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Abstract: Robins (1993, 1994, 1997, 1998ab) has developed a set of causal or counterfactual models,
the structural nested models (SNMs). This paper describes an alternative new class of causal models-
the (non-nested) marginal structural models (MSMs). We will then describe a class of semiparametric
estimators for the parameters of these new models under a sequential randomization (i.e., ignorabil-
ity) assumption. We then compare the strengths and weaknesses of MSMs versus SNMs for causal
inference from complex longitudinal data with time-dependent treatments and confounders. Our
results provide an extension to continuous treatments of propensity score estimators of an average
treatment effect.

1 Introduction

Robins (1993, 1994, 1997, 1998ab) has developed a set of causal or counterfactual models, the structural

nested models (SNMs). Robins (1998abcd) has recently described an alternative new class of causal

models – the (non-nested) marginal structural models (MSMs). We describe a class of semiparametric

estimators for the parameters of these new models under a sequential randomization (i.e., ignorability)

assumption. We then compare the strengths and weaknesses of MSMs versus SNMs for causal inference

from complex longitudinal data with time-dependent treatments and confounders. Two major strengths

of MSMs compared to SNMs are as follows.

• MSMs can be used to provide semiparametric estimates of the causal effect of a time-dependent

treatment on a binary outcome using models (e.g. logistic models) which naturally respect the fact

that probabilities lie in the interval [0, 1].

• MSMs cohere much more closely than do SNMs with models for the analysis of time-dependent

treatments that are standardly used in the absence of time-dependent confounders. For example,

in the absence of time-dependent confounders, a time-dependent Cox proportional hazards model

for the effect of time-dependent treatment on a time-to-event (survival time) outcome is commonly

employed. The MSMs provide a natural extension of the time-dependent proportional hazards

model. Unlike the usual time-dependent Cox model, the marginal structural time-dependent Cox

model can be used to obtain valid causal inferences for the effect of a time-varying treatment in the

presence of time-varying confounding factors. [We remind the reader that, as discussed in Robins

(1986), one cannot estimate the effect of a time-dependent treatment on survival in the presence of

time-dependent confounding factors by using an ordinary time-dependent Cox model that adjusts

for the time-dependent confounding factors since, in general, these time-dependent confounding

factors will be both determinants of later treatment and affected by earlier treatment. Marginal

structural Cox models overcome this deficiency.] Disadvantages of MSMs are discussed later. The
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relationship of our approach to the propensity score approach of Rosenbaum and Rubin (1983) is

considered in Section 4.1.

We now give a somewhat informal introduction to marginal structural models, and we report the

results of a preliminary data analysis of AIDS Clinical Trial Group (ACTG) Trial 002 using MSMs. We

begin with the following simple setting. Consider a study of AIDS patients. Let A (t) be the dose of

a treatment of interest, say AZT, at time t with time measured as days since start of follow-up. Let

Y be an outcome of interest measured at end-of-follow-up at time K + 1. Our goal is to estimate the

causal effect of the time-dependent treatment A (t) on the mean of Y . Let A (t) = {A (u) ; 0 ≤ u ≤ t}

be treatment history through t and let L (t) = {L (u) ; 0 ≤ u ≤ t} be the history through t of a vector of

relevant prognostic factors L (u) for (i.e., predictors of) Y , such as CD4 lymphocyte count, white blood

count (WBC), hematocrit, age, gender, etc. Suppose Y is a dichotomous outcome (e.g., Y = 1 if HIV

RNA is detectable in the blood and zero otherwise), and we entertain a model that says the mean of Y

given AZT history, A ≡ A (K + 1), is a linear logistic function of a subject’s cumulative AZT dose. We

write the model

E
[
Y | A

]
= g

(
A; γ

)
where

g
(
A; γ

)
=
[
1 + exp

{
−γ1 − γ2cum

(
A
)}]−1

and cum
(
A
)
=
∫K+1
0 A (t) dt is the subject’s cumulative treatment. The maximum likelihood estimator

(MLE) of γ can then be computed from the observed data Oi =
(
Li, Ai, Yi

)
, i = 1, . . . , n, on the n

study subjects using standard logistic regression software with Y as the Bernoulli outcome variable and

cum
(
A
)
as the regressor. That is, the MLE of γ = (γ1, γ2)

′
maximizes

n∏
i=1

Liki (γ) with Liki (γ) =

g
(
Ai; γ

)Yi [
1− g

(
Ai; γ

)]1−Yi
being the likelihood contribution for a single subject. [Note Liki (γ) does

not depend on the patient’s prognostic factor history Li ≡ Li (K + 1).] Alternatively, we could have used

Bayesian methods by specifying a prior distribution for γ and then estimating γ by its posterior mean

given the data. In reasonable large samples, the MLE and Bayes estimate will closely approximate one

another.

Causal Interpretation of Regression Parameters: The question then is when does

γ2 have an interpretation as the causal effect of treatment history on the mean of Y ? To approach this

question, imagine that the decision to administer treatment at each time t were made totally at random

by the treating physician. In that hypothetical case, giving treatment at time t is not expected to be

associated with any measured or unmeasured prognostic factors (i.e., there would be no “confounding”)

and therefore γ2 would intuitively have a causal interpretation. Similarly, γ2 would keep its causal inter-

pretation if the physician’s decision were based only on the history of treatment prior to t. Whenever

the conditional probability of receiving treatment on day t given past treatment and prognostic factors

history (measured and unmeasured) depends only on past treatment history, we say the process is a

“causally exogenous or ancillary treatment process”. (A more formal mathematical definition is provided

below.) It is well-recognized in the social sciences, econometrics, epidemiologic, and biostatistical liter-

ature that γ2 will have a causal interpretation if A (t) is a causally exogenous (or ancillary) covariate

process. Randomized treatments like the one described above are causally exogenous treatments.

We say that a treatment A (t) is a “statistically exogenous or ancillary process” if the probability

of receiving treatment at time t does not depend on the history of measured time-dependent prognostic
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factors L (t) up to t conditional on treatment history prior to t, i.e.,

L (t)
∐
A (t) | A (t− 1) ,

where A
∐

B | C means that A is independent of B given C.

Note that a necessary condition for A (t) to be “causally exogenous” is for it to be “statistically exoge-

nous.” However, that a process is “statistically exogenous” does not imply it is “causally exogenous,”

because there may be unmeasured prognostic factors (i.e., confounders) that predict the probability of

treatment A (t) at time t given past treatment history. We can test from the data whether A (t) is statis-

tically exogenous but are unable to test whether a statistically exogenous process is causally exogenous.

Suppose A (t) is discrete and we can correctly model the probability

f
[
a (t) | � (t) , a (t− 1)

]
of receiving treatment a (t) on day t as a function of past treatment a (t− 1)

and measured prognostic factor history � (t). We could then measure the degree to which the treatment

process is statistically non-exogenous through day t by the random quantity

W (t) =
t∏

k=0

f
[
A (k) | A (k − 1) , L (k)

]
/f
[
A (k) | A (k − 1)

]
.

The numerator in each term inW(t) is the probability that a subject received his own observed treatment

at time k, A(k), given his past treatment and prognostic factor history. The denominator is the probability

that a subject received his observed treatment conditional on his past treatment history but not further

adjusting for his past prognostic factor history. Note that the treatment process is statistically exogenous

just in the case that W(t) = 1 for all t. Of course, W(t) is unknown and will have to be estimated from

the data but, for pedagogic purposes, assume for the moment that it were known.

When A (t) is a statistically endogenous process, we shall consider estimating γ by a weighted logistic

regression in which a subject is given the weight W−1 ≡ [W (K)]
−1

. The weighted logistic regression

estimator maximizes
n∏
i=1

[Liki (γ)]
W−1
i . This weighted logistic regression would agree with the usual

unweighted analysis described above just in the case in which A (t) were exogenous. The somewhat

surprising result described in detail below is that, if the vector of prognostic factors recorded in L(t)

constitutes all relevant time-dependent prognostic factors (i.e., confounders), then, whether or not the

treatment process is statistically exogenous, the weighted logistic regression estimator of γ2 will converge

to a quantity β2 that can be appropriately interpreted as the causal effect of treatment history on the

mean of Y . In contrast, when A (t) is statistically endogenous, the usual logistic regression estimator will

still converge to the parameter γ2, but now γ2 will have no causal interpretation.

To prove such a claim, we need to give a formal mathematical meaning to the informal concept of

the causal effect of treatment history on the mean of Y . To do so, we first introduce some notational

conventions. We use capital letters to represent random variables and lower case letters to represent

possible realizations (values) of random variables. For example, Oi is the random observed data for the

ith study subject and o is a possible realization (value) of Oi. Further, we assume that the random vector

Oi for each subject is drawn independently from a distribution common to all subjects. Because the Oi

have the same distribution, we often suppress the i subscript.

Counterfactual Outcomes: Now we introduce counterfactual or potential outcomes. For

any fixed non-random treatment history a =

{a (u) ; 0 ≤ u ≤ K + 1}, let Ya be the random variable representing a subject’s outcome had, possibly

contrary to fact, the subject been treated with history a rather than his observed history A. Note the

a’s are possible realizations of the random variable A. For each possible history a, we are assuming a

3



subject’s response Ya is well defined (although generally unobserved). Indeed we only observe Ya for that

treatment history a equal to a subject’s actual treatment history A, i.e., Y = YA. Then formally our

statement that the effect of treatment history on the mean of Y is a linear logistic function of cumulative

treatment is the statement that, for each a,

E [Ya] = g (a;β)where g (a;β) = [1 + exp {−β1 − β2 cum (a)}]−1 ,

which we refer to as a MSM for the effect of treatment on the mean of Y .The model for E [Ya] is a marginal

structural model since it is a model for the marginal distribution of counterfactual variables and, in the

econometric and social science literature, causal models (i.e., models for counterfactual variables) are

often referred to as structural.

The parameter β2 of our MSM is of important policy interest. To see why, consider a new subject

exchangeable with (i.e., drawn from the same distribution as) the n study subjects. We must decide

which treatment history a to administer to the new subject. We would like to provide the treatment

that minimizes the subject’s probability of having HIV RNA in his blood at end of follow-up. That is,

we want to find a that minimizes E [Ya]. Thus, for example, if the parameter β2 of our causal model is

positive, we will withhold AZT treatment from our subject (i.e., we will give him the treatment history

a ≡ 0), since positive β2 indicates that the probability of having HIV RNA in one’s blood at the end

of follow-up increases with increasing cumulative AZT dose. In contrast to β2, the parameter γ2 of

our association model E
[
Y | A

]
= g

(
A; γ

)
may have no causal interpretation. For example, suppose

physicians preferentially started AZT on subjects who, as indicated by their prognostic factor history,

were doing poorly and that AZT has no causal effect on the mean of Y (i.e., β2 = 0). Nonetheless, the

mean of Y will increase with cumulative AZT doses and thus γ2 will be positive. In this setting, we say

that the parameter γ2 of the association model lacks a causal interpretation because it is confounded by

the association of the prognostic factors L (u) with the treatment A (u).

Formally, in terms of counterfactuals, we say that the A (t) process is “causally exogenous” if, for all

histories a,

Ya
∐
A (t) | A (t− 1)

which is equivalent to

Ya
∐

A .

Given the covariates recorded in L (t), we say there are no unmeasured confounders if for each a

Ya
∐
A (t) | L (t) , A (t− 1) .

With these formalizations, it can then be shown mathematically, that when there are no unmeasured

confounders, (i) statistical exogeneity [i.e., L (t)
∐
A (t) | A (t− 1)] implies that the A (t) process is

“causally exogenous,” (ii) the weighted logistic estimator converges to the parameter β2 of the marginal

structural model for E [Ya], and (iii) the limit γ2 of the usual logistic estimator generally differs from the

causal parameter β2 of the MSM unless the treatment process is statistically exogenous.

