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MIXED MNL MODELS FOR DISCRETE RESPONSE

Daniel McFadden and Kenneth Train

I.  INTRODUCTION

Define a mixed multinomial logit (MMNL) model as a MNL model with random coefficients � drawn
from a cumulative distribution function G(�;�):

(1) P (i
x,�) = , L (i;x,�)�G(d�;�)   with    L (i;x,�) = .C C C

In this setup, C = {1,...,J} is the choice set; the x  are 1×K vectors of functions of observed attributes ofi

lternative i and observed characteristics of the decision-maker, with x = (x ,...,x ); � is a K×1 vector of1 J

random parameters; L (i;x,�) is a MNL model for the choice set C; and � is a vector of deep parametersC

of the mixing distribution G.  The random parameters � may be interpreted as arising from taste
heterogeneity in a population of MNL decision-makers.  If the x  contain alternative-specific variables,i

then the corresponding components of � can be treated as alternative-specific random effects.
Alternately, the model may simply be interpreted as a flexible approximation to choice probabilities
generated by a random utility model.  The mixing distribution G may come from a continuous
parametric family, such as multivariate normal or log normal, or it may have a finite support.  When G
has finite support, MMNL models are also called latent class models.  Equation (1) describes a single
decision, but extension to dynamic choice models with multiple decisions is straightforward, with
mixing over the parameters of a product of MNL models for each component decision.

The MMNL model was introduced by Boyd & Mellman (1980) and Cardell & Dunbar (1980),
although an earlier literature had considered the mathematically similar problem of aggregating the
MNL model over a distribution of explanatory variables; see Talvitie (1974), Westin (1974), McFadden
& Reid (1975), and Westin & Gillen (1978).  There is a lengthy literature investigating various aspects
of the MMNL model; see Beggs (1988), Brownstone & Train (1998), Dubin & Zeng (1991), Enberg,
Gottschalk, & Wolf (1990), Follmann & Lambert (1989), Formann (1992), Gonul & Srinivasan (1993),
Jain, Vilcassim, & Chintagunta (1994), Montgomery, Richards, & Braun (1986), Revelt & Train (1998),
Steckel & Vanhonacker (1988), Warren & Strauss (1979), Train, McFadden, & Goett (1987), and Train
(1998,1999).  Chesher & Santos (1995) have developed specification tests for MMNL that are relatives
of ones proposed here.  This paper establishes the following results: 

1 Under mild regularity conditions, MMNL models are random utility maximization (RUM)
models, and any discrete choice model derived from a RUM model has choice probabilities that
can be approximated as closely as one pleases by a MMNL model.  (Section II)
1 Numerical integration or approximation by simulation is usually required to evaluate MMNL
probabilities.  Maximum Simulated Likelihood (MSLE) or Method of Simulated Moments (MSM)
can be used to estimate the MMNL model.  (Section III)
1 The adequacy of a mixing specification can be tested simply as an omitted variable test with
appropriately defined artificial variables.  (Section IV)
1 An application to a problem of demand for alternative vehicles shows that MMNL provides a
flexible and computationally practical approach to discrete response analysis.  (Section V)



     A random field J is uniformly distributed if J(t) has a uniform distribution on [0,1]  for each t � T; see Appendix Lemma 3.1 n
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II.  A GENERAL APPROXIMATION PROPERTY OF MMNL

Economic theory often suggests that discrete responses are the result of optimization of payoffs to
decision-makers:  utility for consumers, profit for firms.  The following discussion will be phrased in
terms of utility-maximizing consumers.  When unobserved heterogeneity in the population of consumers
is accounted for, this will lead to a class of response models based on random utility maximization
(RUM).  A resource allocation to a consumer will specify quantities of goods and leisure, and for our
particular interest the attributes of a discrete alternative, such as an automobile model.  We will consider
two sources of unobserved heterogeneity, features of alternatives that are not recorded by the analyst,
and unmeasured consumer characteristics that determine preferences.

Let q = (g,l,z,�) denote a consumer’s resource allocation, where z is a vector of observed attributes
and � is a vector of unobserved attributes of a discrete alternative, g is a vector of quantities of other
goods, and l is leisure.  Assume that the domain of q is a compact rectangle in a finite-dimensional
Euclidean space.  Consumers have a vector of observed characteristics s and a vector of unobserved
characteristics +; with (s,+) determining preferences over resource allocations.  Assume that the domain
of (s,+) is a compact subset of a finite-dimensional Euclidean space.  This is not a substantive restriction
for discrete choice analysis when the number of choice alternatives is bounded.  Assume that consumer
preferences over resource allocations, | , are complete and transitive, with the continuity property thats,+

if a sequence of allocations and consumer characteristics converges, (q 1,q 1,s1,+1) Y (q ,q ,s,+), and1 2 1 2

satisfies q 1|  q 1, then q |  q .  For fixed (s,+), this is the standard continuity condition on1 2 1 2
s1,+1 s,+

preferences.  Our condition extends this to require that consumers with similar characteristics will also
have similar preferences  Together, these assumptions imply that preferences can be represented by a
utility function U(g,l,z,�,s,+) that is continuous in its arguments; see Appendix Lemma 1.

We next consider the stochastic properties of unobserved elements in this formulation of the
consumer’s problem.  Let (6,:,%) denote a fundamental probability space, where :  is the )-field of
measurable subsets and % is a probability measure.  Let T denote a subset of Ü , and X:6×T Y Üm n

denote a continuous random field; i.e., for each t � T, X(#,t) is a random vector, measurable with respect
to :, and for a set of 7 occuring with probability one, X(7,#) is a continuous function on T.  We will
often suppress the dependence of the random field on 7, and write it as X(t).  A continuous random field
has lim  X(t1) = X(t) with probability one, implying that X(t1) converges in distribution to X(t) as t1 Yt1Yt

t.  The CDF of X(t) is F(x,t) = %({7 � 6| X(7,t) � x}).  We say that X has a regular canonical
representation if there exists a continuous function h:[0,1] ×T Y Ü  and a uniformly distributedn n

continuous random field J:6×T Y [0,1]  such that X(t) = h(J(t),t) with probability one.   We show in then 1

Appendix that a continuous random field whose CDF admits a positive continuous density has a regular
canonical representation.  For example, if X(t) is a mean-zero Gaussian continuous random field with
a definite covariance matrix 6(t), and 0 denotes the standard normal CDF, then 6(t) has a continuous
Cholesky factor �(t) and the mapping J(t) = 0(�(t) X(t)) is a uniformly distributed continuous random-1

field that inverts to the  regular canonical representation X(t) = �(t)0 (J(t)).-1

A primitive postulate of preference theory is that tastes are established prior to assignment of
resource allocations.  Then, the distribution of + cannot depend on q, although in general it will depend
on s.  We assume that + = +(s) is a continuous random field with a regular canonical representation, and
write it as +(s) = h (/(s),s), where /(s) is a uniformly distributed continuous random field.  Then0



     The conditional indirect utility function (3) is modified in obvious ways if the consumer cannot choose work hours e, the2

time requirement t for the discrete alternative is absent, or time required for consumption of other goods enters the time budget.  
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consumers with similar observed characteristics will have similar distributions of unobserved
characteristics.  Another primitive postulate of consumer theory is that the description of a resource
allocation does not depend on consumer characteristics.  Thus, consumers’ tastes and perceptions do not
enter the “objective” description of a resource allocation, although they will obviously enter the
consumer’s evaluation of the allocation.  This postulate implies that the distribution of  ! cannot depend
on (s,�), although it may depend on z.  We will assume that � is specified as a continuous random field
with a regular canonical representation, and write it as �(z) = h(J(z),z), where J(s) is a uniformly
distributed continuous random field.   Then discrete alternatives that are similar in their observed
attributes will have similar distributions of unobserved attributes.  Substituting the transformations h0

and h into the definition of U, we can consider a canonical random utility model U(g,l,z,s,J(z),/(s)) thatj

is continuous in its arguments, with J(z) and /(s) independently uniformly distributed continuous
random fields.

