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1. Introduction

Estimating the effect of medical treatments on patient outcomes is one of the central

problems in medical research.  Traditionally, randomized controlled trials have been the only

definitive method for establishing such treatment effects. However, in response to a variety of

perceived problems with randomized controlled trials, ranging from their expense to their

external validity, there has recently been an increased interest in estimating treatment effects

using observational data. The central problem with observational data, however, is that treatment

is not randomly assigned across patients and is likely to be related to unmeasured patient

characteristics and other factors which also influence outcomes.

Two basic approaches have been taken to this endogeneity problem (see McClellan and

Noguchi, 1998). One approach has been to collect detailed patient information (e.g. from charts)

and control directly for risk factors other than treatment that may influence patient outcomes.

This approach is inevitably limited because it is difficult to measure all of the patient preferences,

comorbidities, and other characteristics that may influence both treatment choice and outcomes.

A second approach to the endogeneity problem has been to use instrumental variables (IV)

estimation.  In IV estimation one uses observed variables (instruments) that influence treatment

decisions but are assumed to be unrelated to patient risk factors, to identify how treatment

variation independently influences patient outcomes.  This approach is limited by the availability

of suitable instruments with adequate explanatory power, particularly in cases in which many

treatments must be considered.

In this paper we propose a method of estimating treatment effects which combines these

two prior approaches as well as makes more efficient use of the “good” variation in treatment use

that appears unrelated to patient characteristics.  We estimate patient-level outcome equations,
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controlling for detailed patient risk factors, based on hospital-level variation in treatment

intensity as an instrument for the treatment variables.  After controlling for the observable risk

factors, we argue that variation in treatment across hospitals is unlikely to be related substantially

to unobserved risk factors affecting patient outcomes - unlike the variation in patient treatments

within hospitals.  In contrast to previous IV approaches, the large variation in practices across

hospitals provides suitable instruments for evaluating multiple treatments of interest

independently.  Recent work on weak instruments suggest that standard IV estimation methods

may yield biased estimates of treatment effects in our approach, because individual hospitals

provide relatively weak instruments for treatment choice (Staiger and Stock, 1997). Therefore,

we develop an alternative estimator, based on a General Method of Moments (GMM) approach

closely related to the methodology developed in McClellan and Staiger (1997,1999), that does

not suffer from this bias.

We apply our GMM method to estimating the effects of treatments provided by hospitals

on survival following a heart attack.  We use detailed medical chart review data and linked

Medicare administrative records from the Cooperative Cardiovascular Project on over 180,000

elderly heart attack patients from 1994-1995.  Our analysis includes a variety of medical and

surgical treatments thought to improve survival following a heart attack, including cardiac

catheterization, angioplasty, bypass surgery, the use of aspirin, and the use of beta blockers.  To

evaluate the methodology, we compare our GMM estimates to alternative estimates based on

OLS regression and instrumental variables methods.

We present a number of empirical results that provide support for the GMM method.

First, we document that there is considerable systematic variation in treatment intensity across

hospitals.  For example, holding patient mix constant we estimate that the average propensity to
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do cardiac catheterization varied considerably across hospitals with a standard deviation of 14

percentage points around a national average of rate of 49%.  Second, we find that the GMM

method, which uses this variation in treatment intensity across hospitals to estimate treatment

effects, yields estimates of treatment effects that are quite similar to recent IV estimates

(McClellan et al., 1994) but that are considerably more precise.  In addition, the GMM estimates

appear to be quite robust to controlling for detailed information on patient severity.  In contrast,

OLS estimates, which we argue are fundamentally biased, differ significantly from the GMM and

IV estimates and are not robust.

Substantively, our results suggest that both surgical and drug treatments for heart attack

patients have significant and substantial effects on mortality.   For example, we find that

providing aspirin during the hospitalization reduces 1-year mortality by 5 percentage points,

while Beta blockers reduce mortality by over 10 percentage points.  Surgical treatments may have

even larger effects.

2. Background

A. Estimating treatment effects

Unbiased estimation of treatment effects is of major interest in many branches of applied

economics and statistics, for use in guiding individual decisions involving treatment use as well

as policy decisions that may influence treatment use.  The gold-standard method for estimating

treatment effects without bias is the randomized controlled trial, in which subjects are

randomized to receive either the treatment of interest or a “control” treatment protocol that

differs only in a well-defined treatment of interest.  But randomized trials are often very costly,

and individuals often do not want to be subject to randomization when expensive treatments and
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important outcomes are at stake, and when they have some prior beliefs about expected benefits

with each alternative.   Moreover, it may be especially difficult to enroll a sufficient number of

patients to estimate treatment effects precisely for particular clinical types.

These limitations of randomized studies have resulted in continued interest in the

estimation of treatment effects with observational data. One set of observational-data techniques

is based on direct comparisons of treated and non-treated individuals.  These methods use

regression techniques, case-control comparisons within similar subgroups, or related adjustments

such as propensity scores to account for observable differences between treated and non-treated

groups that may result directly in outcome differences.  Bias concerns arise because these

methods assume no substantial correlation between treatment choice and many unmeasured

factors or “omitted variables,” including unmeasured differences in the individuals selected into

the treatment groups as well as unmeasured differences in other treatments and environmental

conditions to which the groups are exposed.

Another set of observational-data methods, instrumental-variables methods, rely instead

on comparisons between groups that differ in an observable way that is assumed to influence

treatment choice but not to influence outcomes directly -- much like randomization in a clinical

trial.   The instrumental-variables methods, however, will be biased if the instrumental variable is

correlated with unobserved individual or environmental factors that also affect outcomes.