We shall also refer to the assumption of no unmeasured confounders as the assumption that treatment

A (t) is sequentially ignorable or randomized given the past. The assumption states that, conditional on

AZT history and the history of all recorded covariates prior to t, increments in AZT dosage rate at t are

independent of the counterfactual random variables Ya. This assumption will be true if all prognostic

factors for, i.e., predictors of, Ya that are used by patients and physicians to determine the dosage of
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AZT at t are recorded in L (t) and A (t− 1). For example, since physicians tend to withhold AZT from

subjects with low white blood count, and in untreated subjects, low white blood count is a predictor of

HIV RNA, the assumption of no unmeasured confounders would be false if L (t) does not contain WBC

history. It is the primary goal of the epidemiologists conducting an observational study to collect data

on a sufficient number of covariates to ensure that the assumption of no unmeasured confounders will be

at least approximately true.

The assumption of no unmeasured confounders is the fundamental condition that will allow us to draw

causal inferences from observational data. It is precisely because it cannot be guaranteed to hold in an

observational study and is not empirically testable that it is so very hazardous to draw causal inferences

from observational data. Note that if, as in a sequentially randomized trial, at each time t, the dose of

AZT was chosen at random by the flip of a coin, then the assumption of no unmeasured confounders

would be true even if the probability that the coin landed heads depended on past measured covariate and

AZT-history. It is because physical randomization guarantees the assumption that most people accept

that valid causal inferences can be obtained from a randomized trial. See Rubin (1978), Robins (1986)

and Holland (1986) for further discussion. Robins (1997, 1998b) and Robins et al. (1999) discuss how

the consequences of violations of the assumption of no unmeasured confounders can be explored through

sensitivity analysis. Also see Appendix 3 below.

Given the assumption of no unmeasured confounders, Robins (1987) shows the mean of the dichoto-

mous variable Ya is non-parametrically identified from the joint distribution FO of the observed data O

by the g-computation algorithm formula of Robins (1986). Specifically, E (Ya) = b (a) where

b (a) ≡

∫
· · ·

∫
E
(
Y | �K , aK

) K∏
k=0

f
(
�k | �k−1, ak−1

)
dµ (�k) (*)

and for notational convenience we have written z (k) as zk and z (k) as zk.

The g-computation algorithm functional b (a) is the marginal mean of Y in the manipulated subgraph

of the directed acyclic graph (DAG) G representing the observed data O in which all arrows into the

treatment variables A =
(
A1, . . . , AK

)
have been removed and A is set to a with probability 1 (Spirtes

et al., 1993). More specifically, let DAG G be the complete DAG with temporally ordered vertex set

O = {L0, A0, L1, A1, . . . , AK , Y } and let DAG Ga be the subgraph of G in which all arrows into the

Ak, k = 0, . . . ,K have been cut. Then b (a) is the marginal mean of Y based on a distribution for O

represented by DAG Ga in which f
(
Ak | Ak−1, Lk

)
is replaced by a degenerate density that takes the

value ak with probability 1 while the conditional density of each other variable in the set O given its

parents remains as in FO.

We say that the distribution of O = {L0, A0, L1, A1, . . . , AK , Y } is standardly parameterized if, for

each variable inO, we have specified a parametric or semiparametric model for the conditional distribution

of that variable given its temporal predecessors (the past) and the parameters of each conditional model

are variation-independent of those of any other conditional model. When our goal is to estimate the effect

of a sequential (time-dependent) treatment A on an outcome Y , Lemma 1 and Theorem 2 of Robins and

Wasserman (1997) imply that inference procedures based on the standard parameterization will fail.

Specifically, they prove that common choices for the parametric families in a standard parameterization

often lead to joint densities such that the g-computation formula for E (Ya) can never satisfy the causal

null hypothesis that E (Ya) is the same for all a. In particular, the causal null hypothesis does not

imply that Y
∐

AK | LK . As a consequence, in large samples, the causal null hypothesis, even when

true, will be falsely rejected regardless of the data. Robins and Wasserman propose reparameterizing the

distribution of O using structural nested models. MSMs represent an alternative reparameterization that
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also overcomes the fatal deficiencies of the standard parameterization.

Theory of Inverse-Probability-of-Treatment-Weighting: We now explain why

weighting by W−1 corrects our logistic regression estimator for the “confounding” due to the prognostic

factors in L (t). The first point to note is that in the definition of W (t) we could have replaced the

denominator pr
[
A (t) | A (t− 1)

]
by any other function of A (t) without influencing the consistency of our

weighted logistic estimator of the parameter β2 of the MSM; only the efficiency (variance) of our estimator

would be influenced. However, our estimator would be inconsistent if we replaced the numerator by any

other function of A (t) and L (t). Thus one can view weighting by W−1 as weighting by the inverse of a

subject’s probability of having his own observed treatment history. Now view each person as a member

of a pseudo- or ghost population consisting of themselves andW−1−1 ghosts (copies) of themselves who

have been added by weighting. In this new ghost or pseudo population, it is easy to show that L (t) does

not predict treatment at t given past treatment history, and thus we have created a pseudo-population

in which treatment is exogenous. Furthermore, the causal effect of A on Y in the ghost population is

the same as in the original population. That is, if E [Ya] = g (a;β) in the true population, the same will

be true of the ghost population. Hence, we would like to do ordinary logistic regression in the pseudo-

population. That is essentially what our weighted logistic regression estimator is doing, since the weights

create, as required, W−1 − 1 additional copies of each subject.

A formal, mathematical explanation of why weighting by W−1 corrects our logistic regression es-

timator for “confounding” is given in the following lemma characterizing the g-computation algorithm

functional b (a) defined in (*) above.

Lemma 1.1: b (a) defined in (*) is the unique function c (a) of a such that E
[
q
(
A
) (

Y − c
(
A
))

/W
]
=

0 for all functions q
(
A
)
for which the expectation exists.

Lemma 1.1 has the following corollary.

Lemma 1.2: Under sequential randomization, E (Ya) is unique function c (a) of a such that

E
[
q
(
A
) (

Y − c
(
A
))

/W
]
= 0 for all functions q

(
A
)
where the expectation exists.

Consistency of our weighted estimator then follows from the fact that the probability limit of our

weighted score equation is E
[
q
(
A
) (

Y − c
(
A
))

/W
]
= 0 with q

(
A
)
= (1, cum(A))′ and c

(
A
)
= g(A, β).

Under a mild strengthening of our assumption of sequential randomization (no unmeasured con-

founders), a simple, quite revealing, purely “causal” proof of Lemma 1.2 can be obtained that does

not use the fact that E (Ya) is given by the g-computation algorithm formula b (a) of Eq. (*). Let

YA =
{
Ya; a ∈ A

}
where A is the support of the random variable A. Suppose we strengthen our assump-

tion of no unmeasured confounders to

YA

∐
Ak | Lk, Ak−1 .

Denote the factual and counterfactual data by Z =
(
YA, A, L

)
and the observed data byO =

(
Y ≡ YA, A, L

)
.

We can factor the true joint density of Z that generated the data as

f (Z) = f (YA)
K∏
k=0

f
(
Lk | Lk−1, Ak−1, YA

) K∏
k=0

f
(
Ak | Lk, Ak−1

)
.

Now let f∗
(
Ak | Ak−1

)
be a density for Ak given Ak−1. It need not equal the true density f

(
Ak | Ak−1

)
.

Let f∗ (Z) be a joint density for Z that differs from the true joint density f (Z) only in that f∗
(
Ak | Lk, Ak−1

)
=

f∗
(
Ak | Ak−1

)
so that Ak is strictly exogenous. Thus,

f∗ (Z) = f (YA)
K∏
k=0

f
(
Lk | Lk−1, Ak−1, YA

) K∏
k=0

f∗
(
Ak | Ak−1

)
.
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Now E (Ya) = E∗ (Ya) since f (Z) and f∗ (Z) have the same marginal law for Ya. Second, since A is

causally exogenous under f∗ (z) [i.e., Ya
∐∗

A], we have thatE∗ [Ya] = E∗
[
Ya | A = a

]
= E∗

[
YA | A = a

]
=

E∗
[
Y | A = a

]
. That is, by A causally exogenous, the mean of Ya is given by the regression function

E∗
[
Y | A = a

]
of Y on A = a. Now it is a standard result that the regression function E∗

(
Y | A = a

)
is

characterized as the unique function c (a) solvingE∗
{
q
(
A
) [

y − c
(
A
)]}
≡
∫
q
(
A
) (

y − b
(
A
))

f∗ (Z) dµ(Z) =

0 for all q
(
A
)
where µ is a dominating measure. But,

∫
q (A)

(
Y − c

(
A
))

f∗ (Z) dµ(Z) =∫
q (A)

(
Y − c

(
A
)) f∗(Z)

f(Z) f(Z)dµ(Z) = E
[
q (A)

(
Y − c

(
A
)) f∗(Z)

f(Z)

]
. But, by definition, f∗(Z)

f(Z) = W−1

when f∗
(
Ak | Ak−1

)
= f

(
Ak | Ak−1

)
. Lemma 1.2 then follows, since E∗ (Y | A = a) = E (Ya). The

proof also makes clear that consistency of our weighted estimator does not require that we choose

f∗
(
Ak | Ak−1

)
= f

(
Ak | Ak−1

)
.

Data Analyses: Marginal Structural Mean Model for a Repeated Measures
Outcome: To give a better picture of the meaning and use of MSMs, we report preliminary results

of two data analyses. Full details will be published elsewhere. We estimate the joint effect in ACTG

Randomized Trial 002 of AZT treatment arm and aerosolized pentamidine (AP) on the evolution of CD4

count in the first analysis and on mortality in the second analysis. This trial was designed to compare the

effect of high-dose AZT with low-dose AZT on survival. However, over fifty percent of the subjects failed

to comply with the assigned treatment protocol and initiated treatment with a non-randomized therapy,

AP, during the course of the trial. The joint effects of AP and AZT treatment arm on survival have been

previously estimated using structural nested failure time models by Robins and Greenland (1994). We

first consider a MSM model for the effect of AP therapy on the mean of the log transformed CD4 count

history while adjusting for baseline variables. CD4 count measurements were obtained at weeks 8, 16,

24, and 32 measured in days. Specifically, we consider the MSM

E
[
Ya (m) | V †

]
= gm

[
a (m) , V †, β

]
where Y (m) = log [CD4 (m) + 2], CD4 (m) is the CD4 count on day m, Ya (m) is the counterfactual

version of Y (m) under the AP history a, V † = (1,m,R, Y (0) , logWBC (0))
′
is the vector of baseline

regressors with R = 1 denoting the high AZT treatment arm and R = 0 the low AZT treatment arm,

Y (0) is defined above, andWBC (0) is baseline white blood count. We modeled the regression function as

gm
[
a (m) , V †, β

]
= β′1V

†+β2cum (m,a) with cum (m,a) =
∫m
0 a (t) dt being cumulative AP treatment up

to daym. We make the assumption of no unmeasured confounders with L (t) being white blood count, the

number of episodes of pneumocystis pneumonia (PCP), an AIDS-related pneumonia, up to day t, and CD4

count on day t. Furthermore, the baseline covariates V † are included in L (0). Arguing as above, it can be

shown a consistent estimator of β is obtained by fitting the model E
[
Y (m) | V †, A

]
= gm

[
A (m) , V †, β

]
using the generalized estimating equation (GEE) option of Proc genmode in the SAS software package

under a working independence matrix and weighting the observation Y (m) for a subject by {W (m)}−1.

The GEE option of Proc genmode is simply a program that fits the above model by weighted least squares

to obtain an estimate of β. In estimating β, the program treats each individual at each of the four times

m as four separate observations when computing the least squares estimator. However, the program

outputs a robust variance estimator that appropriately accounts for the fact that the four observations

on a given subject are correlated.