Economic consumers make choices subject to dollar and time budgets.  For discrete choice, if
assigned a discrete alternative z, the consumer will choose goods g and leisure l to maximize utility
subject to these budgets.  If the alternative requires time t = -(z), the consumer’s 24 hour/day time
budget is 24 = l* + e + t, where e is hours worked and l* is hours of pure leisure.  If only a portion � of
the time t devoted to the alternative is equivalent to work, then l = l* + (1-�)t is the effective leisure
entering the utility function.  Suppose the consumer faces a dollar budget

(2) a + w�e = p�g + c,    

where a is non-wage income, c is the cost of the discrete alternative, w is the wage, and p is the vector
of goods prices.  For the assigned alternative, maximum utility then satisfies

(3) U1(a-c,p,w,t�,z,s,J(z),/(s))) = max U(g,24-e-t�,z,s,J(z),/(s))) subject to a+ w�e = p�g + c .e,g

This function is a conditional indirect utility function, given the discrete alternative.   With a monotone2

transformation, we can assume that the range of utility is contained in the unit interval.  For economic
applications, it will be important to distinguish the market variables a, p, and w, which can be altered
by economic policy, from the observed consumer characteristics included in  s.  Similarly, the market
cost c of the discrete alternative which can be altered by policy is distinguished from z, while t is a
component of z.  An important implication of these distinctions is that for each realization of J(z) and
/(s), the conditional indirect utility function is characterized by the standard economic properties that
it is increasing in a - c, non-increasing in (p,w), and homogeneous of degree zero and quasi-convex in
(a-c,p,w).  It will be convenient as a shorthand in the following analysis to redefine z and s to absorb the
market variables, and write the conditional indirect utility function as U(z,s,J(z),/(s)), keeping in mind
that J(z) and /(s) will not depend on the market variable components of z and s.  Let Z and S denote the
domains of z and s, respectively, and note that they are assumed to be compact subsets of finite-
dimensional spaces.

Consider choice over finite sets of discrete alternatives C = {z ,...,z }, distinguished by the consumer1 J

(and the observer) in terms of their observed attributes z which may include “brand names” or otherj

alternative-specific identifiers that influence the consumer’s evaluation.  We will interpret C as an
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ordered sequence, and denote the family of possible J-element choice sets by &  G Z .  By construction,J
J

all the elements of C � &  must be distinct.  We assume that &  is compact; this excludes cases whereJ J

alternatives are observationally indistinguishable in the limit.  We assume that there is an upper bound
J* on the number of elements in a choice set.  Then &* = & F...F&  is the universe of possible choice2 J*

sets.  We assume that proper subsets of possible choice sets are also possible; in particular, if C � &J

contains elements z1 and z2, then {z1,z2} � & .  For brevity, C = {z ,...,z } will sometimes be written as2 1 J

C = {1,...,J}. 
In a well-specified RUM model, there will be zero probability of ties in a choice set C = {z ,...,z },1 J

so that a realization / = /(s) and J  = J(z) for j = 1,...,J of the random elements in the model almostj j

surely determines a unique choice.  When U is continuously differentiable, a sufficient condition for this
is that the Jacobian

,

have rank at least J-1, and that the support of (/,J ,...,J ) contain the space spanned by the Jacobian.1 J

Ways to guarantee no ties include taste factors (determined by /) of the required dimension that interact
with a full-rank array of alternative attributes, or a full set of alternative-specific effects (determined by
the J ), or some combination.  The following result establishes that MNL mixtures can closelyj

approximate a very broad class of RUM models that have zero probability of ties:

Theorem 1. Let z � Z, with Z compact, denote the vector of observed attributes of a discrete 

alternative, and s � S, with S compact, denote the vector of observed characteristics of the consumer.
Suppose discrete choices are made from choice sets C = {z ,...,z } , with at most J* alternatives,1 J

contained in a compact universe &*  in which all alternatives are distinct.  Let z = (z ,...,z ), and as a1 J

shorthand let C = {1,...,J}.   Suppose discrete responses maximize a canonical conditional indirect
utility function U(z,s,J ,/) that is a bounded continuous function of its arguments, where J  = J(z) and*

j j j j

/ = /(s) are uniformly distributed continuous random fields.  Assume there is zero probability of ties.
Let P (i
z,s) denote the choice probabilities generated by maximization of U over C.  If � is a smallC

* *

positive scalar, then there exists a continuous function x = x(z,s) of dimension 1×k for some integer k,
with x = (x(z ,s),...,x(z ,s)), and a random utility model with choice probabilities P(i
x,�) of the MMNL1 J C

form (1), such that P (i
z,s) and P (i
x,�) differ by at most �  for all s � S and z � &*. C C  
*

The proof is given in the Appendix.  The construction in the proof shows that the random coefficients
� in (1) can be taken to be continuous polynomial transformations of the uniformly distributed
continuous random fields J(z) and /(s), and from the earlier discussion the indexing of these fields will
exclude economic market variables.  Then, the distribution of � will not depend on observed variables
except through the correlations across similar alternatives.  One implication of the theorem is that
MMNL can be used to approximate computationally difficult parametric random utility models simply
by taking the distributions underlying these models, suitably scaled, as the mixing distributions.  These
can be interpreted as simulation approximations using a MNL kernel.  For multinomial probit models,
Brownstone & Train (1998) and Ben-Akiva & Bolduc (1996) find in Monte Carlo experiments that
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MMNL gives approximations that are as accurate and quick as direct simulation alternatives such as the
Geweke- Hajivassiliou-Keane (GHK) simulator; see Hajivassiliou & Ruud (1994).  

The theorem is stated for a single choice, but applies by reinterpretation to multiple or dynamic
choice applications by treating each possible portfolio of choices as a distinct alternative.  Alternately,
the theorem extends easily to a time-series of serially correlated RUM models approximated by serially
correlated mixtures of a product of MNL models for the individual decisions:  MMNL probabilities for
a sequence of choices i  from sets C  for t = 1,...,T will have the form P (i ,...,i 
x,�) = , -t t C 1 T t�T

L (i ;x ,�)�G(d�;�), where L (i ;x ,�) is a MNL probability for period t choice, with x  a vector ofCt t t ct t t t

functions of alternative attributes and consumer characteristics that may include state dependence on
historical choices, and G  is a distribution that can in general include the effects of unobserved
heterogeneity and serial correlation.  When both state dependence and unobserved heterogeneity are
present, this model suffers from Heckman’s initial values problem, and a latent class form of the model
with G depending on initial state can be interpreted as the Heckman-Singer semiparametric treatment
for this problem; see Heckman (1981), Heckman and Singer (1984, 1986), and Heckman, Lochner, &
Taber (1998).  In particular, a MMNL model in this form can approximate a dynamic choice model
generated by a RUM model with a multivariate normal distribution of unobserved factors.

In the proof of the theorem, a polynomial approximation to the true random utility function is
perturbed by adding scaled i.i.d. Extreme Value Type I disturbances �, yielding MNL as the base model
to which mixing is applied.  At this step, one could have used other distributions for the �, although most
alternatives are not as computationally tractable as MNL.  For example, one might take the � to be
scaled i.i.d. standard normal.  When the mixing distribution is multivariate normal, this can be
interpreted as the method for simulation of the MNP model proposed by Stern (1994).  Adopting i.i.d.
standard normals for the base model adds one dimension of numerical integration, and requires
computation of a product of univariate normal CDF's for each integration point and each decision-
maker.  This requires more computation than a MNL base model; see Train (1995).  One can use
classical orthogonal polynomials, Fourier series, neural nets, or wavelets as a basis x (z,s), k = 1,2,...k

for the approximation.  Judicious choice of a basis can make the approximation more parsimonious and
easier to identify econometrically than simple polynomials, and may make it easier to impose or check
monotonicity and quasi-convexity properties of a conditional indirect RUM.  In applications, it is often
desirable to make the leading terms in the basis expressions that occur in standard parametric economic
consumer models such as a Stone-Geary specification.  Then, a satisfactory approximation may be
achieved without a large number of additional terms. 

