ZieC {Er LC(i;X!B-'-AC)}Wi/’

IN0) =En{ Do WPLXOW, - 3 o WRSIxOI Y c WP'([x,0)]}.

The MSLE method is asymptotically efficient, but the computational advantages of the MSM method
may offset the loss of statistical efficiency. The more highly correlatedOWith s(0,;x), the more
efficient the MSM estimator. An obvious candidate fqr/@) is the simulated scog(6;x). Large
r will be needed to simulas{0,;x) accurately and achieve high efficiency. However, it is possible to
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obtain a computationally convenient instrument vector that is fairly highly correlated@iji), and

will as a consequence yield moderately efficient MSM estimates at low computational cost. Using the
approach of Talvitie (1974), make a second-order Taylor's expansion of the multinomial logit function
L.(i;x,B+AQ) in ¢ around{ = 0, and take the expectation of this approximation with respéct to

(8) ELc(ii%,,B+AQ) = Le(i;x,B){1 + Y2 tr(A'QcA)},

where Q. =% - Zjec Lo(i;%,B)Xc X andxc = x; - Zjec X Lo(j;x,B). Because the Taylor's

expansion is not uniformly convergent, this is a poor approximation to the MMNL response probability
itself. However, it provides an easily computed approximatig@px): Make a linear approximation

log {1 + Y2 trA'QcA)} = Y2 tr{A'Q A}, and take the gradient of the log of (8) with respedd,to
ignoring the dependence of.Q o obtain Wx,0)' = [x. vec(QA)’]. For preliminary estimation,

B can be set to simple MNL coefficient estimates Anchn be any matrix of full column rank that
respects the exclusion restrictions present in the model. Limited Monte Carlo evidence suggests that
use of these easily computed instruments will often yield MSM estimators with asymptotic efficiencies
over 90 percent.

IV. SPECIFICATION TESTING

Because the MMNL model requires use of simulation methods, it is useful to have a specification
test based solely on MNL model estimates that determine if mixing is needed. The next result describes
a Lagrange Multiplier test for this purpose. This test has the pivotal property that its asymptotic
distribution under the null hypothesis that the correct specification is MNL does not depend on the
parameterization of the mixing distribution under the alternative.

Theorem 2. Consider choice from a s€& = {1,...,J}. Letx, be alxK vector of attributes of
alternativei. From a random sample = 1,...,N,estimate the parameterin the simple MNL model

Le(iix,0) = exi‘xlzjEC e’ using maximum likelihood; construct artificial variables

9) 2, = Yo -%o)? with X = D o XLe(iix.a)

for selected component®f x, and use a Wald or Likelihood Ratio test for the hypothesis that the
artificial variablesz; should be omitted from the MNL model. This test is asymptotically equivalent to
a Lagrange multiplier test of the hypothesis of no mixing against the alternative of a MMNL model
Pc(i|x,0) = [Lc(i;x,a)-G(dee; 0) with mixing in the selected componeinté«. The degrees of freedom
equals the number of artificial variablegthat are linearly independent of x

The proof is given in the Appendix. To examine the operating characteristics of the test, we carried out
two simple Monte Carlo experiments for choice among three alternatives, with random utility functions

3These instruments are similar to instruments for the multinomial probit model proposed independently by Ruud (1996).
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U = Xy + 0%, + €. The disturbances were i.i.d. Extreme Value Type I. In the first experiment, the
covariate were distributed as described below:

Variable Alternative 1 Alternative 2 Alternative|3
Xy Y5 wW.p. Y2 0 0
X, o w.p. Y2 Yo w.p. Y2 0

The parameteg, = 1 under both the null and the alternative. The paramegtel0.5 under the null
hypothesis, and under the alternatiye= 0.5 = 1 w.p. 1/2. We carried out 1000 repetitions of the test
procedure for a sample of size N = 1000 and choices generated alternately under the null hypothesis and

under the alternative just described, using likelihood ratio tests for the omitted vafiable z . The results
are given below:
Nominal Significance Level Actual Significance Lgvel Power Against the Alternative
10% 8.2% 15.6%
5% 5.0% 8.2%

The nominal and actual significance levels of the test agree well. The power of the test is low, and an
examination of the estimated coefficients reveals that the degree of heterogeneity in tastes present in this
experiment gives estimated coefficients close to their expected values. Put another way, this pattern of

heterogeneity is difficult to distinguish from added extreme value noise.
In the second experiment, the covariates are distributed as shown below:

Variable| Alternative 1 Alternative 2 Alternative| 3
X, Y w.p. Y2 o w.p. Y3 0
X5 L w.p. Y2 o W.p. Y3 0

The utility function is again,u &;X;; + a,X, + €. Under the null hypothesig, = ., = 1, while under
the alternatived;,«,) = (2,0) w.p. %2 and (0,2) w.p. ¥%2. Again, 1000 repetitions of the tests are made for
N = 1000 under the null and the alternative; the results are given below:

10%
5%

Nominal Significance Level

Actual Significance Lepel
9.7%
3.9%

Power Against the Alternative

52.4%
39.8%

In this case where mixing is across utility functions of different variables, the test is moderately
powerful. It remains the case in this example that the estimated coefficients in the MNL model without
mixing are close to their expected values.
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Testing the Adequacy of a Mixing Distribution

Suppose one has estimated a MMNL model in which the MNL parametdist A{ are mixed by
a base densiti{¢), and the object is to test whetlgditionalmixing is needed to describe the sample.
The choice probability under the alternative is

(10) Pe(i[%,8,4) = [{ [Le(iix,B + AL + 2 ¥%0v)H(C)dC} -h(v)dv,

wherep is a Kx1 vectorA is a factor loading matrix; is Kx1 with mean zero and unit varianckss

a kx1 vector of variances, K-T of which are maintained at 2&fajenotes the component-wise square
root, ando denotes the component by component direct product. The null hypothesis is that the data
are generated by this model withe 0; i.e., a mixed MNL model with latent factdrsletermining the

choice probabilities, versus the alternative that up to T additional factors, with d€f)sedye needed.

The following theorem, proved in the Appendix, gives a Lagrange Multiplier test for this hypothesis:

Theorem 3. Suppose the base model(iPx,0) = [ L {i;x,p + AQ)-f(¢)dC has been estimated by
MSLE, using Monte Carlo draw from f(-) for k = 1,...,r. Construct the quantities

X< = Zjec Xj'l—c(j;x,ﬁ"'ACk)1Ztik=1/2@(ti')§ck)2aztck= ngc zthLc(j;X’B"'A(k),

1 4 .

= = - XK ‘LC X, AL )

Y TRIx0) kzg O PrAC)
1 : .

. = _— k v~ ! C 1 ] A ’

M i) 2 veol (X)) Lelix f+ALY
1 3 .

- ———————— i-Zc ) Lc(i;%,p+ALY) ,

/ r.PCr(i|x,6) kZ; @iz Lelix B+ACY)

where all parameters are set to the base model estimates. A regression over alternatives and
observations of the integdr on the variables yw, and y for t = 1,...,Tand an F-test for the
significance of the variables in this regression is asymptotically equivalent to a Lagrange Multiplier test
of the hypothesis of no additional mixing in the coefficientg foir = 1,...,T

In light of the Monte Carlo results in the base case of no mixing, one can expect this test to have
relatively low power. Hence, for use as a diagnostic for model specification, one will want to err on the
side of admitting too much potential heterogeneity, and use a rejection region with a large nominal
significance level.
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V. AN APPLICATION: DEMAND FOR ALTERNATIVE VEHICLES

The State of California suffers from air pollution generated by conventional gasoline-powered
vehicles, and the State is in the process of mandating quotas for alternative-fueled vehicles: methanol,
compressed natural gas (CNG), or electric. An important policy question is consumer acceptance of
these alternative vehicles, and the extent to which subsidies will be necessary to stimulate consumer
demand to the levels required by the quotas. Brownstbaé&(1996) have carried out a conjoint
analysis study of preferences between alternative vehicles. The study has 4654 respondents, each of
whom was asked to choose among six alternatives. The alternatives were described in terms of the
variables defined in Table 1. We do not alter the variable transformations used in the original study, but
note that the dependence of their specification on the price of an alternative and on income fails the
quasi-convexity condition for conditional indirect utility that comes from economic consumer theory.
An experimental design was used to select the offerings of six alternatives from 120 possible profiles,
distinguished by four fuels (gasoline, methanol, CNG, electric), five sizes (mini, subcompact, compact,
midsize, large), and six body types (regular car, sports car, truck, van, station wagon, sports utility
vehicle).

