	0	//		
A game	of	"matc	hing	pennies"

	colui	nn
	L	R
row T	2,0	0,1
В	0,1	1,0

People last names A-M play ROW (choose T, B)
People last names N-Z play COLUMN (choose L, R)

A game of "matching pennies": Mixed-strategy equilibrium

		colui	nn	mixed-strategy
		L	R	equilibrium
row	T	2,0	0,1	.5
	В	0,1	1,0	.5
mixed-s	strategy			
equilibr	ium	.33	.67	'

Behavioral game theory: Thinking, learning & teaching

Colin F. Camerer, Caltech Teck Ho, Wharton Kuan Chong, National Univ Singapore

- How to model bounded rationality?
 - Thinking steps (one-shot games)
- How to model equilibration?
 - Learning model (fEWA)
- How to model repeated game behavior?
 - Teaching model

Behavioral models use some game theory principles, relax others

Principle	Nash	Thinking	Learning	Teaching
concept of a game	Ľ	Ľ	Ľ	Ľ
strategic thinking	Ľ	Ľ	Ľ	Ľ
best response	4			
mutual consistency	Ľ			
learning			Ľ	Ľ
strategic foresight	Ľ			L

Potential economic applications • Thinking – price bubbles, speculation, competition neglect • Learning – evolution of institutions, new industries – Neo-Keynesian macroeconomic coordination – bidding, consumer choice • Teaching – contracting, collusion, inflation policy

Modelling philosophy

• General (game theory)

• Precise (game theory)

• Progressive (behavioral econ)

• Empirically disciplined (experimental econ)

"...the empirical background of economic science is definitely inadequate...it would have been absurd in physics to expect Kepler and Newton without Tycho Brahe" (von Neumann & Morgenstern '44)

Modelling philosophy

• General (game theory)

• Precise (game theory)

• Progressive (behavioral econ)

• Empirically disciplined (experimental econ)

"...the empirical background of economic science is definitely <u>inadequate</u>...it would have been absurd in physics to expect Kepler and Newton without Tycho Brahe" (von Neumann & Morgenstern '44)

"Without having a broad set of facts on which to theorize, there is a certain danger of spending too much time on models that are mathematically elegant, yet have little connection to actual behavior. At present our empirical knowledge is inadequate..." (Eric Van Damme '95)

Beauty contest game

- N players choose numbers x_i in [0,100]
- Compute target $(2/3)*(\Sigma x_i/N)$
- Closest to target wins \$20

The thinking steps model

• Discrete steps of thinking

Step 0's choose randomly

K-step thinkers know proportions f(0),...f(K-1)*

Normalize f'(h)= $f(h)/\sum_{h=0}^{K-1} f(h)$ and best-respond

$$A^{j}(K)=\Sigma_{m} o(s^{j},s^{m}) (P^{m}(0) f'(0) + P^{m}(1) f'(1)+... P^{m}(K-1) f'(K-1))$$

logit probability $P^{j}(K)=\exp(\kappa A^{j}(K))/\sum_{h}\exp(\kappa A^{h}(K))$

• What is the distribution of thinking steps f(K)?

*alternative: K-steps think others are one step lower (K-1)

Poisson distribution of thinking steps

- $f(K)=\tau^K/e^{\tau} K!$ 56 games: median $\tau=1.78$
- Heterogeneous (♦ "spikes" in data)
- Steps > 3 are rare (working memory bound)
- Steps can be linked to cognitive measures

Thinking steps estimates of τ

•	Matrix games	range of τ	common τ
	Stahl, Wilson	(1.7, 18.3)	8.4
	Cooper, Van Huyck	(.5, 1.3)	.8
	Costa-Gomes, Crawford, Broseta	(1.3, 2.4)	2.2
•	Mixed-equilibrium games	(.3, 2.7)	1.5
•	First period of learning	(0, 3.9)	

• Entry games 2.0

• Signaling games (.3,1.2) (Fits significantly better than Nash, QRE)