There are two approximation results available in the literature that are somewhat different than
Theorem 1.  Discrete choice models continuous in their arguments can be approximated by MNL models
in which the scale value of each alternative is a general function of all variables for all choices; see
McFadden (1984).  This approximation, sometimes called "mother logit", does not require that the
discrete choice model come from a random utility model, and the MNL approximation is not guaranteed
to be consistent with RUM.  Thus, this approximation can be useful for testing a RUM/MNL
specification against alternative models that are not necessarily RUM, but is not useful for
approximations within the RUM family.  Dagsvik (1994) establishes, for a general class of RUM that
have a representation in which the random effect is additive and independent of (z,s), that the random
utility process can be approximated by a generalized extreme value process.  Specialized to the current
problem, this shows that this class of random utility models can be approximated by generalized extreme
value RUM.  This is a powerful theoretical result, but its practical econometric application is limited



(	1)
n1�...�nJ#0

n1�...�nJF(	log(t1),...,	log(tJ))/0
n1t1...0

nJtJ � 0
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by the difficulty of specifying, estimating, and testing the consistency of relatively abstract generalized
extreme value RUM.

One limitation of Theorem 1 is that it provides no practical indication of how to choose parsimonious
mixing families, or how many terms are needed to obtain acceptable approximations to P (i
z,s).C

However, Monte Carlo studies indicate that fairly simple mixing structures, with random coefficients
following a factor analytic structure of relatively low dimension, and relatively simple mixing families,
such as latent class models with relatively few classes, are sufficiently flexible to capture quite complex
patterns of heterogeneity; see Bolduc, Fortin, & Gordon (1996) and Brownstone & Train (1998).  The
specification tests described in Section IV are one practical adaptive approach to obtaining satisfactory
approximations.  In principle, one can combine a method of sieves for specification of the x  variablesi

with a latent class structure for the mixing distribution G to develop a fully nonparametric approach to
estimation of random utility models for discrete choice.

A second limitation of the theorem is that while it guarantees the existence of a satisfactory MMNL
approximation, it leaves open the possibility that identification conditions for regular maximum
likelihood estimates of the MMNL model may fail, or that estimates may blow up.  The first possibility
is the usual local and global identification problem, reduced but not eliminated by judicious choice of
the basis and careful global search in estimation.  The second possibility of estimates blowing up arises
if the linear approximation and mixing distribution happen to be exact, so that the true random utility
model satisfies U (z,s,J,/) � x �� with x  a vector of polynomials in z and s and � distributed G(�;�).*

i i i i

Then by scaling down the i.i.d. Extreme Value perturbations to U (z,s,J,/), one can make the MMNL*
i

approximation converge to P (i
z,s).  This corresponds to approaching the maximum likelihood byC
*

scaling the MNL coefficients by a factor 5 Y � in P (i
x,�,5) = ,L (i
x,��5)�G(d�;�); a finiteC C

maximand does not exist.  This is rarely a practical problem, since any specification of x and G adopted
in an application will almost certainly miss features of the true random utility model, and 5 will be
determined by a search to achieve a best approximation to the influence of these omitted factors.
Alternatively, if the exact model contains additive i.i.d. Extreme Value I components, the problem
cannot arise.  Suppose a random utility model U (z,s,J,/) and C = {z ,...,z }.  Let F(u
z,s) be the CDF*

1 J

of (U (z ,s,�),...,U (z ,s,�)).  A necessary and sufficient condition for additive i.i.d. Extreme Value I* *
1 J

components is that F(-log(t ),...,-log(t )) have the properties of a multivariate Laplace Transform:1 J

derivatives of all orders with� ; see Appendix

Lemma 4.  In practice, it is difficult to find CDFs satisfying this condition, and difficult to test the
condition, so that the likely possibility that the model is not exact is the best guarantee for convergence
of estimators..  

III.  SIMULATION OF THE MMNL MODEL

A tractable empirical form for the MMNL model P (i
x,�) = ,L (i;x,�)�G(d�;�) is obtained byC C

taking � = � + ��, where � is a K×1 vector of "mean" coefficients, � is a K×M matrix of factor
loadings, with exclusion restrictions for identification, and � is a M×1 vector of factor levels that are
independently distributed with a "standard" density f(�).  (This specification includes models with
alternative-specific random effects:  take x  to include alternative-specific dummies and introduce factorsj

that load on these dummies.)  Let vec(B) denote the operation that stacks the columns of an array B into
a vector, define � = vec(�1), let �1 = (�1,�1) denote the vector of parameters of this model, and let �o
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denote the true value of �.  Define x (�) = x �L (j;x,�+��) and let x (�) = x  - x (�).  Let EC j C iC i C �
i

denote an expectation with respect to the density of � conditioned on the event that i is chosen; i.e., the
density L (i;x,�+��)�f(�)/,L (i;x,�+��)�f(�)d�.  Then P (i
x,�) =  E L (i;x,�+��), / log P (i
x,�) =C C C � C � C  

 

E x (�)1 and / log P (i
x,�) = vec(E  �x (�)) .�
i iC � C �
i iC  

Simulation of the MMNL Probabilities and their Derivatives
If the integral P (i
x,�) = E L (i;x,�+��) can be obtained analytically, or by computationallyC � C

feasible numerical integration of low dimension, then conventional maximum likelihood can be used
to estimate �.  Otherwise, it is possible to simulate P (i
x,�) and its derivatives, and use these simulationC

approximations for statistical inference.  Make Monte Carlo draws � , p = 1,...,r, from f(�).  Let Ep r

denote an empirical expectation with respect to a simulation sample of size r.  Then,

(4) P (i
x,�) = L (i;x,�+�� ) � E  L (i;x,�+��)C C p r C  
r

is a positive, unbiased estimator of P (i
x,�) that is continuous and continuously differentiable to allC

orders in �.  The derivatives of log P (i
x,�) involve conditional expectations E  b(�) �C �
i

{ E b�)�L (i;x,�+��)}/ P (i
x,�) for various functions b(�).  These expectations are simulated by� C C

 
(5) E  b(�) � {E b(�)�L (i;x,�+��)}/ P (i
x,�) ,r
i r C C  

r

which is again continuously differentiable to all orders in �.  This can be interpreted as importance
sampling with draws from f(�) as the comparison density.  The simulator E b(�) is not unbiased inr
i

general because of the appearance of the simulator P (i
x,�) in the denominator.  Similarly, theC
r

simulator log P (i
x,�) of log P (i
x,�) is not unbiased because of the nonlinear transformation.C C
r

However, all the simulators above are consistent when r Y �.  It is possible to get unbiased, but no
longer continuous, estimates of E  b(�) using an acceptance/rejection procedure that accepts draws thatr
i

would produce i as the choice.  Some computations require the second derivatives of log P (i
x,�); theseC

are given in Appendix Lemma 5.  In applications, these second derivatives can alternately be obtained
by numerical differentiation of the formulas for the first derivatives.

In the statistical procedures to be discussed next, it will be critical that the simulators satisfy a
condition of stochastic equicontinuity, which requires that they not "chatter" as � changes.  This is easily
accomplished by keeping the draws �  fixed during iterative procedures that adjust �; this can be donep

by storing the �  or by regenerating them from fixed seeds.p

Maximum Simulated Likelihood Estimation (MSLE)
Maximum Simulated Likelihood Estimation (MSLE) finds an estimator �  that maximizes theN

simulated log likelihood, E  log P (i
x,�), with E  denoting empirical expectation for a random sampleN C N
r

of size N.  Hajivassiliou & McFadden (1997) show that under mild regularity conditions and a stochastic
equicontinuity property, and r#N  Y � as N Y �, the MSLE estimator �  is asymptotically equivalent-1/2

N

to the classical maximum likelihood estimator.  However, estimators that are relatively free of
simulation bias in moderate samples are likely to require r considerably larger than N .  Monte Carlo1/2

draws need not be independent across observations, or across the simulators of different derivatives that
may be used in iterative search for � .  It is also possible to allow dependence across the differentN

simulation draws, provided there is sufficient mixing for them to satisfy an central limit property.  In
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particular, Train (2000) has found that patterned pseudo-random numbers such as Halton sequences give
estimators that in Monte Carlo studies give lower mean square errors than independent random draws.
We give an estimator for the asymptotic covariance matrix of �  only for the case of independentN

simulators across observations.  Define the arrays

(6) 
 (�) = -E / log P (i
x,�)      and     � (�) = E {/ log P (i
x,�)}{ / log P (i
x,�)} 1N N ��1 C  N N � C � C  
r r r

As r Y �, both 
 (� ) and � (� ) converge to 6 (� ) = E {/ log P (i
x,� )}{ / log P (i
x,� )} 1 , N N N N N o N � C o � C o  
 

so that 
 (� )  and � (� )  are consistent estimators of the asymptotic covariance estimator.  However,N N N N
-1 -1

for finite r, � (� ) is larger than 
 (� ) due to simulation noise, and � (� ) decreases as r increases.N N N N N N

Consequently, � (� )  may substantially underestimate the covariance of the estimator when r is finite,N N
-1

and may suggest erroneously that increasing r decreases the precision of the estimator.  For this reason,
we recommend the robust asymptotic covariance matrix estimator 
 (� ) � (� )
 (� )  that isN N N N N N

-1 -1

associated with quasi-maximum likelihood estimation; see Newey & McFadden (1994, p. 2160).  