Table 2 gives a MMNL model estimated by Brownstone & Train (1998). This model includes four
random effects, associated with the following variables: Dummy for non-EV, Dummy for non-CNG,
Size, and Luggage Space. The segment of the table headed "Variables" gives estimatps of the
parameters, and the segment headed "Random Effects" gives the factor Aoadistandard normal
factors, with an independent factor for each of the random effects above. Then, the coefficients are
estimates of the standard deviations of these random effects. The estimation uses 250 replications per
observation, and MSLE. The parameter estimates show strong random effects, with magnitudes large
enough to suggest that they are capturing correlation structure in unobservables in addition to variation
in tastes. The variables and random effects included in this model are the result of a classical selection
procedure that estimated alternative MMNL models and used a likelihood ratio test to select from them.
A likelihood ratio test at the five percent level shows that this model fits significantly better than a
simple MNL model (given in Table 3). The table gives estimates of the standard errors of the
coefficients for 250 replications, and also for 50 replications. The columns headed "Asymptotic” give
standard errors usinfy(6,)*. As noted in Section IlI, while this estimator is consistent, for moderate
r it can underestimate covariances and lead to the perverse conclusion that standard errors increase when
the number of simulation draws rises. The columns headed "Robust" give standard errors using the
recommended covariance matrix estimatgi®,) A (6,)\(0,) . The "Robust" standard errors fall
with number of repetitions, as expected. In general, using the "Asymptotic" covariance formula with
250 replications results in a ten to twenty percent underestimate of standard errors of coefficients,
compared to the "Robust" formula.

Table 3, Model 1, is a simple MNL model(i; x,p) fitted to the data; these estimates are taken from
Brownstone & Train (1998). Model 2 adds the artificial variables defined in Theorem 2; i.e., given the

base MNL model(i;x,p) andx. = ij X-Lc(j;%,B), with B set equal to its MNL estimator, define

the artificial variableg, = ¥2(x;,-x)* for variables t where heterogeneity is suspected, and estimate the
MNL model with the original x variables and the additional artificial variables. The list of artificial
variables may include variables t which have the coeffifieobnstrained to zero in the base MNL
model; these are interpreted as pure random effects. A likelihood ratio test at the five percent
significance level rejects the null hypothesis of no mixing. The individual T-statistics for the artificial
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variables are not necessarily a reliable guide to the location of significant mixing, due to lack of
independence, and due to the possibility of correlation across alternatives in unobserved attributes.
However, the results (based on T-statistics exceeding one in magnitude) suggest that there may be taste
variation in the following variable coefficients: Non-EV, Non-CNG, Size, Luggage space, Operating
Cost, and Station Availability. The first four of these were included in the Brownstone-Train model in
Table 2; the last two are additional factors where mixing may be present. Our specification testing
procedure is easier and quicker than the Brownstone-Train method. All the factors identified in their
search were picked up by our procedure, as were some additional candidates.

Table 4 gives a MMNL model which includes the six random effects identified as possibly significant
by the artificial variable test in Table 3, using T-statistics greater than one in magnitude as the selection
criterion. The MMNL estimates show that there is significant mixing in each of these factors.
Likelihood ratio tests show that this model is a significant improvement on the model in Table 2.
Further exploration with additional factors in the MMNL model finds that there are several factor
combinations that will fit as well or marginally better than the model in Table 4, and that some of these
combinations will place weight on factors that were excluded by the artificial variable selection
procedure, and will lower the significance of some of the factors previously included. These results
reflect the inherent difficulty of identifying the factor structure of unobserved utility from observed data
on discrete choices, but may also indicate more conventional specification issues such as omitted
observed variables or interactions.

VI. CONCLUSIONS

This paper has established that MMNL models, estimated using MSLE or MSM, provide a flexible
and computationally practical econometric method for economic discrete choice that is postulated to
come from utility maximization. First, a general approximation property is established. Second,
estimation of parametric MMNL models by MSLE or MSE is shown to provide estimates with good
statistical properties, and easily computed fairly efficient instruments are provided for MSE. Third,
simply computed specification tests are developed that allow one to test for the presence of mixing, or
for the presence of omitted mixing factors. Finally, an application to the demand for alternatively-fueled
vehicles shows that the method can detect and estimate significant mixing effects which can have a
strong effect on the pattern of substitutability across alternatives.
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Table 1. Variable Definitions

Variable

Definition

Price/log(income)