Moreover, changes in the value of instrumental variables generally affect treatment for only a

subset of individuals, so that the consequences of any such correlation are multiplied.  Finally,

application of this method in practice is limited by the availability of suitable instruments,

particularly in situations where there are many dimensions of treatment.  Lingering concerns

about the potential for bias, along with practical data limitations in terms of suitable instruments
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and measures of patient severity, have limited the acceptance of observational methods for

estimating treatment effects.

B. Evidence on treatment effects for heart attack patients

In this paper, we focus on treatment of heart attacks.  Heart disease is the leading cause of

death in the United States, and heart attacks or acute myocardial infarctions (AMIs) are directly

or indirectly responsible for most of these deaths.  An important set of intensive treatments for

heart attack care begins with cardiac catheterization, a procedure that visualizes blood flow to the

heart muscle through continuous radiologic pictures of the flow of dye injected into the coronary

arteries.  If this procedure detects substantial blockages, it may be followed by a

“revascularization” procedure intended to improve blood flow to the heart.  The two commonly-

used types of procedures are angioplasty (PTCA, or percutaneous transluminal coronary

angioplasty), which involves the use of a balloon at the end of a catheter to eliminate blockages,

and bypass surgery (CABG, or coronary-artery bypass graft surgery), a major open-heart surgical

procedure to bypass the areas of blockage.  In addition, patients can be treated with a variety of

drugs following their heart attack.  These include aspirin and thrombolytics (which inhibit

clotting, and thereby improve blood flow to the heart) and Beta blockers and ACE inhibitors

(which reduce demand on the heart, thereby reducing required blood flow to the heart).   All of

these drug treatments have been shown to reduce AMI mortality significantly, though most of the

studies did not use elderly AMI patients.

Despite the importance of heart attacks for population health and the importance of these

intensive procedures for health care resource use, the procedures have been studied in only a few

randomized clinical trials.  Several trials were performed for bypass surgery in the early 1980's

and on angioplasty in the following years; in general, these trials found limited mortality benefits
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in a few subgroups of patients.1  Nonetheless, the procedures have become much more widely

used in heart attack patients, for several reasons.  First, the equipment quality and technical skill

of personnel involved in the procedures has improved substantially since the time of the trials,

leading to much lower complication rates.  Second, trials on many types of heart disease patients,

such as women and the elderly, were regarded as too costly to justify additional studies given the

previous trial results.  Third, as experience accumulated, fewer and fewer patients were willing to

be randomized for such an important decision as an intensive cardiac procedure.  As with many

other intensive medical technologies, these heart procedures are now used in a much broader

range of patients than have been explicitly supported by randomized trials.

Consequently, these procedures have been studied frequently using observational

methods.  Studies based on direct comparisons of treated and non-treated patients have generally

found that intensive cardiac procedures like bypass surgery were associated with significant and

substantial mortality reductions in these additional patients, even after accounting for observable

differences.  For example, using the propensity-score method, Rosenbaum and Rubin (1984)

estimate a large improvement in functional status and in survival for patients with heart disease

undergoing bypass surgery.  In contrast, observational studies using instrumental-variables

methods (based on administrative data with little clinical detail) have found small mortality

effects in patients undergoing procedures, and the effects appeared to be due at least in part to

                                                
1Trials of bypass surgery versus no intensive procedures included a VA study and a European
trial.  Trials of angioplasty included Erbel et al. (1986), Simmoons et al. (1989), TIMI Study
Group (1989), and Zijlstra et al., 1993.  Most of these studies focused on the immediate use of
angioplasty, rather than its use at all during the episode of treatment for heart attack. Reflecting
changes in expectations about treatment benefits, recent trials have focused on narrower
questions about use of the intensive procedures, such as the timing of catheterization (e.g., Califf
et al., 1991), the choice between angioplasty and bypass surgery, and the use of catheterization in
very narrow subsets of patients (e.g., VANQWISH Study Group, 1998).
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acute treatments other than catheterization (e.g., McClellan, McNeil, and Newhouse, 1994;

McClellan and Newhouse, 1997).  Thus, different observational estimation methods appear to

give substantially different results. The source of the differences is not clear, although recent

work that controls for detailed patient severity information supports the validity of the

instrumental variable estimates (McClellan and Noguchi, 1998). Nevertheless, these kinds of

inconsistencies have plagued observational studies of treatment effects, and limited their

relevance for clinical practice and policies intended to influence it.

Randomized studies of drug therapies have been easier to perform, at least in nonelderly

male patients.  Thrombolytics have been shown to reduce mortality significantly compared to

noninvasive treatments; whether thrombolytics lead to outcomes that are as good as primary

(immediate) angioplasty after AMI is more controversial.  Beta blockers, aspirin, and (for

patients with heart failure after AMI) ACE inhibitors have all been shown to reduce mortality

after AMI. Some studies, primarily observational, have suggested that routine use of calcium

channel blockers may lead to worse outcomes.  Routine use of lidocaine is associated with worse

outcomes, and nitrate use is suspected to have limited benefits (at least for mortality) in AMI

patients treated with these other “modern” therapies.

3. Methods

A. Overview and identification

The key problem with estimating treatment effects with observational data is that

treatment is likely to be correlated with unmeasured patient characteristics that also influence

outcomes. Two simple examples illustrate the fundamental nature of this problem.  First, a

patient may be considered a poor candidate for surgery if admitted with a severe heart attack
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along with multiple pre-existing conditions (such as diabetes or stroke).  If this patient

information effects outcomes but is unobserved by the econometrician, then OLS estimates will

be biased toward overstating the effect of treatment on outcomes because “sicker” patients will

not receive treatment.  As a second example, consider the case of an average patient admitted

with a heart attack but who never stabilizes and dies within hours of admission.  This patient will

not receive many treatments (e.g. bypass) because of their short survival, leading to a classic

problem of reverse causation. Again, OLS estimates will tend to overstate the effect of treatment,

since only survivors receive treatment.  This second example is particularly problematic because

even controlling for complete information on patient severity at admission would not eliminate

the bias in OLS estimates.  As a result, any estimate of treatment effects that relies on patient-

level variation in treatment will be biased.