Method of Simulated Moments
Let d  denote an indicator that is one when i is chosen, zero otherwise, and let d = (d ,...,d ).  Ai 1 J

classical method of moments estimator for � can be based on the condition that the generalized residual
d  - E L (i;x,�+��), evaluated at the true parameters, is orthogonal in the population to any instrumenti � C

vector W (x,�) that has the dimension of �.  Write this moment asi

(7) m(�;d,x) = {d  - E L (i;x,�+��)} �W (x,�) .i � C i  

Define s(�;x) � / log P (i
x,�).  When W (x,�) = s(�;x), m(�;d,x) reduces to the score of ani � C i i

observation and the classical method of moments estimator coincides with the maximum likelihood
estimator.  However, any instrument vector W (x,�) whose covariance matrix with s(�;x) is ofi i

maximum rank can be used to obtain estimators that are consistent and N  asymptotically normal, but1/2

in general less than fully efficient.  A Method of Simulated Moments (MSM) estimator for MMNL is
obtained by replacing P (i|x,�) in the generalized residual by the unbiased simulator P (i
x,�) andC C

r

using statistically independent simulators (as necessary) to obtain the instrument vector W (x,�) for ai

simulator m(�;d,x) of m(�;d,x).  The MSM estimator �  is a root of E m(�;d,x).  McFadden (1989)r r
N N

shows that under mild regularity conditions, including stochastic equicontinuity, the MSM estimator
�  is consistent and asymptotically normal.  It is not necessary for this result that r increase with N, soN

long as the simulators of the generalized residuals are independent or satisfy a weaker condition that is
sufficient for a central limit theorem to operate across observations.  The array 4 (� ) ( (� )4 (� )N N N N N N

-1 -1

consistently estimates the asymptotic covariance matrix of � , where N

4 (�) = -E {/ P (i
x,�)}W 1 = -E { E L (i;x,�+��)}W 1,N N � C i N r C i
r

( (�) = E { W P (i
x,�)W 1 - [ W P (i
x,�)][ W P (i
x,�)]1} .N N i C i i C i C
r r r  

The MSLE method is asymptotically efficient, but the computational advantages of the MSM method
may offset the loss of statistical efficiency.  The more highly correlated W (x,�) with s(� ;x), the morei i o

efficient the MSM estimator.  An obvious candidate for W (x,�) is the simulated score s (�;x).  Largei i
r

r will be needed to simulate s(� ;x) accurately and achieve high efficiency.  However, it is possible toi o
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obtain a computationally convenient instrument vector that is fairly highly correlated with s(�;x), andi

will as a consequence yield moderately efficient MSM estimates at low computational cost.  Using the
approach of Talvitie (1974), make a second-order Taylor's expansion of the multinomial logit function
L (i;x,�+��) in � around � = 0, and take the expectation of this approximation with respect to �,C

(8) E L (i;x,,�+��) � L (i;x,�)#{1 + ½ tr(�1Q �)},� C C iC

where Q  = x 1x  - L (j;x,�)x 1x  and x  = x  - x L (j;x,�).  Because the Taylor'siC iC iC C jC jC iC i j C

expansion is not uniformly convergent, this is a poor approximation to the MMNL response probability
itself.  However, it provides an easily computed approximation to s(� ;x):  Make a linear approximationi o

log {1 + ½ tr(�1Q �)} � ½ tr{�1Q �}, and take the gradient of the log of (8) with respect to �,iC iC

ignoring the dependence of Q  on �, to obtain W(x,�)1 = [x    vec(Q �)1].  For preliminary estimation,iC i iC iC

� can be set to simple MNL coefficient estimates and � can be any matrix of full column rank that
respects the exclusion restrictions present in the model.  Limited Monte Carlo evidence suggests that
use of these easily computed instruments will often yield MSM estimators with asymptotic efficiencies
over 90 percent.3

IV.  SPECIFICATION TESTING 

Because the MMNL model requires use of simulation methods, it is useful to have a specification
test based solely on MNL model estimates that determine if mixing is needed.  The next result describes
a Lagrange Multiplier test for this purpose.  This test has the pivotal property that its asymptotic
distribution under the null hypothesis that the correct specification is MNL does not depend on the
parameterization of the mixing distribution under the alternative.

Theorem 2. Consider choice from a set C = {1,...,J}.  Let x  be a 1×K vector of attributes of 
i

alternative i.  From a random sample n = 1,...,N, estimate the parameter � in the simple MNL model

L (i;x,�) = , using maximum likelihood; construct artificial variablesC

(9) z  = ½(x  - x )    with   x  = x �L (j;x,r)   2
ti ti tC tC tj C  

for selected components t of x, and use a Wald or Likelihood Ratio test for the hypothesis that thei

artificial variables z  should be omitted from the MNL model.  This test is asymptotically equivalent toti

a Lagrange multiplier test of the hypothesis of no mixing against the alternative of a MMNL model
P (i
x,�) = ,L (i;x,�)�G(d�;�) with mixing in the selected components t of �.  The degrees of freedomC C

equals the number of artificial variables z  that are linearly independent of x.ti  

The proof is given in the Appendix.  To examine the operating characteristics of the test, we carried out
two simple Monte Carlo experiments for choice among three alternatives, with random utility functions
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u  = � x  + � x  + J .  The disturbances J  were i.i.d. Extreme Value Type I.  In the first experiment, thei 1 1i 2 2i i i

covariate were distributed as described below:

 

Variable Alternative 1 Alternative 2 Alternative 3
  x  ±½ w.p.  ½    0    01

  x  ±½ w.p.  ½  ±½ w.p.  ½    02

 

The parameter �  = 1 under both the null and the alternative.  The parameter �  = 0.5 under the null2 1

hypothesis, and under the alternative �  = 0.5 ± 1 w.p. 1/2.  We carried out 1000 repetitions of the test1

procedure for a sample of size N = 1000 and choices generated alternately under the null hypothesis and
under the alternative just described, using likelihood ratio tests for the omitted variable z .  The results1i

are given below:

 

Nominal Significance Level Actual Significance Level Power Against the Alternative
  10%   8.2%  15.6%
  5%   5.0%   8.2%

  
The nominal and actual significance levels of the test agree well.  The power of the test is low, and an
examination of the estimated coefficients reveals that the degree of heterogeneity in tastes present in this
experiment gives estimated coefficients close to their expected values.  Put another way, this pattern of
heterogeneity is difficult to distinguish from added extreme value noise.