Range
Acceleration
Top speed
Pollution

Size

"Big enough"”
Luggage space
Operating cost

Station availability
Sports utility vehiclg
Sports car

Station wagon
Truck

Van

EV

Commute <5 & EV
College & EV

CNG

Methanol

College & Methanol

Purchase price (in thousands of dollars) divided by
log(household income in thousands)

Hundreds of miles vehicle can travel between refuelings/rechargings

Tens of seconds required to reach 30 mph from stop
Highest attainable speed in hundreds of MPH
Tailpipe emissions as fraction of those for new gas vehicle
0 = mini, 0.1 = subcompact, 0.2 = compact, 0.3 = mid-size or la
1 if household size2 and vehicle is mid or large
Fraction of luggage space in comparable new gas vehicle
Cost per mile of travel (tens of cents): home recharging for
electric vehicle, station refueling otherwise
Fraction of stations that can refuel/recharge vehicle
1 if sports utility vehicle, 0 otherwise
1 if sports car
1 if station wagon
1 if truck
1lifvan
1 if electric vehicle (EV)
1 if electric vehicle and commute < 5 miles/day
1 if electric vehicle and some college education
1 if compressed natural gas (CNG) vehicle
1 if methanol vehicle

1 if methanol vehicle and some college education
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Table 2: Mixed Logit for Alternative-Fueled Vehicle Choice

Variables

Price/log(income)
Range
Acceleration

Top speed
Pollution

Size

"Big Enough”
Luggage Space
Operating Cost
Station availability
Sports utility vehicle
Sports car

Station wagon
Truck

Van

EV

Commute <5 & EV
College & EV

CNG

Methanol

College & Methanol

Random Effects

Non-EV
Non-CNG

Size

Luggage Space

Log Likelihood

Parameter
Estimates

-0.264
0.517
-1.062
0.307
-0.608
1.435
0.224
1.702
-1.224
0.615
0.901
0.700
-1.500
-1.086
-0.816
-1.032
0.372
0.766
0.626
0.415
0.313

2.464
1.072
7.455

5.994

-7375.34

Standard Error
250 replications
Asymptotic Robust

0.0435

2

0.0581
0.1859
0.1150
0.1392
0.5082
0.1126
0.4822
0.1593
0.1452
0.1484
0.1625
0.0674
0.0556
0.0558
0.4249
0.1660
0.2182
0.1482
0.1464
0.1243

0.5414

0.3773

1.8194
1.2483

Standard Error
50 replications
Asymptotic  Robust
0.0412 0.0%25
0.0511 0.1022
0.1738 0.2%19
0.1131 0.1188
0.1357 0.1546
0.4945 0.5156
0.1113 0.1220
0.4314 0.8971
0.1393 0.2p98
0.1410 0.1757
0.1482 0.1493
0.1626 0.1518
0.0674 0.0p59
0.0555 0.05p6
0.0557 0.04j71
0.3777 0.6085
0.1608 0.1927
0.2073 0.2796
0.1391 0.2139
0.1440 0.1534
0.1223 0.1808
0.4428 1.0252
0.2781 0.5711
1.5538 2.4734
1.0483 2.1719

Note: Parameter estimates are from Brownstone & Train (1996); standard error estimates are from this study.
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Table 3. Multinomial Logit Model

Model 1 Model 2
Variables Parameter Estimate SE Parameter Estimate SE

Price/log(income) -0.185 0.027 -0.4240
Range 0.350 0.027% 0.5036
Acceleration -0.716 0.111 -0.9771
Top speed 0.261 0.080 0.3592
Pollution -0.444 0.100 -0.6567
Size 0.935 0.311 1.4179
"Big Enough" 0.143 0.076 0.2248
Luggage Space 0.501 0.188 1.0161
Operating Cost -0.768 0.07 -1.1447
Station availability 0.413 0.09 0.6350
Sports utility vehicle 0.820 0.14 0.8806
Sports car 0.637 0.15 0.6869
Station wagon -1.437 0.06% -1.5229
Truck -1.017 0.055 -1.0776
Van -0.799 0.053 -0.8272
EV -0.179 0.169 -0.6979
Commute <5 & EV 0.198 0.087% 0.3102
College & EV 0.443 0.108 0.6863
CNG 0.345 0.091 0.4216
Methanol 0.313 0.103 0.4886
College & Methanol 0.228 0.089 0.3070
Artificial Variables
Price/log(income) 0.0019
Range -0.0349
Acceleration -1.3728
Top speed -0.2071
Pollution 0.0977
Size 21.5773*
"Big enough" 0.2837
Luggage space 3.8731*
Operating cost 4.2245*
Station availability 0.6741*
EV 2.3476*
CNG 1.2364*