Our approach uses hospital-level variation in treatment intensity as an instrument to

identify the relationship between treatment and outcomes.  In other words, we rely on between-

hospital variation rather than within-hospital (patient-level) variation.  This approach requires

that treatment intensity is uncorrelated with systematic unobserved differences in patient mix at

the hospital level, e.g. aggressive treatment hospitals do not attract patients that differ in ways

that are unobserved at admission.  Of course, hospitals may attract different types of patients

based on their style of treatment, e.g. teaching hospitals may attract more severe cases.  However,

a patient’s choice of hospital will be based on the information available at the time of admission.

Therefore, it is, at least in principle, possible to control for systematic differences in case mix

across hospitals provided one has sufficient information on the patient at the time of admission.

Moreover, the acute nature of the AMI admission decision limits opportunities for selection.  As
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a result, it is possible to estimate treatment effects based on hospital-level variation in treatment

combined with data on patient severity at the time of admission.

In practice, the central drawback of this approach is that it is difficult to estimate

treatment intensity based on the relatively small patient samples observed at each hospital.  As a

result, much of the observed variation in treatment rates across hospitals is due to random factors

rather than systematic differences across hospitals in treatment intensity.  Therefore, we use an

estimation method that explicitly addresses this issue of estimation error in observed treatment

rates.

Estimation of the model is a two-stage process. The first stage consists of patient-level

regressions for the outcome measure and for each treatment measure.  These regressions estimate

reduced-form models in which the outcome/treatment depends on hospital fixed effects and

patient characteristics. The regressions generate hospital fixed effects for both outcome and

treatments, controlling for the patient mix admitted to the hospital. In the second stage of the

estimation, treatment effects are estimated based on the relationship between the outcome fixed

effect and the treatment fixed effects, carefully accounting for the estimation error in the

estimates from the first stage.  The second stage provides estimates of the systematic variation in

treatment across hospitals, as well as estimates of the effect of each treatment on the outcome of

interest.

B. Setup and Notation

Suppose that the outcome (Yij) for patient i admitted to hospital j depends on a 1xK

vector of treatments (Tij) and a 1xL vector of patient characteristics measured at admission (Xij)

according to the following equation:

(1) Yij = Tijβ + XijΠ + αj + εij ,
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The parameters of interest are β (a Kx1 vector of treatment effects) and Π (a Lx1 vector of

covariate effects).  We decompose the error into two parts: A hospital component (αj), which as

discussed above is assumed to be uncorrelated with T; and a patient component (εij) which may

be correlated with T.  Patient characteristics at the time of admission (X) are assumed to be

uncorrelated with εij.

The expected level of treatment is assumed to depend on patient characteristics and also

to depend on the hospital to which the patient was admitted, so that:

(2) Tij = XijΓ + δj + νij ,

Where equation 2 is a multivariate regression where Γ is a LxK matrix of parameters, and δj is a

1xK vector of hospital fixed effects representing the treatment intensity at hospital j on each of

the K treatments. Again, patient characteristics at the time of admission are assumed to be

uncorrelated with νij.

Treatment is endogenous in equation 1, but we can plug equation 2 into equation 1 to

arrive at the reduced form equation for the outcome variable:

(3) Yij = XijΨ + θj + ωij ,

Where: Ψ = Γβ + Π; θj = δjβ + αj ; and ωij = νijβ + εij .

C. Estimation

The parameters of equation 1 cannot be estimated consistently by OLS because the

treatment variable is endogenous.  However, we can estimate the parameters in the reduced form

equations (2 and 3) by OLS with hospital fixed effects (since X is uncorrelated with both ν and

ε).  With consistent estimates of the parameters in the reduced form equations, one could

estimate the treatment effects by conventional instrumental variable methods, e.g. by two stage
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least squares, using hospital fixed effects in the first stage (equation 2) as the instruments for

treatment.  In our application, however, first stage estimates of the hospital fixed effect (δj) are

based on small samples in each hospital, with over half of all hospitals admitting fewer than 30

heart attack patients.  Thus, the assumption that the first-stage parameters are consistently

estimated is problematic.  In particular, we face a situation of having many weak instruments,

and recent work has documented that parameter estimates and standard errors from traditional IV

estimators such as 2SLS are biased in this situation (see Bekker, 1994; Bound, Jaeger and Baker,

1995; Staiger and Stock, 1997).

Therefore, we take a different approach to estimation, similar to that taken by Deaton

(1985) in estimating cohort models from many years of cross-section data, and similar to that

taken by McClellan and Staiger (1997, 1999) in estimating hospital quality from many years of

patient-level data.  Our approach is also closely related to the hierarchical bayes model proposed

by Chamberlain and Imbens (1996) for IV estimation with many instruments.  The estimation is a

two-stage process. We describe each of these in turn below.

First Stage

In the first stage, we estimate the patient-level reduced form models for the outcome

measure (equation 3) and each treatment measure (equation 2) by OLS.  Under the assumptions

stated in section 3(B), these regressions provide unbiased estimates of all of the parameters of

interest, along with an unbiased estimate of the covariance matrix for these estimates.  Let

jjjM δθ ˆ,ˆ=  be the 1x(K+1) vector of estimated fixed-effect parameters for hospital j, and let

Sj be the OLS estimate of the (K+1)x(K+1) covariance matrix for these parameters.  Assuming

that equations 2 and 3 are estimated on a large sample of patients, the patient covariate
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parameters (Γ,Ψ) are known asymptotically and, as a result, the estimates Mj are independent

across hospitals.