In the second experiment, the covariates are distributed as shown below:

 

Variable Alternative 1 Alternative 2 Alternative 3
  x  ±½ w.p.  ½  ±½ w.p.  ½    01

  x  ±½ w.p.  ½  ±½ w.p.  ½    02

 

The utility function is again u  = � x  + � x  + J .  Under the null hypothesis, �  = �  = 1, while underi 1 1i 2 2i i 1 2

the alternative (� ,� ) = (2,0) w.p. ½ and (0,2) w.p. ½.  Again, 1000 repetitions of the tests are made for1 2

N = 1000 under the null and the alternative; the results are given below:

 

 Nominal Significance Level Actual Significance Level Power Against the Alternative
  10%   9.7%  52.4%
  5%   3.9%  39.8%

 

In this case where mixing is across utility functions of different variables, the test is moderately
powerful.  It remains the case in this example that the estimated coefficients in the MNL model without
mixing are close to their expected values. 
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Testing the Adequacy of a Mixing Distribution.  
Suppose one has estimated a MMNL model in which the MNL parameters � = � + �� are mixed by

a base density f(�), and the object is to test whether additional mixing is needed to describe the sample.
The choice probability under the alternative is

(10) P (i
x,�,�) = ,{,L (i;x,� + �� + � X�)�f(�)d�} �h(�)d� , 1/2
C C  

where � is a K×1 vector, � is a factor loading matrix, � is K×1 with mean zero and unit variances, � is
a k×1 vector of variances, K-T of which are maintained at zero, �  denotes the component-wise square1/2

root, and X denotes the component by component direct product.  The null hypothesis is that the data
are generated by this model with � = 0; i.e., a mixed MNL model with latent factors � determining the
choice probabilities, versus the alternative that up to T additional factors, with density h(�), are needed.
The following theorem, proved in the Appendix, gives a Lagrange Multiplier test for this hypothesis:

Theorem 3.  Suppose the base model P(i
x,�) = , L (i;x,� + ��)�f(�)d� has been estimated by  
C C

MSLE, using Monte Carlo draws �  from f(�) for k = 1,...,r.  Construct the quantitiesk

x  = x �L (j;x,�+�� ) ,z  = ½(x -x )  ,z  = z �L (j;x,�+�� ) , k k  k k 2  k k k
C j C ti ti tC tC tj C

v  = � (x -x )�L (i;x,�+�� ) , k k
i i C C

w  =  vec(� (x -x ))1L (i;x,�+�� ) ,   k k k
i i C C

y  =   (z -z )�L (i;x,�+�� ) ,  k k
ti ti tC C  

where all parameters are set to the base model estimates.  A regression over alternatives and
observations of the integer 1 on the variables v, w , and y for t = 1,...,T and an F-test for thei i ti

significance of the variables in this regression is asymptotically equivalent to a Lagrange Multiplier test
of the hypothesis of no additional mixing in the coefficients of x for t = 1,...,T.ti  

In light of the Monte Carlo results in the base case of no mixing, one can expect this test to have
relatively low power.  Hence, for use as a diagnostic for model specification, one will want to err on the
side of admitting too much potential heterogeneity, and use a rejection region with a large nominal
significance level. 
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V.  AN APPLICATION: DEMAND FOR ALTERNATIVE VEHICLES

The State of California suffers from air pollution generated by conventional gasoline-powered
vehicles, and the State is in the process of mandating quotas for alternative-fueled vehicles: methanol,
compressed natural gas (CNG), or electric.  An important policy question is consumer acceptance of
these alternative vehicles, and the extent to which subsidies will be necessary to stimulate consumer
demand to the levels required by the quotas.  Brownstone et al (1996) have carried out a conjoint
analysis study of preferences between alternative vehicles.  The study has  4654 respondents, each of
whom was asked to choose among six alternatives.  The alternatives were described in terms of the
variables defined in Table 1.  We do not alter the variable transformations used in the original study, but
note that the dependence of their specification on the price of an alternative and on income fails the
quasi-convexity condition for conditional indirect utility that comes from economic consumer theory.
An experimental design was used to select the offerings of six alternatives from 120 possible profiles,
distinguished by four fuels (gasoline, methanol, CNG, electric), five sizes (mini, subcompact, compact,
midsize, large), and six body types (regular car, sports car, truck, van, station wagon, sports utility
vehicle).

Table 2 gives a MMNL model estimated by Brownstone & Train (1998).  This model includes four
random effects, associated with the following variables: Dummy for non-EV, Dummy for non-CNG,
Size, and Luggage Space.  The segment of the table headed "Variables" gives estimates of the �
parameters, and the segment headed "Random Effects" gives the factor loading � on standard normal
factors, with an independent factor for each of the random effects above.  Then, the coefficients are
estimates of the standard deviations of these random effects.  The estimation uses 250 replications per
observation, and MSLE.  The parameter estimates show strong random effects, with magnitudes large
enough to suggest that they are capturing correlation structure in unobservables in addition to variation
in tastes.  The variables and random effects included in this model are the result of a classical selection
procedure that estimated alternative MMNL models and used a likelihood ratio test to select from them.
A likelihood ratio test at the five percent level shows that this model fits significantly better than a
simple MNL model (given in Table 3).  The table gives estimates of the standard errors of the
coefficients for 250 replications, and also for 50 replications.  The columns headed "Asymptotic" give
standard errors using � (� ) .  As noted in Section III, while this estimator is consistent, for moderateN N

-1

r it can underestimate covariances and lead to the perverse conclusion that standard errors increase when
the number of simulation draws rises.  The columns headed "Robust" give standard errors using the
recommended covariance matrix estimator 
 (� ) � (� )
 (� ) .  The "Robust" standard errors fallN N N N N N

-1 -1

with number of repetitions, as expected.  In general, using the "Asymptotic" covariance formula with
250 replications results in a ten to twenty percent underestimate of standard errors of coefficients,
compared to the "Robust" formula.

Table 3, Model 1, is a simple MNL model L (i;x,�) fitted to the data; these estimates are taken fromC

Brownstone & Train (1998).  Model 2 adds the artificial variables defined in Theorem 2; i.e., given the

base MNL model L (i;x,�) and x  = x �L (j;x,�), with � set equal to its MNL estimator, defineC C j C

the artificial variables z  = ½(x -x )  for variables t where heterogeneity is suspected, and estimate theti ti tC
2

MNL model with the original x variables and the additional artificial variables.  The list of artificial
variables may include variables t which have the coefficient �  constrained to zero in the base MNLt

model; these are interpreted as pure random effects.  A likelihood ratio test at the five percent
significance level rejects the null hypothesis of no mixing.  The individual T-statistics for the artificial



13

variables are not necessarily a reliable guide to the location of significant mixing, due to lack of
independence, and due to the possibility of correlation across alternatives in unobserved attributes.
However, the results (based on T-statistics exceeding one in magnitude) suggest that there may be taste
variation in the following variable coefficients: Non-EV, Non-CNG, Size, Luggage space, Operating
Cost, and Station Availability.  The first four of these were included in the Brownstone-Train model in
Table 2; the last two are additional factors where mixing may be present.  Our specification testing
procedure is easier and quicker than the Brownstone-Train method.  All the factors identified in their
search were picked up by our procedure, as were some additional candidates.

Table 4 gives a MMNL model which includes the six random effects identified as possibly significant
by the artificial variable test in Table 3, using T-statistics greater than one in magnitude as the selection
criterion.  The MMNL estimates show that there is significant mixing in each of these factors.
Likelihood ratio tests show that this model is a significant improvement on the model in Table 2.
Further exploration with additional factors in the MMNL model finds that there are several factor
combinations that will fit as well or marginally better than the model in Table 4, and that some of these
combinations will place weight on factors that were excluded by the artificial variable selection
procedure, and will lower the significance of some of the factors previously included.  These results
reflect the inherent difficulty of identifying the factor structure of unobserved utility from observed data
on discrete choices, but may also indicate more conventional specification issues such as omitted
observed variables or interactions.