Log Likelihood -7391.83 -7356.61

Notes: Model 1 is from Brownstone & Train (1998).
* denotes the artificial variables wjtA| > 1.
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Table 4. Mixed Multinomial Logit Model

Variables

Price/log(income)
Range
Acceleration

Top speed
Pollution

Size

"Big Enough”
Luggage Space
Operating Cost
Station availability
Sports utility vehicle
Sports car

Station wagon
Truck

Van

EV

Commute <5 & EV
College & EV

CNG

Methanol

College & Methanol

Random Effects

Non-EV
Non-CNG

Size

Luggage space
Operating cost
Station availability

Log Likelihood

Parameter Estimates

-0.3622
0.6753
-1.2688
0.4027
-0.7929
1.7351
0.2695
2.2631
-1.8056
0.7029
0.9234
0.7270
-1.5246
-1.1195
-0.8191
-1.5733
0.4793
1.0534
0.7709
0.5435
0.3849

3.3802
1.1042
8.0788
7.6220
4.4532
1.3987

-7358.93

SE

0.0669
0.0965
0.2591

0.1553

0.1980

0.6694

0.1468
0.6426

0.2912
0.1896
0.1498
0.1645

0.0681

0.0559
0.0564
0.5819

0.2242

0.3114

0.2018

0.1922
0.1542

0.7647
0.4990
2.7021
1.7153
0.8014
0.5730
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APPENDIX. PROOFS OF THEOREMS

Lemma 1. Suppose consumers with tastes defined by peaiimsa compact topological spa&have
preferences over object$n a compact topological spagewith z' -, z” meaningz’ is at least as good asfor
a consumer with tastes Suppose . is complete and transitive, and has the continuity property that if a sequence

of triples ¢%,z"%,s) converges to a limiz(,z"°,s") and satisfiesz* -« z** , them'®>,z"% Then there exists

a utility function Ug,9, continuous in its arguments, that represepter se S.

Proof: A standard construction for fixalue to Rader and Debreu defines a utility function,§¢vhich is
continuous ire for eachs; see Barten & Bohm (1982, p. 388- 390). But the level sets'§( U(z',s') > U(z,9}

and {(z',s")| U(Z,s") < U(z,9} are then closed by the hypothesized continuity property, implying that U is
continuous orZxS. O

Lemma 2. Consider a random variable X with CBF DefineF(x™) = lim_ ,F(x-¢) and the right-continuous
inverseF(p) = sup{cR|F(x) < p} for p € (0,1). Define the random variable Z =R(X) + (1-U)F(X~), where
U is a uniformly distributed random variable on [0,1] that is independent of X. DefinéXZ. Then Z is
uniformly distributed on (0,1), the functidf® is almost surely continuous, and X = X almost surely. If, in
addition,F is strictly increasing, theR is continuous and % X.

Proof: DefineA = {xeR|F(x+e) = F(x) for some > 0}, andB = F(A). The sef is a countable union of disjoint
half-open intervals of the form [a,b) with F(a) = F{lso thatA occurs with probability zero. Forec(0,1), let

x = F(c). Then, for akt > 0, F(xe) < F(x") < ¢ < F(X) < F(x4). Hence, the event {Z c} occurs if and only

if one of the disjoint events {X < x} or {X =x & F(X + U-[F(x) - F(x")] < c} occurs. But P(X <x) = F(¥ and
PX=x&F(x) + U[F(X) - F(x)] <c) =c - F(X), implying P(Z< c¢) = c. Thus, Z is uniformly distributed on
(0,2). If xe A and F(X) < c < F(x), then B (c) =x. Then, in the event), which occurs with probability one,

one has X = X= F(Z). Finally, P (p) is a monotone right-continuous function that is also left-continuous except
at jumps when p B, a countable set that contains Z with probability zero. Thén, F is almost surely continuous.
If F is strictly increasing, theA andB are empty.n

Let (Q,77,) denote a probability spac€,denote a subset &™, andX:QxT — R" denote a random field,
measurable with respect o for each te T, and almost surely measurable Bn We say thaX admits a

coordinate conditional probability structuratt if there exist conditional CDF functior§(X [X,,... X.1,t),
measurable in their arguments, such that foy alR", the CDF ofX(t) can be written

FOD = (% [ o [ ) P P, )

This condition follows from Fubini’s theoremH{x,t) has a densit(x,t), and will hold automatically i is built
up from conditional CDF functions. It can fail in pathological cases; see Billingsley (1986, p. 458).