Estimates of mean thinking step τ

- 33 one-shot matrix games
- 1 entry game
- 15 mixed-equilibrium games
- 7 thinking-learning games

Comparing QRE and thinking-steps

- Fit (thinking-steps slightly better)
- Heterogeneity

"spikes" in p-beauty contests
noisy cutoff rules in entry games
endogeneous "purification" in mixed-equil'm games

• Cognitive measures

Effects of "prompting" beliefs-- pushes steps up by 1? Response times (modest correlation with pBC choice) Attention measures in shrinking-pie bargaining

Response times vs deviation from equilibrium in p-beauty contest games

Conclusions

- Discrete thinking steps, frequency Poisson distributed (mean number of steps τ)(1.5)
- One-shot games & initial conditions
- Advantages:

Can "solve" multiplicity problem
Explains "magic" of entry games
Sensible interpretation of mixed strategies

• Theory:

group size effects (2 vs 3 beauty contest) approximates Nash equilm in some games (dominance solvable) refinements in signaling games (intuitive criterion)

Conclusions

- Thinking (τ, κ) steps model
 - τ fairly regular (**%**1.5) in entry, mixed, matrix, dominance-solvable games

Easy to use

• Learning (κ)

Hybrid fits & predicts well (20+ games)
One-parameter fEWA fits well, easy to estimate

Next?
 Field applications
 Theoretical properties of thinking model

Parametric EWA learning

- Attraction A ^j (t) for strategy j updated by
 - $A_{i}^{j}(t) = (\varpi A_{i}^{j}(t-1) + o(actual))/(\varpi(1-\phi)+1) \qquad (chosen j)$ $A_{i}^{j}(t) = (\varpi A_{i}^{j}(t-1) + \delta o(foregone))/(\varpi(1-\phi)+1) \quad (unchosen j)$
- key parameters: δ imagination, ϖ decay
- "In nature a hybrid [species] is usually sterile, but in science the opposite is often true"-- sFrancis Crick '88

Weighted fictitious play ($\delta=1$, $\phi=0$)

Choice reinforcement (δ =0)

Example: Price matching with loyalty rewards (Capra, Goeree, Gomez, Holt AER '99)

- Players 1, 2 pick prices [80,200] ¢
 Price is P=min(P₁,P₂)
 Low price firm earns P+R
 High price firm earns P-R
- What happens? (e.g., R=50)

Studies comparing EWA and other learning models

Reference	Type of game
Amaldoss and Jain (Mgt Sci, in press)	cooperate-to-compete games
Cabrales, Nagel and Ermenter ('01)	stag hunt "global games"
Camerer and Anderson ('99, Ec	sender-receiver signaling
Theory)	
Camerer and Ho ('99, Econometrica)	median-action coordination
	4x4 mixed-equilibrium games
	p-beauty contest
Camerer, Ho and Wang ('99)	normal form centipede
Camerer, Hsia and Ho (in press)	sealed bid mechanism
Chen ('99)	cost allocation
Haruvy and Erev ('00)	binary risky choice decisions
Ho, Camerer and Chong ('01)	"continental divide" coordination
	price-matching
	patent races
	two-market entry games
Hsia ('99)	N-person call markets
Morgan & Sefton (Games Ec Beh, '01)	"unprofitable" games
Rapoport and Amaldoss ('00	alliances
OBHDP, '01)	patent races
Stahl ('99)	5x5 matrix games
Sutter et al ('01)	p-beauty contest (groups,
	individuals)

In-sample (Hit Rate	e/BIC)	N	f EWA (1)		Reinforce	ment (2)	Beliefs(fi	ct. play) (3)	EWA (5)	
Pooled (common param.s)		10573	52%	-15306	48%	-17742	43%	-18880	46%	-1774
Total (game-specif	ic param.s)	10573	52%	-15306	51%	-16758	46%	-17031	52%	-1509
Out-of-sample (Hit	Rate/LL)	N	f EWA		Reinforce	ment	Beliefs (f	ict. play)	EWA	
Pooled		4674	52%	-6862	49%	-7764	44%	-8406	46%	-792
Total		4674	52%	-6862	52%	-7426	46%	-7474	52%	-6738