Since W (m) was unknown, it was estimated from the data by fitting logistic models for

pr
[
A (k) | L (k) , A (k − 1)

]
and pr

[
A (k) | A (k − 1) , V †

]
. [Note that when our MSM conditions on base-

line variables V †, they should be included in the denominator of W (m).] Specifically, we fit the model

logit pr
[
A (k) = 0 | L (k) , A (k − 1) ≡ 0

]
= α′Q (k)

7



whereQ (k) = (1, log k, log [WBC (k − 1)] , Y (k − 1) , PCP bouts (k − 1) , Y (0) , log [WBC (0)] , R). Here,

PCP bouts (k − 1) is the number of episodes (bouts) of pneumocystis pneumonia through k−1. In fitting

the model, we treated each subject at each day k, k = 0, 1, . . . , 224 as an independent observation (which

is justified by the conditional martingale structure of the model). We note that since in the 002 data

file, any subject starting AP remained on it thereafter, it was only necessary to fit a model for A (k) for

subjects who had yet to begin AP [i.e., A (k − 1) ≡ 0]. We estimated pr
[
A (k) | A (k − 1) ≡ 0, V †

]
by

fitting the above model after eliminating the random time-dependent terms that were functions of (k − 1).

The 95 percent Wald intervals computed using the robust variance outputted by the GEE program are

conservative (i.e., they are guaranteed to cover the true β at least 95 percent of the time in large samples)

because they do not account for estimation of the weights W (m). It is interesting that estimating the

weights shrinks the variance of our estimator of β, so that our intervals (which do not account for the fact

that the weights are estimated) are conservative. Note that the elements of the vectors α multiplying the

time-dependent covariates log [WBC (k − 1)], Y (k − 1) and PCP bouts (k − 1) will all be zero if and

only if the AP treatment process is statistically ancillary. A three degree of freedom likelihood ratio test

of the hypothesis that all three components of α were zero rejected at the p < .01 level. As a consequence,

we rejected the hypothesis of statistical exogeneity.

The analysis just described assumes that there is no drop-out or censoring by end of follow-up. To

correct for this, we defined a subject as censored (i.e., permanently missing) the first time he missed one

of his scheduled visits or was censored by end of follow-up. Under the assumption of ignorable drop-out

given the time-dependent factors L (t) and treatment A (t), we still obtain consistent estimators of β in the

presence of drop-out if we weight a subject uncensored at day m by
{
W (m)W† (m)

}−1
whereW† (m) =

m∏
k=0

{p
[
R (k) = 0 | R (k − 1) = 0, L (k − 1) , A (k − 1)

]
/pr

[
R (k) = 0 | R (k − 1) = 0, A (k − 1) , V †

]
} is the

ratio of a subject’s probability of remaining uncensored up to day m divided by that probability calcu-

lated as if there had been no time-dependent determinants of drop-out except past treatment history.

Here, R (m) = 0 if a subject has not dropped out or reached end to follow-up by day m. Since W† (m) is

unknown, it was estimated from the data in a manner completely analogous to the estimation of W (m)

except with A (k) replaced by R (k) as the outcome variable and with A (k − 1) added as an additional

regressor. Furthermore, in the presence of censoring, it is necessary when estimating pr [A (k) = 0 | ·] to

add the event R (k) = 0 to the conditioning event.

We fit the above models and obtained an estimate β̂2 = .001 and conservative 95 percent confidence

interval (−.026, .028) for the parameter β2 representing the causal effect of cumulative AP dose on CD4

count. Furthermore, since in trial 002 the assignment to AZT treatment arm was at random with

probability 1/2, the AZT treatment arm indicator is exogenous. It follows that the component β1R of β1

multiplying the AZT treatment indicator R has the interpretation as the direct effect of AZT treatment

arm on the evolution of mean CD4 count that is not through AP history. We obtained an estimate of

.0196 with a conservative 95 percent confidence interval of (−.123, .163) for β1R.

Marginal Structural Cox Proportional Hazards Model: We next estimated the joint effects

of AP therapy and AZT treatment arm on survival by specifying a marginal structural Cox proportional

hazards model

λTa
(
t | V †

)
= λ0 (t) exp

[
β′1V

† + β2a (t)
]

where Ta is the subject’s time to death if he had followed AP history a, λTa
(
t | V †

)
is the hazard of Ta

at t given V †, λ0 (t) is an unspecified baseline hazard function, and V † = (R, Y (0) , logWBC (0)). Note

this model specifies that the hazard of failure at time t depends on current AP status rather than on
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cumulative AP history. Arguing as in the previous subsection, we can obtain consistent estimates of the

unknown parameter β = (β′1, β2)
′
by fitting the ordinary time-dependent Cox model λT

(
t | A (t) , V †

)
=

λ0 (t) exp
[
β′1V

† + β2A (t)
]
except that the contribution of subject to a calculation performed on subjects

at risk at time t is weighted by Ŵ (t)−1 Ŵ† (t)−1. Note that now when we model pr [Rk = 0 | ·] and

pr [Ak = 0 | ·] we must include the event T > k among the conditioning events. Here we have adopted

the convention that on any day k censoring occurs at the end of the day. Note since the subject-specific

weights change with time, one either needs to write a special program or trick a standard time-dependent

Cox model that allows weights into allowing for time-varying weights by a clever use of the time-varying

stratum option available in many off-the-shelf Cox programs. To obtain conservative 95 percent confidence

intervals for β, one needs to compute the so-called robust variance of Lin et al. (1989). Implementing the

above procedure, we obtained an estimate β̂2 = −.1362 with 95 percent conservative confidence interval

(−.35, .09) for β2. For the component β1R of β1 representing the direct effect of AZT treatment arm on

survival, we obtained an estimate of .1890 with a 95 percent confidence interval of (−.01,.21) indicating

borderline statistically significant evidence for a beneficial effect of the low-dose AZT arm. Both the

results obtained for the prophylaxis effect and for the AZT effect were consistent with those obtained by

Robins and Greenland (1994) using SNFTMs.

Philosophical Interlude: We pause to comment briefly on the definition and nature of the coun-

terfactual random variables Ta. Following Lewis (1973), we consider Ta to be a subject’s death time in

the closest possible world to this in which, possibly contrary to fact, the subject was treated with the AP

history a. Consider a subject i who, in the 002 trial, was assigned to the high-dose AZT arm, received AP

from week 10 to 40, took the assigned 1500 mg. of AZT daily until week 12 but then stopped all further

AZT therapy, and finally died in week 40. If AP had been withheld, it is quite conceivable that subject

i would have continued to be assigned 1500 mg. of AZT daily past week 12 if either (1) AP potentiated

the toxic effects of AZT, precipitating a life-threatening toxic episode in week 12, or (2) the subject,

although not toxic, had stopped AZT at week 12 because he felt himself to be adequately protected by

the AP treatment. To be concrete, say, in the closest possible world, subject i would have continued to

take 1500 mg. of AZT daily through week 14 and none thereafter if AP had been withheld. We now

consider the meaning of the counterfactual T0 ≡ Ta≡0 in which AP was always withheld. Then, by its

definition, T0 would be equal to subject i’s failure time when the subject was assigned to the high-dose

arm, never received AP, and took AZT daily through week 14 (rather than through week 12). Thus, T0

might well differ from the counterfactual variable, say T ∗0 , representing a subject’s survival time in the

closest possible world in which AP was withheld but, as in this world, AZT was stopped after week 12.

Several comments are in order.

First, T0i is conceptually rather well-defined, even if we do not observe what the particular subject i

would have done about his AZT dose after week 10 in the absence of AP therapy, as T0i is just subject i’s

outcome in the closest possible world to this one in which all AP therapy is withheld and all consequences

which flow from that (including possibly taking AZT in week 12-14) are all allowed to occur. Second, it

may be quite reasonable to make (at least to a good approximation) the assumption of no unmeasured

confounders for T0, in which case its distribution is non-parametrically identified by inverse-probability-

of-treatment-weighting, (equivalently, by the g-computation algorithm formula) from the distribution

of the observed data. The intuitive reason for this successful identification is that for a subset of the

population (i.e., those who never did take AP), we do observe T0, and under the assumption of no

unmeasured confounders, we can appropriately reweight them by W−1 to construct a ghost population

whose distribution of T0 = T is the same as that of T0 in the true study population. Third, from a public
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health point of view, it is much more important to identify the distribution of T0 than T ∗0 since it is

the distribution of T0 that would result if we made the public policy decision to withhold AP therapy.

Fourth, T ∗0 may be more relevant than T0 in a legal case against the manufacturers of AP. For example,

the manufacturers would argue that they should not be held responsible for any damages if a subject’s

observed death time T equalled their counterfactual death time T ∗0 (even if T differed from T0 due to

differences in the amount of AZT taken). Fifth, the distribution of T ∗0 is not identified even in an

experiment in which both AP and AZT are randomly assigned. Thus, no amount of data evidence will

ever determine the distribution of T ∗0 , even in a randomized experiment (Robins and Greenland, 1989).

Comparison with SNMs: Marginal structural models are an alternative to structural nested

models. A SNM is model for the magnitude of the causal effect of a final brief blip of a time-dependent

treatment at time t as a function of past time-dependent treatment and prognostic factor history. The

causal parameter of a structural nested model is identified under the assumption of no unmeasured

confounders. The essential difference between MSMs and SNMs is that SNMs model the magnitude of

the effect of a treatment given at t as a function of the prognostic factor history up to t. In contrast,

MSMs model the causal effect of treatment given at t only as a function of baseline prognostic factors.

Sec. 5 below is devoted to describing what is known about the advantages and disadvantages of MSMs

versus SNMs. Some of the advantages of MSMs were discussed above. Possible disadvantages include

the following. (i) Inability to easily estimate the effects of dynamic treatment regimes (i.e., treatment

plans where a subject’s covariate history up to time k determines the treatment to be taken at k). Actual

medical treatments are usually dynamic, since if a subject becomes toxic to a drug, the drug must be

stopped. (ii) The inability to directly test the null hypothesis of no effect of any treatment regime

(dynamic or non-dynamic) on outcome. (iii) The difficulty in performing likelihood-based inference for

MSMs, since the likelihood is a computational nightmare. (iv) Lack of identifiability of the MSM model

parameters when sequential ignorability holds for a so-called “instrumental variable” but not for the

actual treatment of interest. (v) MSMs, in contrast to SNMs, cannot be used if there exists a value of

�k, say �k = 0, such that for all but one value of ak, f
[
ak | �k−1, �k = 0, ak−1

]
= 0. An example would be

a study of the effect of an occupational exposure on mortality with �k = 0 if a subject is off work at time

k, �k = 1 otherwise, and subjects off work can only receive exposure level ak = 0. We note that SNMs

do not suffer from any of these five deficiencies.

2 Advantages of MSMs with Continuous Y or with Failure Time:

A Formal Definition of MSMs

2.1 The Data

Consider a study where we observe n i.i.d. copies of data O =
(
A (C) , L (C)

)
, where C is an adminis-

trative end of follow-up time, A (C) is a treatment process, L (C) is an outcome or response process and,

for any Z (u) , Z (t) ≡ {Z (u) ; 0 ≤ u ≤ t}. We assume C is an element of L (0) since it is assumed known

at time 0.