VI.  CONCLUSIONS

This paper has established that MMNL models, estimated using MSLE or MSM, provide a flexible
and computationally practical econometric method for economic discrete choice that is postulated to
come from utility maximization.  First, a general approximation property is established.  Second,
estimation of parametric MMNL models by MSLE or MSE is shown to provide estimates with good
statistical properties, and easily computed fairly efficient instruments are provided for MSE.  Third,
simply computed specification tests are developed that allow one to test for the presence of mixing, or
for the presence of omitted mixing factors.  Finally, an application to the demand for alternatively-fueled
vehicles shows that the method can detect and estimate significant mixing effects which can have a
strong effect on the pattern of substitutability across alternatives.
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Table 1.  Variable Definitions 

Variable Definition
Price/log(income) Purchase price (in thousands of dollars) divided by 

     log(household income in thousands)
Range Hundreds of miles vehicle can travel between refuelings/rechargings
Acceleration Tens of seconds required to reach 30 mph from stop
Top speed Highest attainable speed in hundreds of MPH
Pollution Tailpipe emissions as fraction of those for new gas vehicle
Size 0 = mini, 0.1 = subcompact, 0.2 = compact, 0.3 = mid-size or large
"Big enough" 1 if household size � 2 and vehicle is mid or large
Luggage space Fraction of luggage space in comparable  new gas vehicle
Operating cost Cost per mile of travel (tens of cents):  home recharging for 

     electric vehicle,  station refueling otherwise
Station availability Fraction of stations that can refuel/recharge vehicle
Sports utility vehicle 1 if sports utility vehicle, 0 otherwise
Sports car 1 if sports car
Station wagon 1 if station wagon
Truck 1 if truck
Van 1 if van
EV 1 if electric vehicle (EV)
Commute < 5 & EV 1 if electric vehicle and commute < 5 miles/day
College & EV 1 if electric vehicle and some college education
CNG 1 if compressed natural gas (CNG) vehicle
Methanol 1 if methanol vehicle
College & Methanol 1 if methanol vehicle and some college education
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Table 2: Mixed Logit for Alternative-Fueled Vehicle Choice 
Parameter Standard Error Standard Error
Estimates 250 replications 50 replications

Asymptotic Robust Asymptotic Robust
Variables

Price/log(income)  -0.264  0.0435  0.0452  0.0412  0.0525 
Range  0.517  0.0581  0.0685  0.0511  0.1022
Acceleration  -1.062  0.1859  0.1990  0.1738  0.2519
Top speed  0.307  0.1150  0.1184  0.1131  0.1188
Pollution  -0.608  0.1392  0.1420  0.1357  0.1546
Size  1.435  0.5082  0.4991  0.4945  0.5156
"Big Enough"  0.224  0.1126  0.1166  0.1113  0.1220
Luggage Space  1.702  0.4822  0.5854  0.4314  0.8971
Operating Cost  -1.224  0.1593  0.2069  0.1393  0.2998
Station availability  0.615  0.1452  0.1536  0.1410  0.1757
Sports utility vehicle  0.901  0.1484  0.1486  0.1482  0.1493
Sports car  0.700  0.1625  0.1513  0.1626  0.1518
Station wagon  -1.500  0.0674  0.0645  0.0674  0.0659
Truck  -1.086  0.0556  0.0520  0.0555  0.0556
Van  -0.816  0.0558  0.0468  0.0557  0.0471
EV  -1.032  0.4249  0.5022  0.3777  0.6035
Commute < 5 & EV  0.372  0.1660  0.1763  0.1608  0.1927
College & EV  0.766  0.2182  0.2374  0.2073  0.2796
CNG  0.626  0.1482  0.1670  0.1391  0.2139
Methanol  0.415  0.1464  0.1474  0.1440  0.1534
College & Methanol  0.313  0.1243  0.1256  0.1223  0.1308

Random Effects

Non-EV  2.464  0.5414  0.7184  0.4428  1.0252
Non-CNG  1.072  0.3773  0.4109  0.2781  0.5711
Size  7.455  1.8194  2.0408  1.5538  2.4734
Luggage Space  5.994  1.2483  1.6617  1.0483  2.7719

Log Likelihood -7375.34

Note:  Parameter estimates are from Brownstone & Train (1996); standard error estimates are from this study.
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Table 3.  Multinomial Logit Model 
Model 1 Model 2

Variables Parameter Estimate SE Parameter Estimate SE

Price/log(income) -0.185  0.027 -0.4240  0.0298 
Range  0.350  0.027  0.5036  0.0447
Acceleration -0.716  0.111 -0.9771  0.1263
Top speed  0.261  0.080  0.3592  0.0814
Pollution -0.444  0.100 -0.6567  0.1161
Size  0.935  0.311  1.4179  0.3430
"Big Enough"  0.143  0.076  0.2248  0.0845
Luggage Space  0.501  0.188  1.0161  0.2574
Operating Cost -0.768  0.073 -1.1447  0.0897
Station availability  0.413  0.097  0.6350  0.1074
Sports utility vehicle  0.820  0.144  0.8806  0.1458
Sports car  0.637  0.156  0.6869  0.1580
Station wagon -1.437  0.065 -1.5229  0.0663
Truck -1.017  0.055 -1.0776  0.0551
Van -0.799  0.053 -0.8272  0.0542
EV -0.179  0.169 -0.6979  0.2384
Commute < 5 & EV  0.198  0.082  0.3102  0.0840
College & EV  0.443  0.108  0.6863  0.1145
CNG  0.345  0.091  0.4216  0.1056
Methanol  0.313  0.103  0.4886  0.1105
College & Methanol  0.228  0.089  0.3070  0.0903

Artificial Variables

Price/log(income)  0.0019  0.0927
Range -0.0349  0.0551
Acceleration -1.3728  2.1388
Top speed -0.2071  0.6383
Pollution  0.0977  0.6764
Size 21.5773*  9.5000
"Big enough"  0.2837  0.3832
Luggage space  3.8731*  3.4638
Operating cost  4.2245*  0.8369
Station availability  0.6741*  0.3781
EV  2.3476*  0.5704
CNG  1.2364*  0.4798

Log Likelihood -7391.83 -7356.61

Notes: Model 1 is from Brownstone & Train (1998).
           * denotes the artificial variables with 
T
 > 1.
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Table 4.  Mixed Multinomial Logit Model  
Parameter Estimates SE

Variables

Price/log(income)  -0.3622  0.0669
Range  0.6753  0.0965
Acceleration  -1.2688  0.2591
Top speed  0.4027  0.1553
Pollution  -0.7929  0.1980
Size  1.7351  0.6694
"Big Enough"  0.2695  0.1468
Luggage Space  2.2631  0.6426
Operating Cost  -1.8056  0.2912
Station availability  0.7029  0.1896
Sports utility vehicle  0.9234  0.1498
Sports car  0.7270  0.1645
Station wagon  -1.5246  0.0681
Truck  -1.1195  0.0559
Van  -0.8191  0.0564
EV  -1.5733  0.5819
Commute < 5 & EV  0.4793  0.2242
College & EV  1.0534  0.3114
CNG  0.7709  0.2018
Methanol  0.5435  0.1922
College & Methanol  0.3849  0.1542

Random Effects

Non-EV  3.3802  0.7647
Non-CNG  1.1042  0.4990
Size  8.0788  2.7021
Luggage space  7.6220  1.7153
Operating cost  4.4532  0.8014
Station availability  1.3987  0.5730

Log Likelihood -7358.93
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APPENDIX.  PROOFS OF THEOREMS

Lemma 1.  Suppose consumers with tastes defined by points s in a compact topological space S have
preferences over objects z in a compact topological space Z, with z1 |  z2 meaning z1 is at least as good as z2 fors

a consumer with tastes s.  Suppose |  is complete and transitive, and has the continuity property that if a sequences

of triples (z1 ,z2 ,s ) converges to a limit (z1 ,z2 ,s ) and satisfies , then  z1  |  z2 .  Then there existsk k k 0 0 0 0 0
s

a utility function U(z,s), continuous in its arguments, that represents |  for s � S.s

Proof: A standard construction for fixed s due to Rader and Debreu defines a utility function U(z,s) which is
continuous in z for each s; see Barten & Bohm (1982, p. 388- 390).  But the level sets {(z1,s1)
 U(z1,s1) � U(z,s)}
and {(z1,s1)
 U(z1,s1) � U(z,s)} are then closed by the hypothesized continuity property, implying that U is
continuous on Z×S.  *
.