			C	onti	nent	al di	vide	gam	ie pa	yofi	fs				
						Media	n Che	oice							
your	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
choice															
1	45	49	52	55	56	55	46	-59				-127			
2	48	53	58	62	65	66	61	-27	-52	-67	-77	-86	-92	-98	
3	48	54	60	66	70	74	72	1	-20	-32	-41	-48	-53	-58	
4	43	51	58	65	71	77	80	26	8	-2	-9	-14	-19	-22	
5	35	44	52	60	69	77	83	46	32	25	19	15	12	10	
6	23	33	42	52	62	72	82	62	53	47	43	41	39	38	
7	7	18	28	40	51	64	78	75	69	66	64	63	62	62	
8	-13	-1	11	23	37	51	69	83	81	80	80		81	82	
9	-37	-24	-11	3	18	35	57	88	89	91	92	94	96	98	
10	-65	-51	-37	-21	-4	15	40	89	94	98	101	104	107	110	
11	-97	-82	-66	-49	-31	-9	20	85	94	100	105	110	114	119	
12	-133	-117	-100	-82	-61	-37	-5	78	91	99	106	112	118	123	
13	-173	-156	-137	-118	-96	-69	-33	67	83	94	103	110	117	123	
14	-217	-198	-179	-158	-134	-105	-65	52	72	85	95	104	112	120	

Functional fEWA (one parameter κ)

- Substitute <u>functions</u> for parameters

 Easy to estimate
 - Allows change within game
- "Change detector" for decay rate ϖ $\varpi(i,t)=1-.5[\Sigma_k (S_{-i}^k(t)-\Sigma_{\tau=1}^t S_{-i}^k(\tau)/t)^2]$ ϖ close to 1 when stable, dips to 0 when unstable
- $\delta(i,t) = \varpi(i,t)/W$ (W=support of Nash equil'm)

Teaching in repeated games

• Finitely-repeated trust game (Camerer & Weigelt E'metrica '88)

borrower action

lender loan 40,60 -100,150 no loan 10,10

1 borrower plays against 8 lenders
 A fraction (p(honest)) borrowers *prefer* to repay (controlled by experimenter)

Teaching in repeated trust games

- Some (α=89%) borrowers know lenders learn by fEWA.
 Actions in t "teach" lenders what to expect in t+1
 (Fudenberg and Levine, 1989)
- Teaching: Strategies have reputations
- QR Equilibrium: *Borrowers* have reputations (types)

Teaching in repeated trust games

- Some (α=89%) borrowers know lenders learn by fEWA.
 Actions in t "teach" lenders what to expect in t+1
- ρ (=.93) is "peripheral vision" weight

- Teaching: Strategies have reputations
- QREequilibrium: *Borrowers* have reputations (types)

Why do this?

- Models make precise predictions
- Predict effects of p(continuation) (horizon T), payoff, P(nice)
- Potential applications:
 Contracting & strategic alliances
 Politics (lame duck effects, e.g. Clinton pardons)
 Macroeconomic time-consistency problem (Does gov't "teach" public to expect low inflation?)

Table 2: F	Parameter Estir	nate τ and f	it of thinki	ng steps a	nd QRE	
		Projection	areness Relative	Over- Opponent	Confident Opponent	
		Bias	Proportion	Level k-1	Levels k-1 to 0	QRE
Stahl and W	ilson (1995) ³		. торогион			
cross game		0.00	0.03	0.00	0.00	
(12 games)	median	0.88	0.87	1.23	3.45	
,	max	8.46	3.81	2.56	24.11	
	Pooled ¹	13.46	2.68	136.69	3.37	
fi	t(sqrt(MSD))	0.18	0.15	0.15	0.15	0.18
	LL	-1176	-1118	-1107	-1106	-1
Cooper and	Van Huyck (2001)					
	min	0.61	0.20	0.08	0.20	
(8 games)	median	1.15	1.13	1.25	1.10	
	max	5.01	1.73	1.87	1.75	
	Pooled	0.79	0.91	0.92	0.81	
fi	t(sqrt(MSD))	0.16	0.15	0.11	0.12	0.16
	LL	-193	-192	-185	-186	-
Costa-Gome	s, Crawford and Br	oseta (2001)				
	min	0.48	1.44	1.23	1.04	
(13 games)	median	0.54	1.81	1.92	1.87	
	max	1.08	2.96	2.42	2.37	
	Pooled	0.65	1.79	1.74	1.94	
	fit(sqrt(MSD))	0.17	0.09	0.09	0.08	0.13
	LL	-649	-565	-553	-555	-