Lemma 3. Suppos« is a random field fromt < R™ into R" that admits a coordinate conditional probability
structure for eache T. Then there exists a uniformly distributed random f#&xT — [0,1]' and measurable
functions h:[0,1]% - R for i = 1,...,n such thaX (t) = h  (t),...Z (t),t) almost surely. If in addition, there is a
rectangleX < R" such thaX(t) has a densitf(x,t) that is continuous in its arguments and strictly positive on the
interior of X, with F(X,t) = 1, then the h are continuous in their argumentsZaad continuous random field..

Proof: For n = 1, Lemma 2 gives the result for eRehl thatX;(t) = h,,(t),t) almost surely. Proceed by
induction. Suppose the result has been established for n-Z;()ithdependently distributed uniformly on [0,1]
fori=1,...,n-1 an(t) = h Z(t),... Z(t),t) almost surely. Apply Lemma 2 to the random variag(® with
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measurable conditional distribution functibg(x,|h,(Z(t).t),...,h,1&€ {1),...Z .(t),t),t). This yields a function
satisfyingX(t) = h, &.(t),...Z4(t),t) almost surely. This completes the induction step. Finally, Ximca random
field, almost sure continuity assures that the pointwise construction forteaths measurable in t.

When X has a positive continuous densifyt) on the interior of the rectangk, the conditional CDF
Fi(% |>,-.-%.1,t) is strictly increasing i and continuous in all its arguments, so that an implicit function theorem
implies that the inverse function=F*(z|x,...%.,,t) is continuous in all its arguments, giving the last result of
the lemma.m

Lemma 4. A necessary and sufficient condition for a random utility function over J alternatives with a
multivariate CDA~(u) to have a representation U = ¥,+where the components oare independent of W and
independent identically distributed Extreme Value |, is thalog(t,),...,-logf,)) be a multivariate Laplace
Transform,; i.e.F treated as a function df (.., is analytic and has derivatives satisfying the sign condition

(1) ™™ NE(<log ), ... -log ()0 ™, .. 0™, > 0

Proof: Suppose U has the representation. TRemyst satisfy the convolution formula

F(u,...,.u) = fi;”exp(f(e’”fwlt..+e’“J+WJ))-G(dw) :

whereG is the CDF of W. Make the transformatidps exp(y,) and \{ = exp(W ), and let H be the CDF of V.
Then,

F(-log(t),...,-logty) = fo“’“ exp(-€v,+ ... +ty))-H(adv).
This is a multivariate Laplace Transform. Converselyk-(Hlog(t,),...,-logt)) is a multivariate Laplace
Transform, then it satisfieS(-~) = 0, F(+~) = 1, and from the derivative property of Laplace Transforms,
0’Flou,...0u, > 0, so that it is a multivariate CDF; see Feller (1966, p. 445).
Lemma 5. If P.(i|x,0) = E,Lc(i;x,B+AQ) is given by (5), then
Veplog Pz (ilx,0) = E;{%c() '%c(€) - ngc %c () %Xc(Q)Lcl; x,B+AQ)} - { Vglog P (il x,0)H Velog P (i[x,0)}’
Vylog Pe (i[x,0) = EgifvecCxc(O%c(0) - e veekXe(O)Xc(QLcl; X, B+AL)}
- {V,log P (i|x,0){ V;log P (i|x,0)}’
V,10g Pe (i[x,0) = Eifvec({xc(Q)vecxc(0) - Yo vectxc(Q))vecxc(S)) Lol x,.B+AL)}
-{V,log P (i|x,0)H V,log P (ix,0)}’
Proof: Direct computationm
Proof of Theorem 1: Consider the random utility model (z,s,e(w,2),v(w,s)), wheree(w,2) € [0,1F and

uv(w,s) € [0,1] are uniformly distributed continuous random fields definedofim a fundamental probability
space(Q,7,m). For @,2") € ¢, ands e S, define the set

Az72",9) = {weQ| U (z'se(w,2'),0(w,9)) - U (z",5¢(w,2"),0(w,9))| > 5/K}.
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The continuity ofU* and the measurability of the random fields implies thd ,z",s) is measurable. This set
is monotone increasing as-ke to the set ofo for which the alternativez (z") € ¢, are not tied. By hypothesis,
this set has probability one, implying that there exists kz%Z(s) such thatt(A,(z%2",9)) > 1n/4J*.