Lemma 2.  Consider a random variable X with CDF F.  Define F(x*) = lim F(x-J) and the right-continuousJC0

inverse F (p) = sup{x�Ü
F(x) � p} for p � (0,1).  Define the random variable Z = U�F(X) + (1-U)�F(X*), where-1

U is a uniformly distributed random variable on [0,1] that is independent of X.  Define X  = F (Z).  Then Z is* -1

uniformly distributed on (0,1), the function F  is almost surely continuous, and X  = X almost surely.  If, in-1 *

addition, F is strictly increasing, then F  is continuous and X  � X.-1 *

Proof: Define A = {x�Ü
F(x+J) = F(x) for some J > 0}, and B = F(A).  The set A is a countable union of disjoint
half-open intervals of the form [a,b) with F(a) = F(b*), so that A occurs with probability zero.  For c � (0,1), let
x = F (c).  Then, for all J > 0, F(x-J) � F(x*) � c � F(x) < F(x+J).  Hence, the event {Z � c} occurs if and only-1

if one of the disjoint events {X < x} or {X = x & F(x*) + U�[F(x) - F(x*)] < c} occurs.  But P(X < x) = F(x*) and
P(X = x & F(x*) + U�[F(x) - F(x*)] < c) = c - F(x*), implying P(Z � c) = c.  Thus, Z is uniformly distributed on
(0,1).  If x Õ A and F(x*) � c � F(x), then F (c) = x.  Then, in the event X Õ A, which occurs with probability one,-1

one has X = X  � F(Z).  Finally, F (p) is a monotone right-continuous function that is also left-continuous except* -1

at jumps when p � B, a countable set that contains Z with probability zero.  Then, F  is almost surely continuous.-1

If F is strictly increasing, then A and B are empty.  �

Let (6,:,%) denote a probability space, T denote a subset of Ü , and X:6×T Y Ü  denote a random field,m n

measurable with respect to : for each t � T, and almost surely measurable on T.  We say that X admits a
coordinate conditional probability structure at t if there exist conditional CDF functions F (x |x ,...,x ,t),i i 1 i-1

measurable in their arguments, such that for all y � Ü , the CDF of X(t) can be writtenn

F(y,t) = .

This condition follows from Fubini’s theorem if F(x,t) has a density f(x,t), and will hold automatically if F is built
up from conditional CDF functions.  It can fail in pathological cases; see Billingsley (1986, p. 458).    

Lemma 3.  Suppose X is a random field from T I Ü  into Ü  that admits a coordinate conditional probabilitym n

structure for each t � T.  Then there exists a uniformly distributed random field Z:6×T Y [0,1]   and measurablen

functions h :[0,1] ×T � Ü for i = 1,...,n such that X (t) = h (Z (t),...,Z (t),t) almost surely.  If in addition, there is ai i i 1 i
i

rectangle X I Ü  such that X(t) has a density f(x,t) that is continuous in its arguments and strictly positive on then

interior of X, with F(X,t) = 1, then the h  are continuous in their arguments and Z is a continuous random field..i

Proof: For n = 1, Lemma 2 gives the result for each t � T that X (t)  = h (z (t),t) almost surely.  Proceed by1 1 1

induction.  Suppose the result has been established for n-1, with Z(t) independently distributed uniformly on [0,1]i

for i = 1,...,n-1 and X (t) = h (Z (t),...,Z (t),t) almost surely.  Apply Lemma 2 to the random variable X (t) withi i 1 i n
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measurable conditional distribution function F (x 
h (Z (t),t),...,h (Z (t),...,Z (t),t),t).  This yields a functionn n 1 1 n-1 1 n-1

satisfying X (t) =  h (Z (t),...,Z (t),t) almost surely.  This completes the induction step.  Finally, since X is a randomn n 1 n

field, almost sure continuity assures that the pointwise construction for each  t � T is measurable in t.
When X has a positive continuous density f(x,t) on the interior of the rectangle X, the conditional CDF

F (x
x ,...,x ,t) is strictly increasing in x  and continuous in all its arguments, so that an implicit function theoremi i 1 i-1 i

implies that the inverse function x  = F (z
x ,...,x ,t) is continuous in all its arguments, giving the last result ofi i i 1 i-1
-1

the lemma.  �

Lemma 4.  A necessary and sufficient condition for a random utility function over J alternatives with a
multivariate CDF F(u) to have a representation U = W + J, where the components of J are independent of W and
independent identically distributed Extreme Value I, is that F(-log(t ),...,-log(t )) be a multivariate Laplace1 J

Transform; i.e., F treated as a function of (t ,...,t ) is analytic and has derivatives satisfying the sign condition1 J

 .

Proof: Suppose U has the representation.  Then, F must satisfy the convolution formula

F(u ,...,u ) = ,1 J

where G is the CDF of W.  Make the transformations t  = exp(-u ) and V  = exp(W ), and let H be the CDF of V.k k k k

Then,

F(-log(t ),...,-log(t )) = exp(-(t v  + ...  + t v ))�H(dv).1 J 1 1 J J

This is a multivariate Laplace Transform.  Conversely, if F(-log(t ),...,-log(t )) is a multivariate Laplace1 J

Transform, then it satisfies F(-�) = 0, F(+�) = 1, and from the derivative property of Laplace Transforms,
0 F/0u ...0u  � 0, so that it is a multivariate CDF; see Feller (1966, p. 415).  �

J
1 J

Lemma 5.  If P (i
x,�) = E L (i;x,�+��) is given by (5), thenC � C

/ log P (i
x,�) = E { x (�)1x (�) - x (�)1x (�)L (j;x,�+��)} - { / log P (i
x,�)}{ / log P (i
x,�)} 1��1 C �
i iC iC jC jC C � C � C
 

/ log P (i
x,�) = E {vec(�x (�))x (�) - vec(�x (�))x (�)L (j;x,�+��)}  
��1 C �
i iC iC jC jC C

 - {/ log P (i
x,�)}{ / log P (i
x,�)} 1� C � C

/ log P (i
x,�) = E {vec(�x (�))vec(�x (�))1 - vec(�x (�))vec(�x (�))1L (j;x,�+��)} ��1 C �
i iC iC jC jC C

- {/ log P (i
x,�)}{ / log P (i
x,�)} 1 
� C � C  

Proof: Direct computation.  �

Proof of Theorem 1:  Consider the random utility model U (z,s,J(7,z),/(7,s)), where J(7,z) � [0,1]  and* p

/(7,s) � [0,1]  are uniformly distributed continuous random fields defined for 7 in a fundamental probabilityr

space (6,:,%).  For (z1,z2) � &  and s � S, define the set2

A (z1,z2,s) = {7�6| 
U (z1,s,J(7,z1),/(7,s)) - U (z2,s,J(7,z2),/(7,s))
 � 5/k}.k
* *
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The continuity of U* and the measurability of the random fields implies that A (z1,z2,s) is measurable.  This setk

is monotone increasing as k Y � to the set of 7 for which the alternatives (z1,z2) � &   are not tied.  By hypothesis,2

this set has probability one, implying that there exists k = k(z1,z2,s) such that %(A (z1,z2,s)) > 1-�/4J*. k

The uniform continuity of U* on Z×S×[0,1] ×[0,1]  implies that given k(z1,z2,s), there exists 
(z1,z2,s) > 0 suchp r

that in a neighborhood of this radius U* varies by less than 1/k(z1,z2,s).  The almost sure continuity of J(7,z) and
/(7,s) imply that the set

B (z1,s) = {7�6| sup  |J(7,z*) - J(7,z1)|  + sup  |/(7,s*) - /(7,s)| < 
(z1,z2,s)},m |z*-z1|<1/m |s*-s|<1/m

and the corresponding set B (z2,s), are monotone increasing as m Y � to limiting sets that occur with probabilitym

one.  Then there exists m = m(z1,z2,s) such that %(B (z1,s)) > 1-�/4J* and %(B (z2,s)) > 1-�/4J*.  Therefore withm m

probability at least 1 - 3�/4J*, 7 � A (z1,z2,s)�B (z1,s)�B (z2,s), implying that for (z*1,z*2,s*) in an openk m m

neighborhood of (z1,z2,s) � & ×S of radius 
(z1,z2,s), one has2

|U (z*1,s*,J(7,z* 1),/(7,s*)) - U (z*2,s*,J(7,z*2),/(7,s*))
 � 1/k.* *

These neighborhoods cover the compact set & ×S.  Therefore, there exists a finite subcovering.  Let k* be the2

larger of -log(�/4J*) and the maximum value of k(z1,z2,s) for the centers of the finite subcover.  We have now
established that each point (z*1,z*2,s*) � & ×S falls in some neighborhood in a finite cover with center (z1,z2,s),2

and satisfies 
U (z*1,s*,J(7,z*1),/(7,s*)) - U (z*2,s*,J(7,z*2),/(7,s*))
 � 3/k(z1,z2,s) � 3/k* on a set of 7 that* *

occurs with probability at least 1 - 3�/4J*.,
The continuous function U  has a Bernstein-Weierstrauss polynomial approximation U  on Z×S×[0,1]  that* *k p+r

satisfies 
U  - U 
 � 1/k*.  Consider a choice set C = {z ,...,z } � &* and let z = (z ,...,z ).  Form U (z,s,J(z),/(s))* *k
1 J 1 J i

k
i

= U (z,s,J(z),/(s)) + � /k* , where the �  are i.i.d. Extreme Value Type I random variables.  Consider the event*k
i i i i