Predictive fit of various models

					Out-of-sample Validation									
		Sample	e Thinking		EWA Lite		EV	EWA		Belief-based		Reinforcement with PV		E
		Size	%Hit	LL	%Hit	LL	%Hit	LL	%Hit	LL	%Hit	LL	%Hit	LL
Mixed Stra	ategies	960	35%	-1387	36%	-1382	36%	-1387	34%	-1405	33%	-1392	35%	-1400
Patent Ra	ice	1760	<u>64%</u>	-1931	<u>65%</u>	-1897	65%	-1878	53%	-2279	<u>65%</u>	-1864	40%	-2914
Continenta	al Divide	315	43%	-485	47%	-470	47%	-460	25%	-565	44%	-573	6%	-805
Median Ad	ction	160	68%	-119	74%	-104	<u>79%</u>	-83	82%	-95	74%	-105	49%	-187
Pot Game	es	739	67%	-431	70%	-436	70%	-437	66%	-471	70%	-432	65%	-505
Traveller's	Dilemma	160	41%	-484	46%	-445	<u>43%</u>	-443	36%	-465	41%	-561	27%	-720
p-Beauty (Contest	580	6%	-2022	8%	-2119	6%	-2042	<u>7%</u>	-2051	7%	-2494	3%	-2502
Pooled		4674	49%	-6860	51%	-6852	49%	-7100	40%	-7935	46%	-9128	36%	-9037

Feeling: How adding social preferences helps

- Social prefs: $u_1(x_1,x_2)=x_1+\alpha x_2$ (Edgeworth 1898+)
- game 6 L R data fit(.19) fit(0) equil'm
 - t <u>6,3</u> 2,1 .38 .45 .66 1
 - b 4,5 4,5 .62 .55 .34 0
 - data .89 .11
 - $fit(\alpha = .19)$.69 .31
 - fit(α =0) .73 .27
 - equil'm 1 0
- social preference makes (2,1) unattractive, increases unpredicted choice of b

Thinking and learning: Why?

- Cognitive limits on iterated thinking
- Why?

Limited working memory

Doubts about rationality or payoffs of others (and doubts about doubts...)

Why learning?

Efficient compared to thinking

"Only academics learn by thinking and reading..." (Vernon Smith '94)

		Total Payoff and Percentage Improvement for Bionic Subjects 1											
		Observed	EWA	Lite	Belief-ba	sed	Reinforce	ment	EWA				
Continental	Divide ²	837	861	2.9%	856	2.3%	738	-11.8%	867	3.5%			
Median Acti	ion ²	503	510	1.4%	507	0.9%	508	1.1%	509	1.3%			
Mixed Strat	egies	334	321	-4.0%	325	-2.8%	324	-3.0%	315	-5.7%			
Patent Race	е	467	474	1.5%	473	1.2%	472	1.1%	473	1.2%			
p-Beauty Co	ontest 2	519	625	20.4%	625	20.4%	606	16.9%	642	23.8%			
Pot Games		4244	4964	17.0%	4800	13.1%	4642	9.4%	4633	9.2%			
Traveller's D	Dilemma	540	589	9.1%	571	5.8%	556	3.1%	592	9.8%			
total		7444	8343	12.1%	8157	9.6%	7848	5.4%	8031	7.9%			