The uniform continuity obJ* on ZxSx[0,1Px[0,1] implies that given &(,z",s), there exist§(z’,z",s) > 0 such
that in a neighborhood of this radiu$ varies by less than 1/k(z",s). The almost sure continuity efw,z) and
uv(w,s) imply that the set

Bn(Z,9) = {weQ| sup,.rjcum $(0.2%) - 8(0,Z)] + SUR- gam W(@.S¥) - V(w,9)| <8(z"Z",9)},

and the corresponding $&t(z",s), are monotone increasing as+me to limiting sets that occur with probability
one. Then there exists m =a¢”,s) such thatt(B,(z',9)) > 11/4J* andn(B,(z",9)) > 1./4J*. Therefore with
probability at least 1 -194J*, w € A (z7,2",9B,(Z',9nB(z",9), implying that for £*,z*",s*) in an open
neighborhood of7,z",s) € ¢,xS of radiusd(z,z",s), one has

U (z* ;s*,e(w,2* "), u(w,s%)) - U (2,5, e(w,2*"),u(w,S*))| > 1/k.

These neighborhoods cover the compacised. Therefore, there exists a finite subcovering. Let k* be the
larger of -logy/4J*) and the maximum value of&K{z",s) for the centers of the finite subcover. We have now
established that each poiat (z*”,s*) € ¢,xS falls in some neighborhood in a finite cover with cerzér/(,s),
and satisfiesU’(z* ,s*, e(w,2*"),u(w,s*)) - U (z*" ,s*,e(w,2*"),0(w,S*))| > 3/k(z’z",5) > 3/k* on a set o that
occurs with probability at least 1 #81J*.,

The continuous functiob” has a Bernstein-Weierstrauss polynomial approximadibon zxSx[0,1F* that
satisfies U" - U*| < 1/k*. Consider a choice s€t={z,...z} € ¢* and letz= (z,...z). FormU¥(z,s,e(z),u(s))
= U™(z,5&(2),0(9) + vi/k*? where thev, are i.i.d. Extreme Value Type | random variables. Consider the event
of a preference reversal betwaé¢nandU for a pair ¢.z) < Cand == S; i.e., the set oheQ andveR* such that
U'(z,58(w,z),v(w,) > U(z,58w7)0(®s9) and U(z,5&wz2)u(ws)) < U(zsewz)v(ws). If
U (z,58(w,Z),0(w,9)) - U (7,58(w,Z),0(w,9))| > 3/k*, then

0 >Uk(Zi,S,8((.\),Z),U((.O,S)) 'Uk(%,sve(‘*)@)")(‘*)vs)) = U*k (Z,S,S((O,Z),U(&),S)) _Uk (F,S,S((L),F),U((L),S)) + (y - JV)/k’Z
> U'(z,58(,2),0(w,8)) -U (7,58(w,2),0(w,9)) - 2/k* + (v - y)/k** > 1/k* + (y - y)/K*,

and hence’ - v” < -1/k*. The probability of this last event is (1% ¢ )nMJ*, and from the previous argument
the probability that the conditioning event does not occur is at m&&1*3 Then the probability of a preference
reversal at,z,s) is at mosh/J*. Therefore, the probability of the event that the alternatiZthat maximizes
U differs from the alternative that maximizgsis at mosinJ/J* < 7.