2

of a preference reversal between U  and U  for a pair (z,z) I C and s � S; i.e., the set of 7�6 and ��Ü  such that* k 2 
i j

U (z,s,J(7,z),/(7,s)) > U (z,s,J(7,z),/(7,s)) and U (z,,s,J(7,z),/(7,s)) < U (z,s,J(7,z),/(7,s)).  If* * k k
i i j j i i j j

|U (z,s,J(7,z),/(7,s)) - U (z,s,J(7,z),/(7,s))| > 3/k*, then * *
i i j j

  0 > U (z,s,J(7,z),/(7,s)) - U (z,s,J(7,z),/(7,s))  = U (z,s,J(7,z),/(7,s)) - U (z,s,J(7,z),/(7,s)) + (�  - � )/k*k k *k *k 2
i i j j i i j j i j

   � U (z,s,J(7,z),/(7,s)) - U (z,s,J(7,z),/(7,s)) - 2/k* + (�  - � )/k*    � 1/k* + (�  - � )/k* ,* * 2 2
i i j j i j i j

and hence �1 - �2 < -1/k*.  The probability of this last event is (1 + e )  < �/4J*, and from the previous argumentk* -1

the probability that the conditioning event does not occur is at most 3�/4J*.  Then the probability of a preference
reversal at (z,z,s) is at most �/J*.  Therefore, the probability of the event that the alternative in C that maximizesi j

U  differs from the alternative that maximizes U  is at most �J/J* � �.k *

Write the polynomial approximation U  in the form U (z,s,J(z),/(s)) = x(z,s)��(z,s) + �/k* , where x(z,s) is ak k 2

vector of the z and s components of the terms in the polynomial and �(z,s) is the a vector of the corresponding
J(z) and /(s) components.  Finally, for a choice set C = {z ,...,z } �  &*, define � = (�(z ,s),...,�(z ,s)) and x  =1 J 1 J i

(0,...,0,x(z,s),0,...,0), so that U (z,s,J ) = x �� + � /k* .  This is a MMNL model of the form of (1), and thei i i i i
k 2

construction guarantees that with probability at least 1 - �, U  and U  are maximized at the same alternative in* k

C.  Therefore, P (i
z,s) from U  and P (i
x,�) from U  differ by at most �.  �C C
* * k

Proof of Theorem 2: Write the MMNL model as P (i
x,�,�) = ,L (i;x,�+� X�)�G(d�;�) , where � and � areC C  
1/2

vectors of parameters, �  is the vector of square roots of the components of �, � is a vector of random variables1/2

that has mean zero, component variances of one, and full rank over the specified components r, and � X� denotes1/2

the component-by-component direct product.  The parameterization �  is chosen to circumvent the problem that1/2

a natural parameterization in terms of the standard deviations of the mixing density leads to a score that is
identically zero under the null, as in Lee & Chesher (1986) and Newey & McFadden (1995).  Then 
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/ P (i
x,�,�) = , L (i;x,�+� X�)�(x -x )�G(d�;�) with x  = x �L (j;x,�+� X�), 1/2 1/2
� C C i C  C j C

P (i
x,�,�) = ½�� �, L (i;x,�+� X�)�(x -x )�� �G(d�;�) .C t C i C t  
-1/2 1/2

Taking the limit as the �  �� 0, and using L'Hopital's rule on P (i
x,�,�), one obtainst C

/ P (i
x,�,�) = L (i;x,� )�(x  - x )    and log P (i
x,�) = L (i;x,� )�(z  - z ). 
� C C e i C  C C e ti tC

where   z  = ½(x  - x )    and   z  = z �L (j;x,r) .  The sample mean of / log P (i
x,�) is zero at theti ti tC tC tj C  � C
2

maximum likelihood estimator �  of the simple MNL model, and the Lagrange Multiplier statistic tests whethere

the vector of sample means of log P (i
x,�) for the selected t are zero.  As in McFadden (1987), this testC

is equivalent to a Lagrange Multiplier test for the null hypothesis that the variables z  have zero coefficients inri

the MNL model, and thus asymptotically equivalent to a Likelihood Ratio or Wald test for this hypothesis.  � 

Proof of Theorem 3: Consider P (i
x,�) = ,{,L (i;x,�+��+� X�)�f(�)d�} H(d�).   Differentiating,C C
1/2

/ P (i
x,�) = ,{,(x-x )L (i;x,�+��+� X�)�f(�)d�}H(d�) , / P (i
x,�) = ,{, �(x-x )L (i;x,�+��+� X�)�f(�)d�}H(d�),� C i C C �1 C i C C
1/2 1/2

and  P (i
x,�) = ½�  ,{,(x -x )L (i;x,�+��+� X�)�f(�)d�} �� �H(d�), with x  � x (�) =C t C C
-1/2

ti tC C t
1/2

x L (j;x,�+��+� X�). To evaluate the last derivative under the null, use L'Hopital's rule.  The derivativej C
1/2

of 2� P (i
x,�) with respect to �  is ½�  ,{,(x -x ) L (i;x,�+��+� X�)�f(�)d�} �� �H(d�) - ½�t C t t
1/2 -1/2

ti tC C t t
2 1/2 2 -1/2

,{ , x (x -x )L ( j ; x ,�+��+� X�)L ( i ; x ,�+
�+� X�) � f(�)d�} �� �H(d�) = ½�t j t j t C C C t t
1 / 2 1 / 2 2 -1 / 2

,{,(z -z ) L (i;x,�+��+� X�)�f(�)d�} �� �H(d�), with z  � z (�) = (x -x (�)) /2 and z  � z (�) =ti tC C t
2 1/2 2

ti ti ti tC tC tC
2

z (�)�L (j
x,�+��+� X�).   Hence, at 
 = 0, P (i
x,�) = ,{,L (i;x,�+��)�f(�)d� , / P (i
x,�) =tj C C C � C
1/2

,(x -x (�))L (i;x,�+��)�f(�)d�, / P (i
x,�) = , �(x -x (�))L (i;x,�+��)�f(�)d�, and P (i
x,�) =i C C �1 C i C C C

,(z (�)-z (�))L (i;x,�+��)�f(�)d� .  For comparison, suppose one had the base model in variables x and wantedti tC C  

to test whether additional variables z  belong in the model.  The model under the alternative is P (i
x,z,�,�) =ti C

,L (i;x,z(�),�+��,�)�f(�)d�.  The derivatives under the null hypothesis � = 0 are the same as before forC

/ P (i
x,z,�,�) and for / P (i
x,z,�,�).  Finally,/ P (i
x,z,�,�) = ,(z(�)-z (�))L (i;x,�+��)�f(�)d� , also as� C �1 C � C i C C  

before.  Therefore, a LM test for the hypothesis � = 0 is equivalent to a LM test for the hypothesis � = 0 for the
auxiliary variables z(�).  This test is readily computed by first estimating the base model using a simulationi

procedure with specified starting seeds, then regressing (over observations and alternatives) the integer 1 on the

scores / log P (i
x,�), vec(/ log P (i
x,�)), and log P (i
x,�) for t = 1,...T, and testing whether the sum� C �1 C C
r r r

of squared residuals is significant according to a chi-square distribution with T degrees of freedom.  �


