| | 0 | // | | | |--------|----|-------|------|----------| | A game | of | "matc | hing | pennies" | | | colui | nn | |-------|-------|-----| | | L | R | | row T | 2,0 | 0,1 | | В | 0,1 | 1,0 | People last names A-M play ROW (choose T, B) People last names N-Z play COLUMN (choose L, R) # A game of "matching pennies": Mixed-strategy equilibrium | | | colui | nn | mixed-strategy | |----------|----------|-------|-----|----------------| | | | L | R | equilibrium | | row | T | 2,0 | 0,1 | .5 | | | В | 0,1 | 1,0 | .5 | | mixed-s | strategy | | | | | equilibr | ium | .33 | .67 | ' | | | | | | | #### Behavioral game theory: Thinking, learning & teaching Colin F. Camerer, Caltech Teck Ho, Wharton Kuan Chong, National Univ Singapore - How to model bounded rationality? - Thinking steps (one-shot games) - How to model equilibration? - Learning model (fEWA) - How to model repeated game behavior? - Teaching model ### Behavioral models use some game theory principles, relax others | Principle | Nash | Thinking | Learning | Teaching | |---------------------|------|----------|----------|----------| | concept of a game | Ľ | Ľ | Ľ | Ľ | | strategic thinking | Ľ | Ľ | Ľ | Ľ | | best response | 4 | | | | | mutual consistency | Ľ | | | | | learning | | | Ľ | Ľ | | strategic foresight | Ľ | | | L | | | | | | | # Potential economic applications • Thinking – price bubbles, speculation, competition neglect • Learning – evolution of institutions, new industries – Neo-Keynesian macroeconomic coordination – bidding, consumer choice • Teaching – contracting, collusion, inflation policy #### Modelling philosophy • General (game theory) • Precise (game theory) • Progressive (behavioral econ) • Empirically disciplined (experimental econ) "...the empirical background of economic science is definitely inadequate...it would have been absurd in physics to expect Kepler and Newton without Tycho Brahe" (von Neumann & Morgenstern '44) #### Modelling philosophy • General (game theory) • Precise (game theory) • Progressive (behavioral econ) • Empirically disciplined (experimental econ) "...the empirical background of economic science is definitely <u>inadequate</u>...it would have been absurd in physics to expect Kepler and Newton without Tycho Brahe" (von Neumann & Morgenstern '44) "Without having a broad set of facts on which to theorize, there is a certain danger of spending too much time on models that are mathematically elegant, yet have little connection to actual behavior. At present our empirical knowledge is inadequate..." (Eric Van Damme '95) #### Beauty contest game - N players choose numbers x_i in [0,100] - Compute target $(2/3)*(\Sigma x_i/N)$ - Closest to target wins \$20 #### The thinking steps model • Discrete steps of thinking Step 0's choose randomly K-step thinkers know proportions f(0),...f(K-1)* Normalize f'(h)= $f(h)/\sum_{h=0}^{K-1} f(h)$ and best-respond $$A^{j}(K)=\Sigma_{m} o(s^{j},s^{m}) (P^{m}(0) f'(0) + P^{m}(1) f'(1)+... P^{m}(K-1) f'(K-1))$$ logit probability $P^{j}(K)=\exp(\kappa A^{j}(K))/\sum_{h}\exp(\kappa A^{h}(K))$ • What is the distribution of thinking steps f(K)? *alternative: K-steps think others are one step lower (K-1) #### Poisson distribution of thinking steps - $f(K)=\tau^K/e^{\tau} K!