Second Stage

In the second stage, we use the hospital-level data from the first stage (Mj,Sj) to estimate

the remaining parameters by General Method of Moments (GMM).  Note that the fixed effect

estimates from the first stage are equal to the true hospital-specific intercepts plus estimation

error:

(4) jjjjjjM ζδθδθ +== ,ˆ,ˆ

Where jjjjj δαβδδθ ,, += , and jζ  is the 1x(K+1) vector of estimation error which is

mean zero and uncorrelated with jj δθ , .  This implies that:

(5) ( ) ( )jjjjjjjj EEMME ζζδθδθ ′+




 ′

=′ ,,

Note that the first stage estimate of the covariance matrix for the fixed effect parameters (Sj) is an

unbiased estimate of the variance in the estimation error, ( )jjE ζζ ′ .  Therefore, we have:

(6) ( ) 




 ′

=−′ jjjjjjj ESMME δθδθ ,,

Equation 6 states that the variance of the true fixed effect parameters is equal in expectation to

the variance of the estimated fixed effect parameters minus the estimation error variance.

Plugging in to equation 6 for θj and assuming that hospital treatment intensity (δj) is independent

of hospital-level variation in unobserved case-mix (αj) yields:

(7) ( ) 







ΩΩ
Ω′+Ω′

=−′
δδ

δαδ
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where ( )jVar δδ =Ω , and ( )jarV ασα =2 .

Equation 7 provides the basis for a just-identified GMM estimator of the treatment effect

parameters (β), along with estimates of the variance (and covariance) of treatment intensities

across providers (Ωδ) and the variance of unexplained outcome differences across providers

( 2
ασ ).  In particular, we estimate the parameters by setting the theoretical moments (the right

hand side of equation 7) equal to an unbiased sample estimate of these moments calculated as the

weighted average of Mj’Mj - Sj across hospitals, using the number of admissions at each hospital

as weights.  Standard errors for the estimates are calculated as in Chamberlain (1984).

Our GMM method can be interpreted in a simple way.  The fixed effect in the reduced

form outcome equation is related to the fixed effect in the treatment equations by the equation:

(8) θj = δjβ + αj

where αj is independent of  δj.  Thus, if we observed θj and δj without any estimation error (or

assumed that our estimates were consistent, so that the measurement error disappeared

asymptotically), then equation 8 could be estimated by weighted least squares using hospital-

level data and weighting by the number of patients in each hospital.  Traditional two-stage least

squares estimates of β, using hospital fixed effects as instruments, estimate equation 8 exactly in

this way, replacing the unobserved parameters θj and δj with their estimates from equations 2 and

3.  Our method simply estimates equation 8 correcting for the (correlated) measurement error in

the estimates jθ̂  and jδ̂ .  Thus, rather than estimating β with the usual least squares formula

(ignoring the weights) of ( ) ( )θδδδ ˆˆˆˆ 1
′′

−
, we use estimates of the moment matrices that correct for

the measurement error.  For example, ( )δδ ˆˆ1 ′
N  overstates the variance in treatment across
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hospitals ( ( ) δδδ Ω≡′E ) because of the estimation error in δ̂ .  Therefore, our method “subtracts

off” the estimation error and estimates the variance in treatment across hospitals ( δΩ ) with

( ) δδδ ˆ
1 ˆˆ SN −′ , where δ̂S  is the average estimation error variance for the treatment fixed effects

( jδ̂ ).

Our key identifying assumption is that hospital treatment intensity (δj) is uncorrelated

with any unobserved factor influencing the hospital’s average outcome (αj).  As argued earlier, as

long as we can condition on the same information about patient severity that was used by patients

in selecting hospitals, there is no reason to expect that treatment intensity is correlated with

unobserved casemix differences across hospitals.  However, treatment intensity may still be

correlated with other unobserved hospital factors that influence outcomes.  For example, any

omitted aspect of treatment at a hospital that influences outcomes and is correlated with the

included treatments will violate our identifying assumption and bias the results.  Thus, as with

any production function estimate, the estimated treatment effect may be the result of related

treatments that were not included in the model.  We discuss further evidence on the validity of

this key assumption below.

4. Data

To explore the utility of the GMM method versus other observational estimation

methods, we use data from the Cooperative Cardiovascular Project (CCP), a major policy

initiative to improve the quality of care for Medicare beneficiaries with AMI undertaken by the

Health Care Financing Administration (HCFA).  During the “national” phase of the project,

HCFA conducted standardized abstractions of the medical records of all Medicare beneficiaries
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hospitalized with a reported AMI over an eight-month period at essentially all hospitals in the

United States that had not participated in a four-state “pilot” phase.  The eight-month sampling

frame was continuous at each hospital, and all sampling occurred between April 1994 and July

1995.  Marciniak et al. (1998) provides more details on CCP goals, sampling and data collection

strategy, and methods used to assure standardization and completeness of the medical record

reviews.  Altogether, charts were abstracted for approximately 180,000 AMI patients. The

sample we use includes all patients admitted with an AMI to a hospital that had at least 3 such

admissions in this time frame, with patients assigned to the initial hospital at which they were

admitted.   These data were linked to Medicare administrative records (enrollment and

hospitalization files), which have been used in previous observational studies of AMI practices

and outcomes but do not include the clinical details present in the medical record abstracts.  The

enrollment files include comprehensive all-cause mortality information from Social Security

records.