Write the polynomial approximatidd® in the formU%(z,s,£(2),u(s)) = X(z,9)-a(z,) + v/k*2 wherex(zs) is a
vector of thez ands components of the terms in the polynomial afzs) is the a vector of the corresponding
e(2) andvu(s) components. Finally, for a choice §&t {z,...z} € ¢*, definea = (x(z,9),...0(z,9) andx;=
(0.,...,0x(z,9),0,...,0), so that*(z,se) = % o + v/k*2 This is a MMNL model of the form of (1), and the
construction guarantees that with probability at leasy, 1 andU* are maximized at the same alternative in
C. Therefore, P (i fromU" andP.(i|x,0) from U differ by at most. =

Proof of Theorem 2:Write the MMNL model a®.(i|x,0,4) = [L(i;x,p+AY%()-G(d{;0) , wheref andA are
vectors of parameters’? is the vector of square roots of the componenis &fis a vector of random variables
that has mean zero, component variances of one, and full rank over the specified componeriter, denotes
the component-by-component direct product. The parameteria&fischosen to circumvent the problem that
a natural parameterization in terms of the standard deviations of the mixing density leads to a score that is
identically zero under the null, as in Lee & Chesher (1986) and Newey & McFadden (1995). Then
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VePc(i[%,0,4) = [ Lo(iix,B+A"00)-(x-x) GAC0) with xe = 3, o %L x,B+A"2e),

V5, Peli[x.0.2) = Y22 [ Le(isx,B+A00) (x-%0) ¢ G(dZ;0)
Taking the limit as thé, — 0, and using L'Hopital's rule oriVAt Pc(i|x,0,), one obtains

VPe(i[%,0,4) = Le(i:x,Be) (i - %) - and V; - 1ogPc(i[x,0) = Le(isx,Be) (2 - Zc)-

where z; = %, - %c)? and zc = Zjec z:Lc(;x,&) . The sample mean 8Flog P (i|x,0) is zero at the

maximum likelihood estimatds, of the simple MNL model, and the Lagrange Multiplier statistic tests whether

the vector of sample means 0‘17At log Px(®) for the selected t are zero. As in McFadden (1987), this test

is equivalent to a Lagrange Multiplier test for the null hypothesis that the varzalblage zero coefficients in
the MNL model, and thus asymptotically equivalent to a Likelihood Ratio or Wald test for this hypo#hesis.

Proof of Theorem 3: Consider R (ix,0) = [{[Ld(i;x,p+A+AY%0v)-f({)d{}H(dv).  Differentiating,
VePe (i %,0) = [{ ] 06X )Le(is X, B+AL+AYov)-A(Q)dCE H(dV) , Vo Pe (i1%,0) = [{[ C(¢-%)Le(isx,B+AL+A 2ov)-f(()dC} H(dv),

and Vi, RO = ¥ [{J()-X)Lc(iX,pHAL+ATov) (A} veH(dv), with x. = x(0) =
Ejec %Lc(j;x,B+AL+AY?0v). To evaluate the last derivative under the null, use L'Hopital's rule. The derivative
of 24,2 th P.(i|x,0) with respect tod, is YA [{[(x-%c)Le(i;X,B+AL+AY%0v)-f(Q)dC}-v,2H(dV) - ¥\, Y2

[T Yoo Xg(xx QL @ix,B+AC+AY20v)L (5x,B+Tn+d YBv)-H(Q)dC}-v Ri(dv) = %A

[{] @2 2Lolii X B+HACHAPoV) KAL) v RH(AY), with 7z = Z(0) = (%072 and ze = 2:(0)
Yoo #OLIXPHAHAov).  Hence, atd = 0, P(ilx0) = J{JLixP+ADKOA . V,Pe(iIx.0)

[0 % @OLX BHAOAC)AC,  VaPe(ix.0) = [ COx(OLixp+AAOAS,  and V; - Pe(i[x,0)

[(zi(©)-zc(0))Lc(i; x,B+ALQ)-f(0)dC . For comparison, suppose one had the base model in vaKaidsvanted

to test whether additional variablgsbelong in the model. The model under the alternative i$¢z,@,e) =
[Lc(i;%,2(0),B+AL,e)f(¢)dC. The derivatives under the null hypothesis= 0 are the same as before for
VePc(i[x,2,0,0) and forV, P.(i|x,z0,x). FinallyV P.(i|x,z,0,0) = [(z(C)-z(0))Li;x,B+A)-f()d( , also as

before. Therefore, a LM test for the hypothdsisO is equivalent to a LM test for the hypothesis 0 for the

auxiliary variables({). This test is readily computed by first estimating the base model using a simulation
procedure with specified starting seeds, then regressing (over observations and alternatives) the integer 1 on the

scoresvglog R (ix,0), vec¥, log R (i[x,0)), and VAt log B (ix,0) fort=1,...T, and testing whether the sum

of squared residuals is significant according to a chi-square distribution with T degrees of fr@edom.
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