$ 56 games: median $\tau=1.78$ - Heterogeneous (♦ "spikes" in data) - Steps > 3 are rare (working memory bound) - Steps can be linked to cognitive measures #### Thinking steps estimates of τ | • | Matrix games | range of τ | common τ | |---|--------------------------------|-------------|----------| | | Stahl, Wilson | (1.7, 18.3) | 8.4 | | | Cooper, Van Huyck | (.5, 1.3) | .8 | | | Costa-Gomes, Crawford, Broseta | (1.3, 2.4) | 2.2 | | • | Mixed-equilibrium games | (.3, 2.7) | 1.5 | | • | First period of learning | (0, 3.9) | | • Entry games 2.0 • Signaling games (.3,1.2) (Fits significantly better than Nash, QRE) #### Estimates of mean thinking step τ - 33 one-shot matrix games - 1 entry game - 15 mixed-equilibrium games - 7 thinking-learning games #### Comparing QRE and thinking-steps - Fit (thinking-steps slightly better) - Heterogeneity "spikes" in p-beauty contests noisy cutoff rules in entry games endogeneous "purification" in mixed-equil'm games • Cognitive measures Effects of "prompting" beliefs-- pushes steps up by 1? Response times (modest correlation with pBC choice) Attention measures in shrinking-pie bargaining ## Response times vs deviation from equilibrium in p-beauty contest games #### Conclusions - Discrete thinking steps, frequency Poisson distributed (mean number of steps τ)(1.5) - One-shot games & initial conditions - Advantages: Can "solve" multiplicity problem Explains "magic" of entry games Sensible interpretation of mixed strategies • Theory: group size effects (2 vs 3 beauty contest) approximates Nash equilm in some games (dominance solvable) refinements in signaling games (intuitive criterion) #### Conclusions - Thinking (τ, κ) steps model - τ fairly regular (**%**1.5) in entry, mixed, matrix, dominance-solvable games Easy to use • Learning (κ) Hybrid fits & predicts well (20+ games) One-parameter fEWA fits well, easy to estimate Next? Field applications Theoretical properties of thinking model #### Parametric EWA learning - Attraction A ^j (t) for strategy j updated by - $A_{i}^{j}(t) = (\varpi A_{i}^{j}(t-1) + o(actual))/(\varpi(1-\phi)+1) \qquad (chosen j)$ $A_{i}^{j}(t) = (\varpi A_{i}^{j}(t-1) + \delta o(foregone))/(\varpi(1-\phi)+1) \quad (unchosen j)$ - key parameters: δ imagination, ϖ decay - "In nature a hybrid [species] is usually sterile, but in science the opposite is often true"-- sFrancis Crick '88 Weighted fictitious play ($\delta=1$, $\phi=0$) Choice reinforcement (δ =0) # Example: Price matching with loyalty rewards (Capra, Goeree, Gomez, Holt AER '99) - Players 1, 2 pick prices [80,200] ¢ Price is P=min(P₁,P₂) Low price firm earns P+R High price firm earns P-R - What happens? (e.g., R=50) #### Studies comparing EWA and other learning models | Reference | Type of game | |---------------------------------------|-----------------------------------| | Amaldoss and Jain (Mgt Sci, in press) | cooperate-to-compete games | | Cabrales, Nagel and Ermenter ('01) | stag hunt "global games" | | Camerer and Anderson ('99, Ec | sender-receiver signaling | | Theory) | | | Camerer and Ho ('99, Econometrica) | median-action coordination | | | 4x4 mixed-equilibrium games | | | p-beauty contest | | Camerer, Ho and Wang ('99) | normal form centipede | | Camerer, Hsia and Ho (in press) | sealed bid mechanism | | Chen ('99) | cost allocation | | Haruvy and Erev ('00) | binary risky choice decisions | | Ho, Camerer and Chong ('01) | "continental divide" coordination | | | price-matching | | | patent races | | | two-market entry games | | Hsia ('99) | N-person call markets | | Morgan & Sefton (Games Ec Beh, '01) | "unprofitable" games | | Rapoport and Amaldoss ('00 | alliances | | OBHDP, '01) | patent races | | Stahl ('99) | 5x5 matrix games | | Sutter et al ('01) | p-beauty contest (groups, | | | individuals) | | In-sample (Hit Rate | e/BIC) | N | f EWA (1) | | Reinforce | ment (2) | Beliefs(fi | ct. play) (3) | EWA (5) | | |-------------------------|-------------|-------|-----------|--------|-----------|----------|------------|---------------|---------|-------| | Pooled (common param.s) | | 10573 | 52% | -15306 | 48% | -17742 | 43% | -18880 | 46% | -1774 | | Total (game-specif | ic param.s) | 10573 | 52% | -15306 | 51% | -16758 | 46% | -17031 | 52% | -1509 | | Out-of-sample (Hit | Rate/LL) | N | f EWA | | Reinforce | ment | Beliefs (f | ict. play) | EWA | | | Pooled | | 4674 | 52% | -6862 | 49% | -7764 | 44% | -8406 | 46% | -792 | | Total | | 4674 | 52% | -6862 | 52% | -7426 | 46% | -7474 | 52% | -6738 | | | | | C | onti | nent | al di | vide | gam | ie pa | yofi | fs | | | | | |--------|------|-----------|------|------|------|-------|-------|------|-------|------|-----|------|-----|-----|--| | | | | | | | Media | n Che | oice | | | | | | | | | your | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | | choice | | | | | | | | | | | | | | | | | 1 | 45 | 49 | 52 | 55 | 56 | 55 | 46 | -59 | | | | -127 | | | | | 2 | 48 | 53 | 58 | 62 | 65 | 66 | 61 | -27 | -52 | -67 | -77 | -86 | -92 | -98 | | | 3 | 48 | 54 | 60 | 66 | 70 | 74 | 72 | 1 | -20 | -32 | -41 | -48 | -53 | -58 | | | 4 | 43 | 51 | 58 | 65 | 71 | 77 | 80 | 26 | 8 | -2 | -9 | -14 | -19 | -22 | | | 5 | 35 | 44 | 52 | 60 | 69 | 77 | 83 | 46 | 32 | 25 | 19 | 15 | 12 | 10 | | | 6 | 23 | 33 | 42 | 52 | 62 | 72 | 82 | 62 | 53 | 47 | 43 | 41 | 39 | 38 | | | 7 | 7 | 18 | 28 | 40 | 51 | 64 | 78 | 75 | 69 | 66 | 64 | 63 | 62 | 62 | | | 8 | -13 | -1 | 11 | 23 | 37 | 51 | 69 | 83 | 81 | 80 | 80 | | 81 | 82 | | | 9 | -37 | -24 | -11 | 3 | 18 | 35 | 57 | 88 | 89 | 91 | 92 | 94 | 96 | 98 | | | 10 | -65 | -51 | -37 | -21 | -4 | 15 | 40 | 89 | 94 | 98 | 101 | 104 | 107 | 110 | | | 11 | -97 | -82 | -66 | -49 | -31 | -9 | 20 | 85 | 94 | 100 | 105 | 110 | 114 | 119 | | | 12 | -133 | -117 | -100 | -82 | -61 | -37 | -5 | 78 | 91 | 99 | 106 | 112 | 118 | 123 | | | 13 | -173 | -156 | -137 | -118 | -96 | -69 | -33 | 67 | 83 | 94 | 103 | 110 | 117 | 123 | | | 14 | -217 | -198 | -179 | -158 | -134 | -105 | -65 | 52 | 72 | 85 | 95 | 104 | 112 | 120 | | | | | | | | | | | | | | | | | | | #### Functional fEWA (one parameter κ) - Substitute <u>functions</u> for parameters Easy to estimate - Allows change within game - "Change detector" for decay rate ϖ $\varpi(i,t)=1-.5[\Sigma_k (S_{-i}^k(t)-\Sigma_{\tau=1}^t S_{-i}^k(\tau)/t)^2]$ ϖ close to 1 when stable, dips to 0 when unstable - $\delta(i,t) = \varpi(i,t)/W$ (W=support of Nash equil'm) #### Teaching in repeated games • Finitely-repeated trust game (Camerer & Weigelt E'metrica '88) #### borrower action lender loan 40,60 -100,150 no loan 10,10 1 borrower plays against 8 lenders A fraction (p(honest)) borrowers *prefer* to repay (controlled by experimenter) #### Teaching in repeated trust games - Some (α=89%) borrowers know lenders learn by fEWA. Actions in t "teach" lenders what to expect in t+1 (Fudenberg and Levine, 1989) - Teaching: Strategies have reputations - QR Equilibrium: *Borrowers* have reputations (types) #### Teaching in repeated trust games - Some (α=89%) borrowers know lenders learn by fEWA. Actions in t "teach" lenders what to expect in t+1 - ρ (=.93) is "peripheral vision" weight - Teaching: Strategies have reputations - QREequilibrium: *Borrowers* have reputations (types) #### Why do this? - Models make precise predictions - Predict effects of p(continuation) (horizon T), payoff, P(nice) - Potential applications: Contracting & strategic alliances Politics (lame duck effects, e.g. Clinton pardons) Macroeconomic time-consistency problem (Does gov't "teach" public to expect low inflation?) | Table 2: F | Parameter Estir | nate τ and f | it of thinki | ng steps a | nd QRE | | |-------------|---------------------------|--------------|---------------------|-------------------|-----------------------|------| | | | | | | | | | | | Projection | areness
Relative | Over-
Opponent | Confident