The CCP data provides extensive clinical information on treatments and outcomes for

each patient, along with a detailed set of patient covariates covering demographic information,

information on the presence of comorbidities, and information on the severity of the heart attack

on admission.  In our analysis, we use the following variables:

Treatment measures:  From administrative claim data, we calculate 90-day treatment

rates for cardiac catheterization, PTCA (angioplasty), and cardiac bypass (CABG) surgery, based

on whether the patient received the treatment within 90 days of the initial heart attack.  With the

CCP data, we also calculate whether the patient received aspirin or beta blockers during the

hospital stay.
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Outcome measures: We use death dates validated by the Social Security administration to

calculate survival times from the initial hospitalization. Based on these dates, we compute 1-day,

30-day, and 1-year mortality rates.

Patient Covariates: The CCP data include detailed measures of patient clinical

characteristics.  These measures enable us to control for important clinical information observed

at admission that is likely to influence patient outcomes.  We include three types of patient

variables:

(1) demographic measures including gender, race, age, and urban residence;

(2) comorbidity measures including measures of mobility, dementia, diabetes,

CVA/Stroke, Angina, and CHF or pulmonary edema; and

(3) severity measures including Killip Class, heart rate, mean arterial pressure, time since

chest pain began, blood urea nitrogen, and whether the patient is verbally oriented.

For detail on how these variables are constructed, see McClellan and Noguchi (1998); for a more

detailed description of comorbidity and severity variables that are predictive of mortality in CCP,

see Normand et al. (1997).

Table 1 provides summary statistics for the key treatment and outcome variables in our

analysis.  We report means and standard deviations for the hospital-level treatment and outcome

measures (e.g. fixed effects from equation 2 and 3) adjusted for the detailed list of patient

covariates just described.  All statistics have been weighted by the number of AMI admissions at

each hospital.  Mortality for heart attack patients is relatively high, with 5.7% mortality in the

first day, 18.9% in the first 30 days, and 32.3% in the first year following the heart attack.

Estimated mortality rates also vary considerably across hospitals, with a standard deviation of 30-

day mortality across hospitals of 7.1 percentage points. Of course, some of this variation is due to
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estimation error in each hospital’s estimate, as the average hospital admits only 45 patients.  Just

under 50% of patients receive catheterization, with roughly 1/3 of these patients going on to have

angioplasty (18.8%), and another 1/3 going on to have bypass (15.5%).  Treatment rates for the

medications we study, beta blockers (44.3%) and aspirin (77.2%), are considerably higher –

though substantially lower than most experts believe is appropriate.  The variation in these

estimates of treatment rates across hospitals is large, with a standard deviation across hospitals

ranging from 7.6  (bypass) to over 15 percentage points (catheterization, beta blockers).

Finally, following McClellan et al. (1994), we construct a variable (“differential

distance”) for each patient measuring the difference between the distance to the nearest hospital

doing catheterization, and the distance to the nearest hospital not doing catheterization.  Distance

estimates are measured between population centroids of the zip code of residence and the zip

code of each hospital.   This variable serves as an instrument for catheterization in that it is

correlated with receiving catheterization (patients nearer a catheterization hospital are more

likely to receive this treatment), and is arguably unrelated to unobserved patient severity.  For a

more details on the construction and justification of this variable, see McClellan et al. (1994) and

McClellan and Noguchi (1998).

5. Results

In this section we report our GMM estimates for a variety of models.  To explore the

robustness of these methods, we report estimates based on various combinations of outcomes,

treatments, patient covariates, and estimation methods.  We begin by reporting our GMM

estimates of the variance in treatment intensity and in outcomes across hospitals, along with the

correlation in these treatment and outcome measures across hospitals.  These estimates are of
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independent interest, since they document the extent of practice and outcome variations across

hospitals after accounting for variation in patient mix.  We then report estimates of simple

models in which the only treatment variable is whether the patient received cardiac

catheterization within 90 days of the initial heart attack.  We compare our GMM estimates to

simple OLS estimates of the treatment effect and, following McClellan et al. (1994) and

McClellan and Noguchi (1998), to IV estimates using differential distance to a catheterization

hospital as an apparentlly valid instrument for treatment (see the data section for a discussion of

how this variable was created). Finally, we report estimates from models that include additional

treatment variables, including whether a patient had bypass surgery or angioplasty within 90 days

of admission, or received aspirin or beta blockers during their hospital stay.

Estimates of Variance and Correlation in Treatment and Outcomes Across Hospitals

How much variation is there in casemix-adjusted mortality and treatment rates across

hospitals?  Our estimates suggest that there is substantial variation in both treatment rates and

mortality rates across hospitals.  In Tables 2 and 3 we report the GMM estimates for the variation

across hospitals in measures of mortality and treatment intensity.  Along the diagonal of each

table, we report estimates of the standard deviation in each measure, while the off-diagonal

elements of each table report the estimated correlation between the measures.  All of these

estimates are quite precise, with standard errors for each estimate given in parentheses.  The

estimates reported in these tables are based on mortality and treatment rates that were adjusted

for the detailed list of patient covariates available in the CCP data.

Table 2 reports estimates for our outcome measures: 1-day mortality, 30-day mortality

and 1-year mortality.  The estimated standard deviation in mortality rates across hospitals is

substantial, ranging from 2.2 percentage points for 1-day mortality (relative to a base 1-day
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mortality rate of 5.7%) to 3.4 percentage points for 1-year mortality (relative to a base of 32.3%).

Note that these GMM estimates are estimates of the true variation in mortality rates across

hospitals.  Thus, they are smaller than the standard deviations reported in Table 1 because they

have corrected for the over-dispersion in the estimated mortality rates across hospitals due to

estimation error.  The variation in mortality rates across hospitals is also highly correlated across

the mortality measures, with correlation ranging from 0.6 to over 0.9. Thus, differences in

mortality across hospitals that appear in short-term mortality measures persist through 1-year

mortality.

Table 3 reports similar estimates for our five treatment measures.  Again the standard

deviation in treatment rates across hospitals is quite large for most of the measures, ranging from

4.8 percentage points for bypass surgery to 13.6 percentage points for catheterization.   Thus,

treatment patterns clearly differ across hospitals, even for inexpensive treatments such as aspirin

(SD=9.5 percentage points). Treatment rates are positively correlated, particularly among the

surgical treatments and among the drug treatments, suggesting that these treatments are

complements:  hospitals that use one surgical treatment aggressively tend to be aggressive on

other surgical treatments as well; bypass surgery is not a substitute in practice for the angioplasty,

the other revascularization procedure. Not surprisingly, rates of catheterization are very highly

correlated with rates of both bypass (correlation of 0.7) and angioplasty (correlation of 0.9)

across hospitals.  As a result, it will be difficult to distinguish the effects of catheterization from

bypass and angioplasty in our estimates based on variation across hospitals.  Therefore, we focus

our attention on models that include either catheterization or bypass/angioplasty

(revascularization) and acknowledge, for example, that the estimated treatment effect for
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catheterization is likely to result primarily from this variable proxying for bypass and

angioplasty, rather than any direct benefit of catheterization itself.

Estimates of Treatment Effects for Catheterization

Table 4 reports estimates of the treatment effect (β) for a simple version of equation 1 in

which the dependent variable is mortality within a specified time period after admission and the

only treatment variable is whether the person received cardiac catheterization within 90 days of

their heart attack.  Each column reports estimates for a selected mortality window, ranging from

1-day (column 1) to 1-year (column 3).  The left panel reports estimates that control for the full

set of patient covariates available in the CCP data.  The right panel reports estimates that only

control for a limited set of demographic variables (gender, race, age, urban residence) commonly

available in claims data.  Finally, within each panel, the first row reports our GMM estimates, the

second row reports IV estimates based on differential distance to a hospital performing

catheterization, and the third row reports OLS estimates.

If the assumptions required for consistency of the GMM estimator are correct, then the IV

estimates should also be consistent but less efficient because they use less of the variation in

treatment rates across hospitals. In contrast, the OLS estimates will most likely be biased toward

overstating the treatment effect due to reverse causation (patients who die soon after admission

will not receive catheterization).  This is precisely the pattern observed in the estimates that

control for the full list of patient covariates (the left hand panel).  The GMM point estimates are

not significantly different from the IV estimates, but are considerably more precise with standard

errors 3-4 times smaller than the IV estimates.  At the same time, the GMM estimates of the

treatment effect are significantly smaller than OLS estimates.  For example, in column 2 we

estimate that catheterization is associated with a reduction in 30-day mortality of 8.0 percentage
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points with a standard error of 1.0 percentage point.  Instrumental variable estimates of the

treatment effect are slightly larger (11.3 percentage points) but not significantly different from

the GMM estimates because of their large standard error (3.4 percentage points).  Finally, the

OLS estimate of the treatment effect is 12.8 percentage points, more than 50% larger than the

GMM estimate.  Because of the precision of the OLS estimate, we can easily reject that OLS and

GMM estimates are equal.

The right panel of Table 4 reports a similar set of estimates to the left panel, but for

models that control for a more limited set of demographic variables.  These estimates inform us

about the robustness of the GMM, IV and OLS methods when using the type of data commonly

found in claims databases.  The results demonstrate that, at least in this application to heart attack

mortality, the GMM and IV methods are quite insensitive to the exclusion of detailed patient

covariates, especially at acute periods after AMI. For example, the GMM and IV estimates of the

effect of cardiac catheterization on 30-day mortality are nearly identical to the estimates in the

left panel of Table 4 that controlled for a more detailed set of covariates.   In contrast, OLS

estimates, which rely on the patient-level variation in treatment, are quite sensitive to the

exclusion of detailed patient covariates, with the estimated treatment effect nearly doubling when

we use the more limited set of control variables.

Overall, the results in Table 4 support four important conclusions.  First, the GMM

estimates are quite similar to, but more precise than, estimates from the one-treatment IV model

of McClellan et al. (1994).  At the same time, the GMM method may be more easily used in

practice.  It does not require one to identify instruments specific to each application (such as the

differential distance measure used in McClellan et al.), and thus can be widely used for treatment

analysis provided that patient sorting to hospitals based on unobserved severity is not a
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significant problem.  Thus our method substantially expands the IVs available for estimating

treatment effects with observational data.  A second conclusion is that OLS estimates appear to

be biased toward overstating the treatment effect, even when the regressions control for the

extensive patient covariates available in the CCP dataset.  Thus, OLS appears to be

fundamentally flawed as a practical method for estimating treatment effects.  A third conclusion

is that the GMM method, like the IV method of McClellan et al., appears to provide unbiased

estimates even in datasets with limited patient covariates.  Thus, the GMM method provides a

practical method for estimating treatment effects using commonly available claims datasets.

Finally, the GMM estimates suggest that catheterization is associated with modest improvement

in patient survival of about 5 percentage points at 1 day, 8 percentage points at 30 days, and 12

percentage points by 1 year.  Obviously, these effects are not the result of catheterization per se,

but rather the result of other treatments that are correlated with catheterization.  Indeed,

McClellan et al. (1994) and McClellan and Noguchi (1998) found that most if not all of the

apparent effect of catheterization in IV analysis could be explained by its correlation with other

treatments.  Thus, we now turn to estimating models that control for a more detailed list of

treatments.