Opponent | | | | | Bias | Proportion | Level k-1 | Levels k-1 to 0 | QRE | | Stahl and W | ilson (1995) ³ | | . торогион | | | | | cross game | | 0.00 | 0.03 | 0.00 | 0.00 | | | (12 games) | median | 0.88 | 0.87 | 1.23 | 3.45 | | | , | max | 8.46 | 3.81 | 2.56 | 24.11 | | | | Pooled ¹ | 13.46 | 2.68 | 136.69 | 3.37 | | | fi | t(sqrt(MSD)) | 0.18 | 0.15 | 0.15 | 0.15 | 0.18 | | | LL | -1176 | -1118 | -1107 | -1106 | -1 | | Cooper and | Van Huyck (2001) | | | | | | | | min | 0.61 | 0.20 | 0.08 | 0.20 | | | (8 games) | median | 1.15 | 1.13 | 1.25 | 1.10 | | | | max | 5.01 | 1.73 | 1.87 | 1.75 | | | | Pooled | 0.79 | 0.91 | 0.92 | 0.81 | | | fi | t(sqrt(MSD)) | 0.16 | 0.15 | 0.11 | 0.12 | 0.16 | | | LL | -193 | -192 | -185 | -186 | - | | Costa-Gome | s, Crawford and Br | oseta (2001) | | | | | | | min | 0.48 | 1.44 | 1.23 | 1.04 | | | (13 games) | median | 0.54 | 1.81 | 1.92 | 1.87 | | | | max | 1.08 | 2.96 | 2.42 | 2.37 | | | | Pooled | 0.65 | 1.79 | 1.74 | 1.94 | | | | fit(sqrt(MSD)) | 0.17 | 0.09 | 0.09 | 0.08 | 0.13 | | | LL | -649 | -565 | -553 | -555 | - | #### Predictive fit of various models | | | | | | Out-of-sample Validation | | | | | | | | | | |-------------|-----------|--------|------------|-------|--------------------------|-------|------------|-------|-----------|--------------|------------|-----------------------|------|-------| | | | Sample | e Thinking | | EWA Lite | | EV | EWA | | Belief-based | | Reinforcement with PV | | E | | | | Size | %Hit | LL | | Mixed Stra | ategies | 960 | 35% | -1387 | 36% | -1382 | 36% | -1387 | 34% | -1405 | 33% | -1392 | 35% | -1400 | | Patent Ra | ice | 1760 | <u>64%</u> | -1931 | <u>65%</u> | -1897 | 65% | -1878 | 53% | -2279 | <u>65%</u> | -1864 | 40% | -2914 | | Continenta | al Divide | 315 | 43% | -485 | 47% | -470 | 47% | -460 | 25% | -565 | 44% | -573 | 6% | -805 | | Median Ad | ction | 160 | 68% | -119 | 74% | -104 | <u>79%</u> | -83 | 82% | -95 | 74% | -105 | 49% | -187 | | Pot Game | es | 739 | 67% | -431 | 70% | -436 | 70% | -437 | 66% | -471 | 70% | -432 | 65% | -505 | | Traveller's | Dilemma | 160 | 41% | -484 | 46% | -445 | <u>43%</u> | -443 | 36% | -465 | 41% | -561 | 27% | -720 | | p-Beauty (| Contest | 580 | 6% | -2022 | 8% | -2119 | 6% | -2042 | <u>7%</u> | -2051 | 7% | -2494 | 3% | -2502 | | Pooled | | 4674 | 49% | -6860 | 51% | -6852 | 49% | -7100 | 40% | -7935 | 46% | -9128 | 36% | -9037 | #### Feeling: How adding social preferences helps - Social prefs: $u_1(x_1,x_2)=x_1+\alpha x_2$ (Edgeworth 1898+) - game 6 L R data fit(.19) fit(0) equil'm - t <u>6,3</u> 2,1 .38 .45 .66 1 - b 4,5 4,5 .62 .55 .34 0 - data .89 .11 - $fit(\alpha = .19)$.69 .31 - fit(α =0) .73 .27 - equil'm 1 0 - social preference makes (2,1) unattractive, increases unpredicted choice of b #### Thinking and learning: Why? - Cognitive limits on iterated thinking - Why? Limited working memory Doubts about rationality or payoffs of others (and doubts about doubts...) Why learning? Efficient compared to thinking "Only academics learn by thinking and reading..." (Vernon Smith '94) | | | Total Payoff and Percentage Improvement for Bionic Subjects 1 | | | | | | | | | | | | |---------------|---------------------|---|------|-------|-----------|-------|-----------|--------|------|-------|--|--|--| | | | Observed | EWA | Lite | Belief-ba | sed | Reinforce | ment | EWA | | | | | | Continental | Divide ² | 837 | 861 | 2.9% | 856 | 2.3% | 738 | -11.8% | 867 | 3.5% | | | | | Median Acti | ion ² | 503 | 510 | 1.4% | 507 | 0.9% | 508 | 1.1% | 509 | 1.3% | | | | | Mixed Strat | egies | 334 | 321 | -4.0% | 325 | -2.8% | 324 | -3.0% | 315 | -5.7% | | | | | Patent Race | е | 467 | 474 | 1.5% | 473 | 1.2% | 472 | 1.1% | 473 | 1.2% | | | | | p-Beauty Co | ontest 2 | 519 | 625 | 20.4% | 625 | 20.4% | 606 | 16.9% | 642 | 23.8% | | | | | Pot Games | | 4244 | 4964 | 17.0% | 4800 | 13.1% | 4642 | 9.4% | 4633 | 9.2% | | | | | Traveller's D | Dilemma | 540 | 589 | 9.1% | 571 | 5.8% | 556 | 3.1% | 592 | 9.8% | | | | | total | | 7444 | 8343 | 12.1% | 8157 | 9.6% | 7848 | 5.4% | 8031 | 7.9% | | | |