Estimates of Treatment Effects in More General Models

In this section we compare GMM and OLS estimates of models that include surgical

(bypass, angioplasty) and drug (aspirin, beta blockers) treatments in addition to catheterization.

One of the great advantages of the GMM method is that it more easily extends to models with

many treatments.  In contrast, while IV estimates as in McClellan et al. (1994) have proven

feasible for analyzing several treatments (e.g., McClellan and Noguchi, 1998), they are difficult
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to apply to models with many treatments because one must identify additional instruments for

each treatment and these instruments must generate independent variation in each treatment.

Table 5 reports treatment effect estimates for models in which the dependent variable is

again mortality, but now we include three treatment variables: catheterization, receiving aspirin

in the hospital, and receiving beta blockers in the hospital.  Thus, catheterization serves as a

proxy for invasive treatment, while aspirin and beta blockers capture some of the key drug

treatments that are believed to improve patient survival.  The layout of Table 5 is similar to that

of Table 4.  The top panel reports GMM estimates of the coefficients for each treatment, while

the bottom panel reports OLS estimates of the coefficients.  The left panels report estimates that

control for a full set of patient covariates, while the right panels report estimates that control for a

limited set of demographic variables.  Finally, within each panel, each column reports estimates

using either 1-day, 30-day or 1-year mortality as the dependent variable.

Focussing first on the GMM estimates, we find that controlling for aspirin and beta

blockers reduces the estimated effect of catheterization substantially.  Based on the models with a

full set of patient covariates, we estimate effects of catheterization on mortality that are about one

third as large (as compared to Table 4) at 1-day and 30-days, and about 20% smaller at 1 year.

Aspirin is estimated to have substantial effects on short-term mortality, peaking at a 7.2

percentage point reduction in 30-day mortality.  In contrast, the effect of Beta blockers (like

catheterization) appears to cumulate so that by 1 year after the heart attack they have reduced

mortality by 10.0 percentage points. All of these estimates are fairly precise, with standard errors

of 0.7 to 2.5 percentage points.

Based on clinical knowledge, one might not expect the effect of short-lived hospital

treatments (such as Beta blockers) to have effect on mortality that was significantly larger at 1
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year than at 30 days.  Given that many important treatments are still omitted from this model, it is

likely that some of this effect is coming from other omitted treatments (such as use of

medications after leaving the hospital) that are correlated with receiving Beta blockers in the

hospital.  Thus, until models are estimated with a more complete list of treatments, we believe

that these preliminary results should be interpreted cautiously.

As in Table 4, OLS estimates larger effects of catheterization.  In fact, controlling for

aspirin and beta blockers has little effect on OLS estimates of the effect of catheterization on

mortality.  The OLS estimates of the effect of aspirin are also larger than the GMM estimates. In

contrast, OLS estimates of the effect of beta blockers on mortality are smaller than the GMM

estimates. As argued above, OLS estimates will be biased by the fact that patients who die

quickly will be less likely to receive some treatments, even if one controls perfectly for patient

severity at the time of admission.  Therefore, we believe that these differences between the OLS

and GMM estimates reflect substantial bias in the OLS estimates resulting from treatment

variations within hospitals; the GMM estimates remove such bias.

Once again, the GMM estimates are similar when we control for a more limited set of

patient covariates.  In particular, both the estimated effects of catheterization and of beta blockers

are little changed.  Only the aspirin effects appear to change systematically, increasing by 3-5

percentage points when we use the more limited patient covariates.  The effect of catheterization

on mortality also appears slightly larger at 1 year. In contrast, the OLS estimates are quite

sensitive to changes in the patient covariates, with estimated effects of each treatment on

mortality nearly doubling by 1 year when we control for a more limited set of covariates.

Catheterization, of course, is a diagnostic procedure and not a treatment per se.  Thus,

including it as a treatment in these regressions is somewhat ad hoc, in that it is clearly being
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included as a proxy for invasive treatment.  Alternatively, we could drop catheterization as a

treatment variable and replace it with direct measures of invasive treatments.  In Table 6, we

report such estimates.2   The estimates are for similar specifications to those reported in Table 5,

but replacing catheterization with two surgical treatments:  did the patient receive bypass surgery

within 90 days of their heart attack, and did the patient receive angioplasty within 90 days of

their heart attack.  These models continue to include aspirin and beta blockers as treatment

variables.

The results are quite striking, with estimated effects of bypass in particular being too

large to be clinically plausible.  Based on the GMM estimates controlling for a detailed set of

patient coviates, both surgical treatments are found to have significant effects on 1-year

mortality.  The effects of angioplasty are relatively small and insignificant on short-term

mortality, but angioplasty is estimated to reduce 1-year mortality by 7.4 percentage points.

Bypass surgery is estimated to have significant effects on all mortality measures, with bypass

estimated to reduce mortality at one year by over 22 percentage points.  These results suggest that

the overall reduction in mortality associated with catheterization (about 10 percentage points

from Table 5) can be decomposed into two effects.  About one third of the patients receiving

catheterization go on to have bypass surgery, and their mortality is estimated to be reduced by 22

percentage points.  Another third of the patients receiving catheterization go on to have

angioplasty, and their mortality is estimated to be reduced by 7 percentage points.

                                                
2 When we estimate models that include catheterization as well, the coefficients on bypass and
angioplasty change very little, and the coefficient on catheterization is small in magnitude and
insignificant.  However, standard errors on all of these coefficients increase by a factor of 2-4
because of the strong correlation in these treatments.
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Why are the estimated effects of bypass so large? The most likely reason is that, as was

the case with catheterization, hospitals that perform revascularization most extensively are

among the most technologically sophisticated hospitals.  Many other treatments may also be used

more extensively by these hospitals.  As a result, the large estimated effect of bypass may be the

result of bypass proxying for a set of treatments that have not been directly controlled for in the

regression.  In other words, even if the GMM method eliminates bias resulting from treatment

depending on patient severity, hospitals with high bypass rates may still have much lower

mortality rates because of other treatments they provide rather than the direct effect of bypass.

In future work, we intend to explore the full potential of the GMM methods to control for these

likely correlated treatments.

The remaining GMM estimates in Table 6 tell a similar story to the estimates from earlier

tables.  The estimated effects of aspirin and Beta blockers does not change much when we

include bypass and angioplasty in the model. Once again, the GMM estimates change little when

we control for demographic variables only.  As in earlier specifications, the OLS estimates are

quite different from the GMM estimates and much more sensitive to changes in the set of patient

covariates.  The most striking difference is that OLS estimates that bypass reduces 1-year

mortality by 10.7 percentage points, compared to the GMM estimate of 22.2 percentage points.

We assume that the patient-level variation in treatment used by OLS is endogenous, and

therefore the OLS estimate is biased, because unexpected mortality (or survival) directly effects

treatment decisions. One way of checking this assumption is to try including a treatment that on a

priori grounds should have little effect on mortality.  Catheterization is a good example, as this is

a diagnostic treatment that should have little direct effect on mortality.  When we add

catheterization as a treatment, the GMM method estimates that catheterization has a small and
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insignificant effect on mortality, as expected.  Moreover, adding catheterization to the models

reported in Table 6 has little effect on the GMM estimates of the other treatment effects, although

the standard errors of the estimates increase substantially due the high correlation among these

treatments.  For example, the estimated percentage point reduction in 1-year mortality is 10.4 for

angioplasty (SE=7.0), 25.4 for bypass (SE=9.8) and –2.7 for catheterization (SE=6.3). In

contrast, when we include catheterization in the OLS models, the estimated effect of bypass and

angioplasty fall even further (to around 5 percentage points on 1-year mortality), while the

estimated effect of catheterization is large and significant (11.8, SE=0.3 for 1-year mortality).

Since we would not expect catheterization to have such large effects, this suggests that the OLS

estimates are indeed biased by the endogeneity of catheterization use within hospitals.

Overall, the results of this section provide further support for the GMM method.  We are

able to estimate fairly precise treatment effects in models that control for multiple dimensions of

treatment.  These estimates are quite similar whether we control for demographic variables only,

or for a detailed list of patient comorbidity and severity measures available in the CCP data.

Finally, the estimated treatment effects of drugs are broadly consistent with medical knowledge.

Aspirin is found to have substantial immediate effects on short-term mortality, while beta

blockers have more gradual, but still substantial, effects on mortality.  While catheterization per

se is found to have no significant effect on mortality, invasive treatments following

catheterization do appear to have effects on long-term mortality.  However, given the high level

of correlation among the treatments we have included in this preliminary analysis, we expect that

at least some of these treatment effects are the result of other related treatments being provided to

patients but not yet incorporated into our analysis.
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5. Conclusion

Estimating the effects of medical and surgical treatments in a valid manner is the

foundation of evidence-based medicine.  Despite advances in our ability to collect and analyze

large databases of patient claims, there remains no general method for estimating valid treatment

effects for the large number of treatments that can vary in observational data.

In this paper, we propose such a method and demonstrate the method’s usefulness in

estimating the effect of medical and surgical treatments on mortality among elderly heart attack

patients.  The method relies on hospital-level variation in treatment intensity, along with

sufficient data on patients to control for relevant medical information these patients used in

selecting a hospital.  Thus, it eliminates bias arising from treatment selection based on

unobservable patient characteristics within hospitals – which is plausibly the major source of

selection bias in observational studies of acute conditions like AMI.  In our application, this

method appears to produce precise estimates of treatment effects that are largely robust to

whether or not one controls for detailed patient-level severity measures.

On a substantive level, we find that the effects of drug treatments (aspirin, beta blockers)

and surgical treatments (bypass, angioplasty) on survival are both significant and substantial.  We

emphasize that our preliminary results here only begin to use the full potential of our methods; in

ongoing research, we are expanding our models to accommodate more of the many treatments

that can and do vary for AMI patients.  These more complete models will enable us to determine

how much of the estimated treatment effects in our preliminary results, which remove selection

bias arising from patient-specific treatment decisions within hospitals, are the result of other

treatments whose use we have not yet modeled.  We will also explore further whether a small

amount of residual across-hospital selection bias remains.
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In addition, there remains substantial variation across hospitals in the rate at which heart

attack patients are provided with these treatments.  Understanding the reasons for this variation

in treatment rates is an important topic of future research.  Also, since these treatments vary

dramatically in their costs as well as estimated effects on survival, it will be important for future

work to evaluate the cost-effectiveness of these alternative treatments.

Finally, we believe that the method we propose is generally applicable, and can be used in

many applications to estimate treatment effects using the type of observational data commonly

available in claims databases.  The method can, in principal, be applied to any outcome and any

combination of treatments, as long as there is variation in treatment rates across hospitals and as

long as hospital-level selection bias is not substantial.  More generally, the method could be

applied wherever there is systematic variation at some aggregate level, such as physician,

medical group, or geographic region.  Of course, there may be particular features of our

application to elderly heart attack patients that led to the apparent success of the method.

Evaluating the performance of this method in other applications is an important area for future

work.
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