For purposes of causal inference, we assume the existence of an underlying treatment process A =

{A (u) ; 0 ≤ u <∞} with A (u) taking values in a set A (u) and the existence of underlying counterfactual

random variables

{
La; a ∈ A

}
(1)
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where La = {La (u) ; 0 ≤ u <∞}, a = a (·) = {a (t) ; 0 ≤ t <∞ and a (t) ∈ A (t)} is a treatment plan

(equivalently, regime or function) lying in a set of functions A. Given a regime a, let La(u),0 be counter-

factual history under a regime a∗ that agrees with a through time u and is 0 thereafter, where 0 is the

baseline value of a (t). Then we assume that the La satisfy the following consistency assumption with

probability 1:

La(u),0 (u) = La(t),0 (u) = La (u) = La† (u) (2)

for all t > u and all a† with a† (u) = a (u). This assumption essentially says that the future does not

determine the past. The observed data are linked to the counterfactual data by

L (C) = LA(C),0 (C) . (3)

Eq. (3) states that a subject’s observed outcome history through end of follow-up is equal to their

counterfactual outcome history corresponding to the treatment they did indeed receive. We assume

La =
(
Y a, V a

)
where Y a is an outcome process of interest and V a is the process of other recorded

variables. Further, we shall make the sequential randomization (i.e., ignorable treatment assignment)

assumption that for all t and a ∈ A,

Y a (t)
∐

A (t) | L
(
t−
)
, A
(
t−
)

(4)

where for any variable Z (t) = {Z (u) ;u ≥ t} is the history of that variable from t onwards. We also

refer to (4) as the assumption of no unmeasured confounders given prognostic factors L (t). Because of

measurability issues, (4) is not well-defined. If the A (t) process can only jump at discrete non-random

times t1, t2, . . . and the L (t) process has left-hand limits, i.e., L (t−) ≡ lim
u↑t

L (u), (4) is formally, for each

tk,

f
[
A (tk) | L

(
t−k
)
, A
(
t−k
)
, Y a (tk)

]
= f

[
A (tk) | L

(
t−k
)
, A
(
t−k
)]

. (5)

where f (· | ·) is the conditional density of A (tk) with respect to a dominating measure. If A (t) is a

marked point process that can jump in continuous time with CADLAG (continuous from the right with

left-hand limits) step-function sample paths, then Eq. (4) is formally that

λA
[
t | L

(
t−
)
, A
(
t−
)
, Y a (t)

]
= λA

[
t | L

(
t−
)
, A
(
t−
)]

(6a)

and

f [A (t) | L
(
t−
)
, A
(
t−
)
, A (t) �= A

(
t−
)
, Y a (t) ] = (6b)

f
[
A (t) | L

(
t−
)
, A
(
t−
)
, A (t) �= A

(
t−
)]

.

Here, the intensity process λA (t | ·) is lim
δ t→0

pr[A (t+ δt) �= A (t−) | A (t−) , ·]/δt. Eq. (6a) says that given

past treatment and confounder history, the probability that the A process jumps at t does not depend on

the future counterfactual history of the outcome of interest. Eq. (6b) says that given that the covariate

process did jump at t, the probability it jumped to a particular value of A (t) does not depend on the

future counterfactual history of the outcome of interest.

Following Heitjan and Rubin (1991), we say the data are coarsened at random (CAR) if

f
[
A (C) |

{
La; a ∈ A

}]
depends only on O =

(
A (C) , L (C)

)
. (7)

Note that we can use ideas from the “missing data” literature because one’s treatment history A (C)

determines which components of one’s counterfactual history
{
La; a ∈ A

}
one observes. Thus we can
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view causal inference as a missing data problem (Rubin, 1976). If, as in all the models we shall consider

in this paper, for each A
†
⊆ A satisfying a1 (u) �= a2 (u) for all a1, a2 ∈ A

†
, the

{
La (u) ; a ∈ A

†
}

may

have a non-degenerate joint distribution, then CAR implies sequential randomization (4) but the converse

is not true (Robins et al., 1999). Robins (1997, pg. 83) gives examples where one would expect (4) to be

true even when (7) is false. In this paper, we shall only need (4). However, even if (7) is also imposed this,

by itself, essentially places no restrictions on the joint distribution of the observable random variables

(Gill, van der Laan, Robins, 1997) and, thus, is not subject to empirical test.

2.2 MSMs

A MSM for
{
Y ā; a ∈ A

}
places restrictions on the marginal distribution of the Y a possibly conditional

on a baseline variable V † in V (0) (with C ∈ V † if C is random). Examples of MSMs follow. Each of

these examples will be important in our comparison of MSMs with structural nested models below.

Model 1: Suppose C = K + 1 w.p.1., the A (C) process jumps only at times 0, 1, 2, . . . ,K and the

La process jumps only at times 0−, 1−, 2−, . . . ,K−,K+1−. In models 1a-1c, we are only concerned with

an outcome measured at end of follow-up. Hence, we set Ya (m) ≡ 0 with probability 1 for m ≤ K and

define Ya = Ya (K + 1). Then we have

Model 1a – non-linear least squares: E
[
Ya | V †

]
= g

[
a (K) , V †, β0

]
where g (·, ·, ·) is a known

function. This is the logistic regression MSM we discussed in the Introduction.

Model 1b – semiparametric regression: η
{
E
[
Ya | V †

]}
= g

[
a (K) , V †, β0

]
+g†

(
V †
)
where η (·)

is a known monotone link function, g† (·) is unknown and unrestricted and g (·, ·, ·) is a known function

satisfying g
(
0, V †, β

)
= 0. The requirement that g

(
0, V †, β

)
= 0 implies that g†

(
V †
)
is the “main effect

of V †.” Such models are also referred to as partial spline models. They are semiparametric because the

main effect of V † is modelled non-parametrically.

Model 1c – stratified transformation model: pr
[
R (a, β0) < t | V †

]
= F0

(
t | V †

)
, F0

(
t | V †

)
an

unknown distribution function, R (a, β) = r
(
Ya, a, V

†, β
)
is a known increasing function of Ya satisfying

r
(
y, a, V †, β

)
= y if a ≡ 0 or β = 0. This model says that we know the conditional quantile-quantile

function linking the Ya’s given V † up to an unknown parameter β. It is the natural generalization of

model 1b for mean functions to quantile-quantile functions.

In the following model, we are interested in the outcome at each m ≥ 1 so we no longer assume that

Ya (m) ≡ 0 with probability 1.

Model 1d – multivariate non-linear least squares: E
[
Ya (m) | V †

]
= gm

[
a (m− 1) , V †, β0

]
, m =

1, . . . ,K+1 where the gm (·, ·, ·) are known. This is the natural MSM version of longitudinal generalized

estimating equation models for marginal means (Liang and Zeger, 1986). It is the model we use to analyze

the 002 CD4 count data in the Introduction.

Model 2: C = ∞, Ya is a failure time process, i.e., Ya jumps from 0 to 1 at some particular time

and stays at 1. Then define the failure time Ta by the equation Ya (Ta) = 1 and Ya
(
T−a
)
= 0. Let λ0 (t)

and λ0
(
t | V †

)
be unknown non-negative functions of t and

(
t, V †

)
respectively and, for any Z, λZ (u) is

the hazard of Z.

Model 2a – Cox proportional hazards model: λTa
[
t | V †

]
= λ0 (t) exp

[
r
(
a (t−) , t, V †;β0

)]
where r () is a known function satisfying r (0, t, 0;β) = 0. This is the model we use to analyze the 002

mortality data in the Introduction.

Model 2b – stratified Cox proportional hazards model: λTa
(
t | V †

)
=

λ0
(
t | V †

)
exp

[
r
(
a (t−) t, V †;β0

)]
where, now, r

(
0, t, V †;β

)
= 0.

Model 2c – stratified time-dependent accelerated failure time model: pr[r
(
Ta, a, V

†, β0
)
<
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t | V †] =

F0
(
t | V †

)
where r

(
u, a, V †, β

)
= r

(
u, a (u) , V †, β

)
is a known function increasing in its first argument

satisfying r
(
u,0, V †, β

)
= u. This model can also be written as

λR(a,β0)

(
t | V †

)
= λ0

(
t | V †

)
for a ∈ A, where R (a, β) = r

(
Ta, a, V

†, β
)
. This is the extension of model 1c to a failure time variable.

It is the model studied by Robins and Tsiatis (1992).

3 Estimation

3.1 Ancillary treatment process

In this section, we consider estimation of the parameter β0 of our marginal structural models. In this

subsection, we will suppose that A is a causally ancillary (i.e., exogenous) covariate process, i.e.,

A
∐{

La; a ∈ A
}
|V † . (8)

The often unrealistic assumption (8) implies CAR but, in contrast to CAR, places restrictions on the

joint distribution of the data. Specifically (8) implies statistical ancillarity

A (t)
∐

L
(
t−
)
| A
(
t−
)
, V † (9)

and thus (8) is subject to an empirical test.

Given (8), the restrictions on the observables O implied by any MSM are (9) and that the restrictions

on the distribution of Y a given V † specified by the MSM hold for the conditional distribution of the

observable Y (C) conditional on
(
A (C) , V †

)
.

For reasons that will become clear below, we indicate with a “*” any expectations, probabilities or

hazard functions computed under the assumption that (8) and (9) hold. For convenience, denote A (C)

as A. Thus, for our MSM models (1a) – (2c), (8) implies the association models

Model 1a: E∗
[
Y | V †, A

]
= g

(
A, V †, β0

)
Model 1b: η

{
E∗
[
Y | V †, A

]}
= g

(
A, V †, β0

)
+ g†

(
V †
)
.

Model 1c: R (β0)
∐∗

A | V † where R (β0) ≡ R
(
A, β0

)
.

Model 1d: E∗
[
Y (m) | V †, A

]
= gm

[
A (m− 1) , V †;β0

]
, m = 1, . . . ,K + 1.

Model 2a: λ∗T
[
t | V †, A

]
= λ∗T

[
t | V †, A (t−)

]
= λ0 (t) exp

[
r
(
A (t−) , t, V †, β0

)]
.

Model 2b: λ∗T
[
t | V †, A

]
= λ∗T

[
t | V †, A (t−)

]
= λ0

(
t | V †

)
exp

[
r
(
A (t−) , t, V †, β0

)]
.

Model 2c: λ∗R(β0)

[
u | V †, A

]
= λ∗R(β0)

[
u | A

[
r−1

(
u,A, V †, β0

)]
, V †

]
= λ0

(
u | V †

)
where R (β0) ≡

R
(
A, β0

)
and r−1

(
u, a, V †, β

)
≡ t if r

(
t, a, V †, β

)
= u.

We shall now consider estimation of these models for the observables, under assumption (9), and the

further assumption that

A (C) has a known conditional distribution given V † . (10)

Semiparametric inference in the association models 1a - 2c without (10) imposed has been examined previ-

ously by many authors. Below we use their results to solve the estimation problem in our semiparametric

model.

We will show that associated with each MSM model with (9) and (10) imposed is a class of regu-

lar asymptotically linear (RAL) estimators
{
β̂∗ (h, φ)

}
for β0, indexed by vector functions h ∈ H and
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φ ∈ Φ such that the set IF∗ = {IF ∗ (h, φ)} of influence functions of the β̂∗ (h, φ) constitute all the

influence functions for the model, in the sense that if β̃∗ is any other RAL estimator, then the influ-

ence function of β̃∗ equals IF ∗ (h, φ) for some functions h ∈ H, φ ∈ Φ. Recall that an estimator β̃

of β0 is RAL with influence function IF if n
1
2

(
β̃ − β0

)
= n−

1
2
∑
i

IFi + op (1), the IFi are i.i.d, and

the convergence of β̃ to β0 is locally uniform. Here op (1) denotes a random variable converging in

probability to zero. Thus a RAL estimator is asymptotically equivalent to a sum of the i.i.d random

variables IFi. We obtain β̂∗ (h, φ) by solving the estimating equations n−
1
2
∑

i D̂
∗
i (β, h, φ) = op (1)

described below. [We put op (1) on the right side of the estimating equation to take care of cases

(e.g., rank estimators) in which the estimating function D̂∗ (β, h, φ) is not continuous in β and, thus,

the left-hand side of the previous equality may never be exactly zero.] The solution β̂∗ (h, φ) has

influence function IF ∗ (h, φ) = {κ∗ (h)}−1 U∗ (β0, h, φ) where U∗i (β0, h, φ) depends only on subject

i’s data, κ∗ (h) = −∂E∗ [U∗ (β, h, φ)] /∂β|β=β0
does not depend on φ, and n−

1
2
∑

i D̂
∗
i (β0, h, φ) =

n−
1
2
∑

i U
∗
i (β0, h, φ) + op (1). Furthermore, Λ⊥ = {U∗ (β0, h, φ)} with h ∈ H, φ ∈ Φ is the linear span of

IF∗ and thus is the orthogonal complement to the nuisance tangent space for the model in the Hilbert

space induced by the covariance norm. (Here we are quoting a well known result from the theory of

semiparametric models. See Robins and Ritov (1997) for discussion.) We refer to U∗ (β0, h, φ) as the

influence function for the estimating function D̂ (β0, h, φ). More specifically, U∗ (β, h, φ) and D̂∗ (β, h, φ)

are each expressed as the sum of the two components, one of which U∗tp (φ) = D∗tp (φ) is independent of

the choice of the MSM and follows from the fact that, for the “treatment process (tp),” (9) and (10) are

assumed. Specifically, if the A (t) can jump only at times 0, 1, 2, . . . , U∗tp (φ) =
int(C)∑
k=0

φ
(
k,A (k) , L (k−)

)
−

E∗
[
φ
(
k,A (k) , L (k−)

)
| L (k−) , A (k−)

]
where int (C) is the greatest integer less that or equal to C. It is

easy to see that
{
U∗tp (φ)

}
is, as φ varies, the sum over k of functions of the observed data

(
A (k) , L (k−)

)
with mean zero given

(
A (k−) , L (k−)

)
. If A (t) is a continuous time marked point process, then U∗tp (φ) =∫

dM∗A (u)φ1
(
u,A (u−) , L (u−)

)
+
∫
dNA (u) {φ2

(
u,A (u) , L (u−)

)
− E∗[φ2

(
u,A (u) , L (u−)

)
| A (u) �=

A (u−) , L (u−) , A (u−)]} where dM∗A (u) = dNA (u)− λ∗A
[
u | A (u−) , L (u−)

]
du and

dNA (u) = I {A (u) �= A (u−)} counts jumps in the A process. [In the examples of the Introduction, we

chose the function φ to be identically zero so that D̂∗tp (φ) was also zero. As we shall see later, the choice

φ identically zero, although computationally convenient because we can then use standard software, is

somewhat inefficient.]

The other structural model-specific component D̂∗sm (β, h) and U∗sm (β, h) of D̂∗ (β, h, φ) and U∗ (β, h, φ)

are the well-known estimating functions and their associated influence functions for the association mod-

els 1a - 2c with neither (9) nor (10) not imposed.

Model 1a: D̂∗sm (β, h) = U∗sm (β, h) = h
(
A, V †

)
ε (β) with ε (β) = Y − g

(
A, V †, β

)
and h

(
A, V †

)
is any dim (β) vector function. In the linear logistic cumulative treatment model of the Introduction,

D̂∗sm (β, h) was the score equation from the logistic model and thus h
(
A, V †

)
was the vector (1, cum (a))

′
.

Model 1b: η (x) = x : D̂∗sm (β, h) = U∗sm (β, h) =
{
ε (β)− h1

(
A, V †

)}{
h2
(
A, V †

)
−E∗

[
h2
(
A, V †

)
| V †

]}
where h1 is any real valued function, ε (β) is as just defined and the range of h2 is of dim (β).

η (x) = ln [x/ (1− x)] : U∗sm (β, h) = U† (h, P (β)) and D̂∗sm (β, h) ≡ U†
(
h, P̂ (β)

)
, where P (β) =

expit
[
g
(
A, V †, β

)
+ g†

(
V †
)]

, P̂ (β) = expit
[
g
(
A, V †, β

)
+ ĝ†

(
V †
)]

, expit (x) = ex/ (1 + ex) , ĝ†
(
V †
)
is

a n
1
4 - consistent estimate of g†

(
V †
)
, and U† (h, P (β)) ≡

{Y − P (β)} {{h
(
A, V †

)
−E∗

[
h
(
A, V †

)
P (β) {1− P (β)} | V †

]
/E∗

[
P (β) {1− P (β)} | V †

]
}.

Model 1c: D̂∗sm (β, h) = U∗ (β, h) = h
[
R (β) , A, V †

]
−
∫
h
[
R (β) , a, V †

]
dF ∗

[
a | V †

]
.

Model 1d: Let ε (β) = {ε1 (β) , . . . εK+1 (β)}
′, εm (β) = Y (m)−gm

[
A (m− 1) , V †;β

]
. Then D̂∗sm (β, h) =
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U∗sm (β, h) = h
(
A, V †

)
ε (β) where h

(
A, V †

)
is now any dim (β) × (K + 1) matrix of real valued func-

tions.

Model 2a: D̂∗sm (β, h) =
∫∞
0 dNT (u)

{
h
(
u,A (u) , V †

)
− L̃ (h, u, β)

}
, where L̃ (h, u, β) = J̃ [h, β] /

J̃ [1, β]; for any h
(
u,A (u) , V †

)
, J̃ (h, β) = Ẽ[h

(
u,A (u) , V †

)
I (T > u) exp

{
r
[
A (u) , u, V †, β

]}
]; for any

Hi, Ẽ (H) =
n∑
i=1

Hi/n; 1 is the constant function equal to one; and NT (u) = I (T ≤ u). U∗sm (β, h) =∫∞
0 dMT (u)

{
h
(
u,A (u) , V †

)
−L∗

(
h, u, V †, β

)}
where L∗ (h, u, β) = J∗ [h, β] /J∗ [1, β]; J∗ [h, β] is de-

fined like J̃ (h, β) but with E∗ replacing Ẽ; and dMT (u) = dNT (u)− λT
(
u | A, V †

)
I (T > u)du.

Model 2b: U∗sm (β, h) and D̂∗sm (β, h) are as above except J∗ (h, β) ≡

E∗[h
(
u,A (u) , V †

)
I (T > u) exp

{
r
[
A (u) , u, V †, β

]}
| V †] and J̃ (h, β) replaces E∗

(
· | V †

)
in J∗ (h, β)

by a n
1
4 - consistent estimator Ê

(
· | V †

)
.

Model 2c: D̂∗sm (β, h) =
∫∞
0

duI [R (β) > u]
{
H2 (u, β)−E∗

[
H2 (u, β) | V †

]}
+∫∞

0 dNR(β) (u)
[
H1 (u, β)−E∗

[
H1 (u, β) | V †

]]
and, for j = 0, 1,Hj (u, β) = hj

[
u,A

{
r−1

(
u,A, V †, β

)}
, V †

]
.

U∗sm (β, h) = D̂∗sm (β, h)−E∗
[
D∗sm (β, h) | A, V †

]
.

Remark: Note that in model 2b and in model 1b with η (x) = ln [x/ (1− x)], smooths are necessary

to estimate g†
(
V †
)
and E∗

(
· | V †

)
if V † has continuous components. In particular, due to the curse

of dimensionality, it is not possible to obtain a reasonable n
1
2 – consistent estimator of β0 in these

models when V † has multiple continuous components. This can be formalized using the concept of curse

of dimensionality appropriate (CODA) semiparametric information bounds introduced by Robins and

Ritov (1997). Specifically, models 2b and 1b have CODA information bounds of zero, although they have

positive ordinary semiparametric information bounds.

3.2 Non-ancillary treatment process

In this section, we no longer assume (8) is true. The essential idea of this section (requiring some minor

modification) is to reweight D̂∗sm (β, h) by the inverse of a subject’s probability of having had his observed

treatment history. We continue to assume that

f
[
a (t) | L

(
t−
)
, A
(
t−
)
, V †

]
is known for t ≤ C (11)

which implies that if A (t) jumps at non-random times 0, . . . ,K, W (k) = f
[
A (k) | L (k−) , A (k−)

]
and

W (k) =
k∏

m=0
W (k) are known. If A (t) jumps in continuous time,W (t) =

exp
[
−
∫ t
0
λA
[
u | L (u−) , A (u−)

]
du
] ∏
{u;A(u) �=A(u−),u<t}

λA
[
u | L (u−) , A (u−)

]
f [A (u) | A (u−) , L (u−) , A (u) �= A (u−)] is known.

We now come to a subtle but crucial idea. We need to artificially censor a subject at the first

time C† that the density of receiving his observed treatment A
(
C†
)
at C† was zero for some prognos-

tic factor history �
(
C†
−
)
in order to insure that the reweighted D̂∗sm (β0, h) still has asymptotic mean

zero. We formalize this idea as follows. If A (t) jumps at non-random times, let
◦
A
(
k, a (k−) , v†

)
=

{a (k) ; f
[
a (k) | L (k−) , A (k−) = a (k−) , V † = v†

]
�= 0 w.p.1} and set C† =

min

{
k;A (k) /∈

◦
A
(
k,A (k−) , V †

)}
. IfA (t) jumps in continuous time, let

◦
A
(
t, a (t−) , v†

)
= {a (t) ; f [a (t) |

L (t−) , A (t−) = a (t−) , A (t) �= a (t−) , V † = v†] �= 0 w.p.1 or a (t) = A (t−)} and set C† =

inf

{
t;A (t) /∈

◦
A
(
t, A (t−) , V †

)}
. The variable C† is crucial because, as indicated in the remark following
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Lemma 3.1 below, one can only unbiasedly reweight a function of A (t) for A (t) ∈
◦
A
(
t, a (t−) , v†

)
.

Let f∗
(
a | V †

)
be a density (chosen by the analyst). Let F ∗ denote the joint distribution which differs

from the true distribution F of O only in that f
[
a (t) | L (t−) , A (t−) , V †

]
is replaced by the ancillary

density f∗
[
a (t) | A (t−) , V †

]
. Further, define W (t) ≡W (t) /f∗

[
A (t) | V †

]
and O† =

(
L
(
C†
)
, A
(
C†
))
.

Note that in the examples of the Introduction, we chose f∗
[
a (t) | A (t−) , V †

]
to be f

[
a (t) | A (t−) , V †

]
.

Note even with this choice, the distribution F of O differs from the distribution F ∗ if (9) is false. A key

result, which follows from direct calculation, is

Lemma 3.1: For any z
(
O†
)
, E
[
z
(
O†
)
/W

(
C†
)
| V †

]
= E∗

[
z
(
O†
)
| V †

]
.

Remark: It is false that E
[
z (O) /W (C) | V †

]
= E∗

[
z (O) | V †

]
.

Let D∗sm (β, h) be the probability limit under F ∗ of D̂∗sm (β, h) and let {Usm (β, h)} and {Dsm (β, h)}

be the subsets of {U∗sm (β, h)} and {D∗sm (β, h)}, respectively, that depend on the data only through

O†. Set W = W
(
C†
)
and note Dsm (β, h) and Usm (β, h) often depend on E∗

[
· | V †

]
= E

[
·/W | V †

]
or E∗ [·] = E [·/W]. Define D̂sm (β, h) and Ûsm (β, h) like Dsm (β, h) and Usm (β, h) except replace any

unknown expectations E
[
·/W | V †

]
and E [·/W] with appropriate estimates Ê

[
·/W | V †

]
and Ê [·/W] ·.

Examples: In model 1b, with η (x) = x, Usm (β, h) = D̂sm (β, h) = U∗sm (β, h) has h1
(
A, V †

)
and

h2
(
A, V †

)
being functions only of

{
A
(
C†
)
, V †

}
. Note E∗

[
h2
(
A, V †

)
| V †

]
is known and need not be

estimated.

In contrast, in models 2a and 2b, D̂sm (β, h) will be defined like D̂∗sm (β, h) except in defining J̃ (h, β)

we replace I (T > u) by I (T > u) /W in order to estimate the unknown expectations. Alternatively,

we can replace I (T > u) by I (T > u) /W (u). This latter choice (i) will in general have better finite

sample properties, (ii) tend to increase efficiency unless the estimator with I (T > u) /W was already

semiparametric efficient, and (iii) was the approach we took in the Introduction. The issues are exactly

those discussed in Robins (1993), which the reader may consult for further clarification.

In model 1b with η (x) = ln [x/ (1− x)], ĝ
(
V †
)
≡ ĝ

(
V †, β

)
could be chosen to minimize

Ẽ
[(
Y − expit

{
g
(
A, V †, β

)
+ g†

(
V †
)})2

/W
]
over g†

(
V †
)
in some class (e.g., splines), whose dimension

may increase with sample size.

In the appendix we briefly sketch a proof of the following.

Theorem 3.1: Subject to regularity conditions, in the semiparametric model (i) characterized by

(4), (11), the data O, and a MSM , the class
{
β̂ (h, φ)

}
with h ∈ H and φ ∈ Φ of estimators which

solve 0 =
∑

i D̂i (β, h, φ) with
{
D̂ (β, h, φ)

}
=
{
D̂sm (β, h) /W +Dtp (φ)

}
is a class of RAL estimators

with influence functions IF = {IF (h, φ)}, IF (h, φ) = {κ (h)}−1 U (β0, h, φ), κ (h) = −∂E [U (β, h, φ)] /

∂β|β=β0
, U (β0, h, φ) = Usm (β0, h) /W + Utp (φ), where Utp (φ) = Dtp (φ) is defined like U∗tp (φ) except

with the true law F replacing F ∗. Furthermore, IF is the set of all influence functions.

3.3 Efficiency for fixed h

We now begin to explore efficiency issues. By a projection argument similar to that given in Robins et

al. (1994), we have

Theorem 3.2: For a given h, among all estimators β̂ (h, φ), the most efficient has φ equal to φopt ≡

φopt (h): if A (t) only jumps at non-random times 0, 1, 2, . . . then φopt ≡ 0 if k > C†, and if k ≤ C†,

φopt
[
k, a (k) , � (k−)

]
= E[Usm (h) /W | A (k) = a (k) , L (k−) = � (k−)] =

{
W (k)

}−1 ∫∫
dµ
(
ak+1

)
f∗
(
a | v†

)
E[usm

{
a
(
C†
)
, Y a

(
C†
)
, V †, h

}
| La (k

−) = � (k−) , A (k) = a (k)] and Usm (h) ≡ Usm (β0, h). Further-

more, if CAR holds, A (k) = a (k) can be removed from the last conditioning event above. If A (t) jumps in

continuous time, φ1,opt = E[Usm (h) /W | L (u−) , A (u−) , A (u) �= A (u−)]−E
[
Usm (h) /W | L (u−) , A (u−)

]
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since E
[
Usm (h) /W | L (u−) , A (u−)

]
= E

[
Usm (h) /W | L (u−) , A (u−) , A (u) = A (u−)

]
, and φ2,opt =

E
[
Usm (h) /W | A (u) , L (u−)

]
.

We now relax unrealistic assumption (11) that the conditional density of A (t) is known. We consider

two cases. In the first case the density is completely unknown and in the second the density follows a

parametric model.

Theorem 3.3: a) The semiparametric model (ii) characterized by (4), data O, and a MSM (with

(11) not imposed), has the set of influence functions {IF (h, φopt (h))} with h ∈ H.

b): In model (iii) characterized by (4), data O, a MSM, and a parametric model indexed by parameter

α for f
[
a (t) | L (t−) , A (t−)

]
, the set of influence functions for the model is the set{

κ (h)
−1
[
U (h, φ)−E [U (h, φ)S′α] {E [SαS

′
α]}
−1

Sα

]}
of influence functions of

{
β̂ (h, φ, α̂)

}
solving op (1) =

n−
1
2
∑

i D̂i (β, h, φ, α̂) where α̂ is the MLE of α, Sα = ∂ log
{
f
[
A (t) | L (t−) , A (t−) , α

]
/∂α

}
is the

subject-specific score for α, and D (β, h, φ, α̂) is D (β, h, φ) evaluated at α̂.

Theorem 3.3b can be extended to semiparametric models for f
(
a (t) | L (t−) , A (t−)

)
such as a Cox

proportional hazard model as in Robins (1993; 1998b, App. 2). In the non- and semi-parametric case, we

have to plug an estimator of f
[
a (t) | L (t−) , A (t−)

]
into the estimating function D̂i (β, h, φ). In general,

the estimator needs to converge to the true density at a rate greater than n
1
4 to obtain a RAL estimator

of β.

3.4 Censoring

No new idea is required to account for and adjust for right censoring. Specifically, let Q be censoring

time in MSMs. Define a censoring process A2 (u) by A2 (u) = 0 if Q > u and A2 (u) = 1 otherwise. Let

the treatment of interest be a1 (u) and define a (u) = (a1 (u) , a2 (u)) and write Ta as Ta1,a2 . To want

to adjust for censoring is only to say that interest is in the direct effect of a1 when a2 ≡ 0, i.e., when

censoring is abolished. As a concrete example, the Cox model MSM 2a in the presence of censoring would

become

λTa1,a2≡0

(
t | V †

)
= λ0 (t) exp

{
r
[
a1
(
t−
)
, t, V †;β0

]}
.

If A is ancillary (now including the censoring process), D̂∗sm (β, h) and U∗sm (β, h) are as above except that

now NT (u) = I [T ≤ u] I [T < Q] and I [T > u] is everywhere replaced by I [T > u] I [Q > u]. Of course

W (t) is now the probability that a subject would have his observed treatment and censoring history.

This is exactly the approach we took in analyzing the 002 trial data in the Introduction.

4 Semiparametric Efficiency

4.1 The efficient score

In any semiparametric model, the semiparametric variance bound is the inverse of the variance of the

efficient score Seff . The efficient score in models (i) - (iii) of Theorems 3.1 and 3.2 are the same and, by

Theorem 5.3 in Newey and McFadden (1993), equal Seff = U (β0, heff , φeff ) where φeff = φopt (heff )

and heff is uniquely characterized by the requirement that for all U (β0, h, φ)

E
[
U (β0, h, φ)U (β0, heff , φopt (heff ))

′]
= κ (h)

which is equal to

E
[
Usm (β0, h)U (β0, heff , φopt (heff ))

′]
= κ (h) . (12)
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To show how to use (12) to calculate heff , we consider the following simple example.

Model 1a: Consider MSM 1a with C† = C = K+1 = 1 w.p.1 so K = 0 and the A (C) process only

jumps at time zero. So A = A (0) and W−1 = f∗
[
A | V †

]
/f
[
A | L (0)

]
where V † ⊂ L (0) = V (0). For

the purposes of computing the efficient score, we can choose f∗
(
A | V †

)
= 1 w.p.1 without worrying that

it is not a density, because it can be absorbed into heff
(
A, V †

)
. In Appendix 2, we prove the following.

Theorem 4.1: With f∗
(
A | V †

)
= 1 w.p.1, Eq. 12 implies heff

(
A, V †

)
is the unique solution to

the type two Fredholm equation heff
(
A, V †

)
[
∫
var

[
ε | A,L (0)

] {
f
(
A | L (0)

)}−1
f
(
V • | V †

)
dµ (V •)]+∫

heff
(
a, V †

)
ω
(
a,A, V †

)
dµ (a) = ∂g

(
A, V †, β0

)
/∂β where V • = L (0) \V † and ω

(
a,A, V †

)
=

[
∫
E [ε | a, L (0)]E

[
ε | A,L (0)

]
f
(
V • | V †

)
dµ (V •)]. Note that if A has finite support, this is a finite

dimensional matrix equation. Our estimators, specialized to this example, are continuous treatment

extensions of efficient propensity score estimators of an average treatment effect. By dividing by the

propensity score, we eliminate the bias due to within stratum confounding that can occur with subclas-

sification on the propensity score as recommended by Rosenbaum and Rubin (1983)

4.2 Efficiency calculations using missing data theory

Given (4), imposing CAR cannot change the efficient score. Thus, it is of interest to rederive the efficient

score using the Hilbert space results of van der Vaart (1991) and of Robins et al. (1994) for missing

data models under CAR. For convenience, assume C is non-random and write A ≡ A (C). The full data

are L
F

=
{
La; a ∈ A

}
. Given any B = b

(
L
F
)
, the score operator s (B) = E [B | O] , O =

(
A,LA

)
.

For any Q = q (O), the non-parametric adjoint operator s† under CAR is s† (Q) = E
[
Q | L

F
]

=∫
dµ (a) q

(
a, La

)
f
[
a | La

]
. Suppose for the remainder of this subsection that the A jumps only at

times 0, 1, . . . ,K and L jumps at 0−, . . . ,K + 1− and C = K + 1. We then have by CAR

f
[
a (k) | La

]
=

k∏
m=0

f
[
a (m) | a (m− 1) , La (m)

]
(13)

and f
[
a | La

]
= f

[
a (K) | La

]
. It is then easy to check the null space of s†, N

(
s†
)
= {Utp (φ)}. Now

define the non-parametric information operator, m = s†s : L
F
→ R

(
s†
)
where R

(
s†
)
is the range of s†.

Note that R
(
s†
)
=
{
B =

∫
dµ (a) b

(
a, La

)}
. Let m−1 : R

(
s†
)
→ R

(
s†
)
be the inverse of m on R

(
s†
)
.

Given a1, a2, let u12 be the smallest u with a1 (u) �= a2 (u) . We then have by a direct calculation

Theorem 4.2: If for all a1, a2

La1

∐
La2
| La1

(
u−12
)

(14)

then

m−1
[∫

dµ (a) b
(
a, La

)]
=

∫
dµ (a) {

K+1∑
m=1

{
f
[
a (m− 1) | La

]}−1
(15)

{E
[
b
(
a, La

)
| La (m)

]
−E

[
b
(
a, La

)
| La (m− 1)

]
}+E

[
b
(
a, La

)
| La (0)

]
} .

Remark: Gill and Robins (1999) show that (14) places no restriction on the law of the observed data O

even when sequential randomization and a MSM are imposed. We can and do always assume that (14)

holds.

Now let SFeff and ΛF,⊥ be the efficient score and the orthogonal complement to the nuisance tangent

space for the parameter β of our marginal structural model when we have data on L
F
. Then the

efficient score Seff based on data O under CAR is g
[
m−1 (Deff )

]
where Deff is the unique member of
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ΛF,⊥ ∩R
(
s†
)
satisfying

Π
[
m−1 (Deff ) | Λ

F,⊥
]
= SFeff , (16)

where Π is the Hilbert space projection operator. To show how to use this result to calculate Seff , we

revisit the example given in the last subsection.

Example: Model 1a: Consider MSM 1a as in Sec. 4.1. Then, by an extension of Theorem 8.3 of

Robins et al. (1994)

ΛF,⊥ =

{∫
dµ (a)h (a) ε (a)

}
(17)

where (i) ε (a) = ε (a, β0), (ii) h (a) is a vector valued function of the dimension of β0. Note that ΛF,⊥

is contained in R
(
s†
)
as will be the case for MSMs with positive information.

Remark:

If A = {a1, . . . , aS} is finite, (18)

then ε (a) can be identified with the S vector that has components εs (as) = Yas−g
(
as, V

†, β0
)
. For arbi-

trary A, ε (a) is a stochastic process with index set A. For a, a∗ ∈ A, let cv (a, a∗) = cov (ε (a) , ε (a∗)). If

A is given by (18), cv (a, a∗) corresponds to the S×S matrix with j, k entry cv (aj , ak). Let cv
−1 (a∗∗, a∗)

be a (generalized) inverse of cv (a, a∗), i.e., by definition, for any function q (a∗),∫ [∫
cv−1 (a∗∗, a) cv (a, a∗) dµ (a)

]
q (a∗) dµ (a∗) = q (a∗∗). In particular, if (18) holds, cv−1 (a∗, a) is just

the inverse of the matrix identified with cv (a, a∗). Then, generalizing Chamberlain (1987),

SFeff =

∫
dµ (a)

{
∂g
(
a, V †;β0

)
/∂β

}[∫
cv−1 (a, a∗) ε (a∗) dµ (a∗)

]
. (19)

If A is given by (18), ∂g
(
a, V †;β0

)
/∂β can be identified with the dimβ × S matrix with j, k entry

∂g
(
ak, V

†;β0
)
/∂βj. Again, generalizing Theorem 8.3 in Robins et al. (1994),

Π

[∫
dµ (a) b

(
a, La

)
| ΛF,⊥

]
=

∫
dµ (a)E

[
b
(
a, La

)
ε (a) | V †

]
(20)[∫

cv−1 (a, a∗) ε (a∗) dµ (a∗)

]
.

Hence to solve (16), we need to find the solution heff
(
a, V †

)
to the equation

E[m−1
{∫

dµ (a∗) h
(
a∗, V †

)
ε (a∗)

}
ε (a) | V †] = ∂g

(
a, V †;β0

)
/∂β . (21)

By (15) with K = 0 and the fact that, by CAR, f
(
a | La

)
= f (a | L (0)), the LHS of (21) can be written

E{

∫
dµ (a∗)h

(
a∗, V †

)
{ [ε (a∗)−E [ε (a∗) | L (0)]] {f (a∗ | L (0))}−1 +

E [ε (a∗) | L (0)] }ε (a) | V †} = E{

∫
dµ (a∗)h

(
a∗, V †

)
[cov [ε (a∗) , ε (a) | L (0)] {f (a∗ | L (0))}−1 +E [ε (a∗) | L (0)]E [ε (a) | L (0)] ]|V †} .

However, since by assumption (14), Yaj
∐
Yak | L̄ (0) for k �= j, (21) reduces to

h
(
a, V †

)
E{var [ε (a) | L (0)] f (a | L (0))

−1 | V †}+∫
dµ (a∗)h

(
a∗, V †

)
E{E [ε (a∗) | L (0)]E [ε (a) | L (0)] | V †}

= ∂g
(
a, V †, β0

)
/∂β .

Upon noting that, by CAR, f
[
ε | A = a, L (0)

]
= f [ε (a) | L (0)] , w. We see that this is the same expres-

sion for heff
(
a, V †

)
as obtained in Theorem 4.1.
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4.3 A practical approach to obtaining reasonable efficiency

Estimation of heff is computationally difficult because of the need to solve integral equations without

closed form solutions. A practical approach to choosing h and f∗
(
a | V †

)
is important. Given a model for

f
[
a (t) | a (t−) , � (t−)

]
depending on parameter α′ = (α′1, α

′
2) such that α1 = 0⇔ f

[
a (t) | a (t−) , � (t−)

]
=

f
[
a (t) | a (t−) , v†

]
, rather than choosing f∗

[
a | V †

]
, we use f∗

[
a | V †; α̃2

]
where α̃2 is the MLE of α2

with α1 set to zero. This is exactly the approach we took in analyzing the 002 data in the Introduction.

[The fact that f∗
[
a | V †

]
is estimated does not influence the asymptotic distribution of β̂ (h, φ).] It

follows that if (8) holds [i.e., A is an ancillary process], W will converge to 1. Further, in each of the

models 1a – 2c of Sec. 3.1, the efficient choice of h, say, hopt, for solving
∑

i D̂
∗
sm,i (h) = 0 when (9) is not

imposed is well known. We suggest choosing h to be hopt or an estimate ĥopt thereof, and choosing φ to

be an estimate of φopt
(
ĥopt

)
. Such a choice guarantees that if A is an ancillary process, our estimate of

β0 will be more efficient than the estimate based on solving 0 =
∑

i D̂sm,i (hopt). Specifically, in MSM 1a,

hopt = {∂ε (β0) /∂β}
{
var

(
ε (β0) | A, V †

)}−1
. For model 1b, Chamberlain (1988) gives h1,opt and h2,opt.

In model 1c, hopt = [∂/∂β]
[
ln
{
[∂R (β0) /∂Y ] f

[
R (β0) | V †

]}]
. In model 1d, hopt is as in model 1a with

ε (β0) now a vector. In model 2a, hopt = ∂lnr
[
A (u−) , u, V †, β0

]
/∂β. For model 2b, hopt is given by

Sasieni (1992). In model 2c, hopt,2 = hopt,1λ0
(
u | V †

)
and hopt,1 = ∂lnλR(β)

(
u | V †

)
/∂β|β=β0

.

5 Comparison of MSMs and SNMs

We begin by recalling the definition of a structural nested distribution model.

5.1 Structural Nested Distribution Models

For concreteness, we consider the setting of the MSM model 1a - 1c with Ya = Ya (K + 1) and the A pro-

cess and L process jumping at non-random times 0, . . . ,K and 0−, . . . ,K+1− respectively. Henceforth,

we take V † = ∅. Suppose Y is a continuous variable with a continuous distribution function FY (y) =

pr [Y < y]. Let (a (m) , 0) denote the treatment history given by a (m) through time m and zero at times

m + 1, . . . ,K. Then let γ
(
y, � (m) , a (m)

)
be the unique function mapping quantiles of Ya(m),0 into

those of Ya(m−1),0 conditional on L (m) = � (m) , A (m) = a (m) so that γ
(
y, � (m) , a (m)

)
measures the

magnitude of the effect of a final blip of treatment a (m) on quantiles of Y among subjects with observed

history
{
� (m) , a (m)

}
. A structural nested distribution model (SNDM) is a parametric model for this

function. That is, it specifies that γ
(
y, � (m) , a (m)

)
= γ

(
y, � (m) , a (m) , β0

)
where γ

(
y, � (m) , a (m) , β

)
is a known increasing function of y satisfying γ

(
y, � (m) , a (m) , β

)
= y if a (m) = 0 or β = 0. Recur-

sively define random variables
•
RK (β) , . . . ,

•
R0 (β) by

•
RK (β) = γ

(
Y,L (K) , A (K) , β

)
and

•
Rm (β) =

•
rm
(
Y,L (K) , A (K) , β

)
= γ

(
•
Rm+1 (β) , L (m) , A (m) , β

)
and set

•
R (β) =

•
r
(
Y,L (K) , A (K) , β

)
≡

•
R0 (β). [Heuristically,

•
Rm (β0) is YA(m−1),0 and R (β0) is Y0, where Y0 is the outcome when treatment

is always withheld. This is heuristic because in fact it is only the conditional distributions through time

m that are guaranteed to be the same.] Also let
•
r
−1 (

y, � (K) , a (K) , β
)
be the inverse of the function

•
r

with respect to its first argument. If γ
(
y, � (m) , a (m) , β

)
= γ (y, a (m) , β) does not depend on � (m) for

each m, we say that the SNDM model has no interaction.

Theorem 5.1: Under (4), a no interaction SNDM model is a stratified transformation model (STM),

i.e., MSM 1c, with R (a, β) =
•
r (Y, a, β) and R (β) =

•
R (β). However, the converse is not true.

That is, a no-interaction SNDM is a MSM. The semiparametric information bound for β is greater if
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we correctly impose a no-interaction SNDM than if we only imposed the corresponding STM. An SNDM

will be a MSM only if (as a fact of nature) there is no interaction. Theorem 5.1 indicates that a STM

is the natural MSM analog of a SNDM in this case. If γ
(
y, � (m) , a (m)

)
depends on � (m), we must

choose between analyzing the data under a SNDM versus a STM. To understand the advantages and

disadvantages of each, we need some additional background. Define a regime g = (g0, . . . , gK) ∈ G to be

a collection of functions gm : Lm → Am. Define g
(
� (m)

)
=
{
g0
(
�̄0
)
, . . . , gm

(
� (m)

)}
. Let Yg be the

counterfactual value of Y if regime g were followed. If g
(
�K
)
= aK ≡ a does not depend on �K , then

Yg = Ya and we say g is non-dynamic; otherwise, g is dynamic. Let g
[
� (k)

]
denote a realization of A (k).

If we have sequential ignorability for regime g, i.e.,

Yg
∐

A (t) | L
(
t−
)
, A
(
t−
)
, (22)

then, by Theorem 3.2 of Robins (1997), the law of Yg is given by the G-computation algorithm formula

FYg
(
y | � (k) , g

[
� (k − 1)

])
=

∫∫
FY
(
y | � (K) , g

(
� (K)

)) K∏
m=k+1

(23)

dF
[
� (m) | � (m− 1) , g

(
� (m− 1)

)]
.

We obtain FYg (y) from (23) by substituting in k = −1. Using the fact that, for continuous Y , Y is

·
r
−1
(
•
R (β0) , L (K) , A (K) , β0

)
, it can be shown that (23) implies

FYg (y) =

∫∫
I[
•
r
−1 {

u, � (K) , g
(
� (K)

)
, β0
}
> y] (24)

K∏
m=0

dF [� (m) | � (m− 1) , g
(
� (m− 1)

)
,
•
R (β0) = u]dF •

R(β0)
(u) .

In many settings, the g-null hypothesis that

FYg1 (y) = FYg2 (y) for all g1, g2 ∈ G (25)

will be of interest. This is implied by the sharp null hypothesis of no treatment effect that Yg1 = Yg2

with probability 1, i.e. no subject’s outcome is influenced by the treatment history they choose. Robins

(1986, 1997) proves the following.

Theorem 5.2: Given (22) for g ∈ G, (25) holds ⇔ (23) is the same for all g ⇔ γ
(
y, �m, am

)
= y ⇔

Y
∐

A (k) | L (k) , A (k − 1) , k = 0, . . . ,K . (26)

5.2 Advantages of SNDMs with a Continuous Y

We are now ready to compare the advantages and disadvantages of SNDMs and MSMs for continuous Y .

We begin by reviewing the advantages of SNDMs.

1. Although (26) implies β0 = 0 for both a SNDM and a STM, only for a SNDM is (26) equivalent

to β0 = 0. What this means causally is the following. For a STM, the null hypothesis β0 = 0 is

equivalent to the hypothesis that the distribution of Ya is the same for all non-dynamic regimes

a. This is a weaker hypothesis than the g-null hypothesis that says the distribution of Yg is the

same for all regimes, whether non-dynamic or dynamic. In most cases, it will be the latter null

hypothesis (25) that will be of public health interest unless it were not possible to collect data on

the covariates Lk which determine the treatment decisions for dynamic regimes.
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2. If the L (k) are discrete with only a moderate number of levels, then, even with

f
[
a (k) | � (k − 1) , a (k − 1)

]
totally unrestricted, an asymptotically distribution-free g-null test of

β0 = 0 (and thus of (25)) exists for a SNDM but, because of the curse of dimensionality, not

for a STM. Specifically, a non-parametric g-null test is equivalent to a test of independence of Y

and A (k) within strata defined jointly by L (k) , A (k − 1) (Robins, 1997). Thus, even if A (k) is

continuous, a test of independence of A (0) and Y within levels of L (0) will be an asymptotic α -

level test under (25). In contrast, a test of β0 = 0 in a STM (without (25) additionally imposed)

requires, by the Remark following Theorem 3.3a, that W can be consistently non-parametrically

estimated which will not be possible due to the curse of dimensionality. (Note that to estimate W,

we must be able to consistently estimate the density of A (k) given L (k) and A (k − 1) for all k,

which is not possible to do non-parametrically when the A (m) are continuous.) In other words,

the stronger hypothesis (25) that β0 = 0 for a SNDM is easier to test non-parametrically than the

weaker hypothesis that β0 = 0 for a STM.

3. Henceforth, assume a correct model for f
[
a (t) | � (t−) , a (t−)

]
is available for all t. (We remind

the reader that this would often be a false assumption.) Given a SNDM, with some difficulty

the law of Yg for dynamic g can be estimated using (24). In contrast, the law of Yg for dynamic

g is very hard to estimate given a STM. Specifically, given a SNDM, we estimate the law of Yg

as follows: (i) obtain an estimate β̂ by g-estimation (Robins, 1997), (ii) estimate F •
R(β0)

(u) by

the empirical law of the
•
Ri

(
β̂
)

for i = 1, . . . , n, (iii) specify and estimate a parametric model

for f

[
L (m) | L (m− 1) , A (m− 1) ,

•
R
(
β̂
)]

, (iv) and then evaluate the estimated version of the

integral (24) by Monte carlo.

In contrast, given a STM, we must, as discussed in Robins (1997, pg. 114; 1998a, Sec. 11)

and Robins et al. (1999), specify a parametric model for ν∗
(
y, � (m) , a

)
, where one can choose

to define ν∗
(
y, � (m) , a

)
in either of two ways, leading to different parameterizations. Either

ν∗
(
y, � (m) , a

)
≡ ν

(
y, � (m) , a

)
− ν

(
y,
{
� (m− 1) , � (m) = 0

}
, a
)
and ν

(
y, � (m) , a

)
maps quan-

tiles of Ya given �m, am−1 into quantiles of Ya given �m−1, am−1, or ν∗
(
y, � (m) , a

)
is defined to

be the ratio of the hazard evaluated at y of Ya given �m, am−1 to the hazard at y of Ya given

�m−1, am−1, � (m) = 0. Robins et al. (1999, Sec.8.7a) argue for the second option, since, in con-

trast to the first option, a parameterization in terms of hazard ratios is variation independent. As

discussed in Robins (1997, pg. 114-116; 1998a, Sec. 11) and Robins et al. (1999), estimation of

ν∗
(
y, � (m) , a

)
is a computational nightmare; indeed, fully parametric Bayesian or likelihood-based

inference for a MSM is computationally extremely burdensome.

4. As discussed in Robins (1997, Sec. 9; 1998bc) and Robins et al. (1999), for SNDMs, it is easy

to perform a sensitivity analysis in which the fundamental assumption (22) of ignorable treatment

assignment is no longer imposed. For a STM such a sensitivity analysis is somewhat less straightfor-

ward and sensitivity analysis methods for MSMs are described in Robins et al. (1999) and Appendix

3 below.

5. A parameter β0 of a SNDM, in contrast to that of a STM, can often still be consistently esti-

mated if (22) is false but data are available on an instrumental variable. Specifically, suppose

A (t) = (A1 (t) , A2 (t)) with A1 (t) recording a physician’s prescribed treatment and A2 (t) record-

ing treatment actually received. We might suppose (22) is false, but A1 (t)
∐

Yg | L (t−) , A (t−) is

true if a predictor of Yg and of A2 (t) was not recorded in L (t−). A1 (t) is often then referred to as
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an instrumental variable process, particularly when A1 (t) has no direct causal effect, i.e., Ya = Ya2

w.p.1. In this setting, the parameter of a STM is not identified but the parameter of a SNDM can

still in general be consistently estimated by g-estimation (Robins, 1993; 1998b).

4. MSMs, in contrast to SNMs, cannot be used if there exists a value of �k, say �k = 0, such that for

all but one ak ∈ Ak, f
[
ak | �k−1, �k = 0, ak−1

]
= 0, since then the artificial censoring time C† is

zero with probability 1. An example would be a study of the effect of an occupational exposure on

mortality with �k = 0 if a subject is off work at time k, �k = 1 otherwise, and subjects off work can

only receive exposure level ak = 0.

5.3 Advantages of MSMs with Continuous Y or with

Failure Time Outcomes

1. Even in the presence of interaction [i.e., γ
(
y, �m, am

)
depends on �m], given a STM, the distribution

of a non-dynamic counterfactual outcome FYa (y) can be estimated by

n−1
∑

i I
{
r−1

[
Ri

(
β̂
)
, a, β̂

]
> y
}

without requiring either integration or modelling of the condi-

tional law of L (m). In contrast, as described in point 3 of Sec. 5.2 above, for a SNDM, both

integration and modelling are required.

2. Any MSM that can be easily estimated when (8) holds (i.e., A is an ancillary process) can be

easily estimated when (8) is false. For example, we can use the Cox proportional hazards MSM

2a for a continuous failure time outcome Ta. In contrast, a structural nested Cox model would

model the ratio of the conditional hazard given �m, am of Ya(m),0 to that of Ya(m−1),0 as a function

of an unknown finite-dimensional parameter. Unfortunately, a structural nested Cox model does

not admit any simple semiparametric estimators, and even complex estimators will fail due to the

curse of dimensionality. Formally, the CODA information bound of Robins and Ritov (1997) for a

structural nested Cox model is zero, even when f
(
ak | �k, ak−1

)
is completely known.

A possible hybrid approach is to impose a MSM model and then specify a model for ν∗
(
y, � (m) , a

)
is as follows. The g-null hypothesis (26) is true if and only if the distribution of Ya given V † is the

same for all a (i.e., the parameter β0 of our MSM is zero) and ν∗
(
y, � (m) , a

)
depends on a only through

am−1 (Robins,1997, Appendix 3). Thus, we impose a MSM model depending on a parameter β and

an additional model for ν∗
(
y, � (m) , a

)
that depends on both the parameter β of the MSM model and

another parameter ψ = (ψ1, ψ2) in such a way that βψ1 = 0 if and only if ν∗
(
y, � (m) , a

)
depends on

a only through am−1. Specifically, ν
∗
(
y, � (m) , a

)
/ν∗

(
y, � (m) , (am−1, am = 0, ..., aK = 0)

)
depends on

(β, ψ) only through the product βψ1 and ν∗(y, � (m) , (am−1, am = 0, ..., aK = 0)) depends only on ψ2.

Thus ψ1 is identified only if β �= 0. Such a model can overcome objections 1 and 2 of Sec. 5.2 (but not

objections 3-6) while retaining the advantages 1-2 of Sec. 5.3.

5.4 Structural Nested Mean Models (SNMMs)

We now turn to comparing MSMs and SNMs for discrete outcomes. Consider the set up of Sec. 5.1 but

with Y discrete. For discrete outcomes, we define structural nested mean models. However, SNMMs are

applicable to discrete and continuous outcomes.

Let γ
(
� (m) , a (m)

)
= E

[
Ya(m),0 − Ya(m−1),0 | � (m) , a (m)

]
. Let γ†

(
� (m) , a (m)

)
=

ln{E
[
Ya(m),0 | � (m) , a (m)

]
/E
[
Ya(m−1),0 | � (m) , a (m)

]
}. An additive structural nested mean model

23



(SNMM) specifies γ
(
� (m) , a (m)

)
= γ

(
� (m) , a (m) , β0

)
with γ

(
�m, am, β

)
a known function satis-

fying γ
(
�m, am, β

)
= 0 if am = 0 or β = 0. A multiplicative SNMM specifies γ†

(
� (m) , a (m)

)
=

γ
(
� (m) , a (m) , β0

)
. The g-null mean hypothesis is the hypothesis

E [Yg1] = E [Yg2] , g1, g2 ∈ G . (27)

Robins (1997) proves the following.

Theorem 5.2: Given (22), (27) holds if and only if γ
(
� (m) , a (m)

)
= 0 ⇔ γ†

(
� (m) , a (m)

)
= 0 ⇔

E
[
Y | A (k) , L (k)

]
= E

[
Y | A (k − 1) , L (k)

]
, k = 0, . . . ,K :

Advantages (1) - (4) and (6) of Sec. 5.2 of a SNM over a MSM for continuous Y also will hold

(appropriately modified) for discrete Y when considering the g-null mean hypothesis or when estimating

E [Yg].). Advantages (1) - (2) in Sec. 5.3 of a MSM over a SNDM for continuous outcome also hold in

the discrete case.

An important advantage of MSMs over SNMs with Y dichotomous (or, more generally, when Y has

finite support) is that neither an additive SNMM or multiplicative SNMM naturally imposes the fact

that, for dichotomous Y , E [Yg] ∈ [0, 1]. In contrast, using the MSM model 1a with g (a, β) a logistic

function, the above restriction is naturally imposed. Analogously, in the setting of MSM model 1d, we can

use standard marginal logistic models for the repeated measures outcomes Ya (m). There exists logistic

SNMMs that do impose that E [Yg] ∈ [0, 1] (Robins et al., 1999). However, these logistic SNMMs are not

very useful for semiparametric inference with high-dimensional data, since the CODA information bound

for the parameter ψ of interest is zero even when f
(
ak | �k, ak−1

)
is known.

5.5 Direct Effect Models

In this section we show that some of the advantages of MSMs described in Secs. 5.3 and 5.4 are not

retained in semiparametric models for the direct effect of a treatment a1 when a second treatment a2 is

held fixed (set). In such a setting, both MSMs and direct effect SNMs (Robins, 1998a) have important

limitations due to the curse of dimensionality if the functional form of the effect of the second treatment

a2 on the outcome is left completely unrestricted. Let a (u) = (a1 (u) , a2 (u)) and, in a slight abuse

of notation, set a (u) = (a1 (u) , a2 (u)) and a = (a1, a2). Continue to assume V † = ∅. Consider the

following.

Model 3a – direct effect semiparametric regression: Consider the set-up of MSM 1b, with

η {E [Ya]} = g [a, β0] + g† (a2)

where g [a, β0] = 0 if a1 ≡ 0 and g† (·, ·) is unknown and unrestricted. Since, according to the model,

η {E [Ya1,,a2 ]} − η {E [Ya1≡0,a2 ]} = g (a, β0), it follows we are modelling the direct effect of treatment a1.

Furthermore, the main effect of the second treatment g† (a2) = η {E [Ya1≡0,a2 ]} − η {E [Ya1≡0,a2≡0]} is

completely unrestricted. Under sequential randomization assumption (4), the model for the observables

O induced by MSM 3a is isomorphic to that induced by MSM 1b with A2 ≡ A2 (K) playing the role of

V †. In particular, if η (x) = x [or ln (x)], β̂ (h, φ) will perform well in moderate size samples, provided

f
[
a (t) | L (t−) , A (t−)

]
is known or can be parametrically modelled. However, as discussed in the final

remark of Sec. 3.1, if η (x) = ln [x/ (1− x)], reasonable estimators of β0 are unavailable because A2 (K)

will be high-dimensional. Indeed, any choice of η (x) that guarantees that E [Ya] ∈ [0, 1] will fail to provide

reasonable estimators of β0, negating the advantage of this MSM for dichotomous Y . This reflects the

fact that the CODA information bound is zero, even when f
(
ak | �k, ak−1

)
is known.
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Model 3b – direct effect semiparametric Cox proportional hazards model: Consider the

set up of MSM 2b, with

λTa (t) = λTa1=0,a2
(t) exp

[
r
{
a
(
t−
)
, t;β0

}]
with r (a (t−) , t;β0) = 0 if a1 (t

−) = 0. This is a model for the direct effect of treatment a1 on the

hazard of T with the main effect of a2 left unrestricted. Given (4), MSM 3b induces a model for the

observables isomorphic to that induced by MSM 2b. This implies that, as discussed in the remark in

Sec. 3.1, due to the curse of dimensionality, it will not be possible to obtain reasonable estimators of β0

negating advantage 2 of Sec. 5.3.

Model 3c – direct effect semiparametric time-dependent accelerated failure time model:

Strikingly, the accelerated failure time MSM we now develop does not suffer from degradation due to the

curse of dimensionality as did model 3b. Consider the model

λR(a,β0) (t) = λTa1=0,a2
(t)

where R (a, β) = r (Ta, a, β) satisfies r (t, a, β) = t if a1 = 0 or β = 0. The model for the observables

induced by MSM 3c is isomorphic to that induced by MSM 2c with A2 in the role of V †. Hence,

the association model 3c can be used to estimate the direct effect of a1 on T with the main effect of

a2 unrestricted. MSM 3c is the natural MSM associated with a structural nested failure time model

(SNFTM) (Robins, 1993, App. 1; 1998) since a direct-effect SNFTM without interaction is a MSM 3c.

In the presence of interaction, the MSM 3c retains advantage 1 of Sec. 5.3.

Appendix 1:
By arguments as in Robins et al. (1994), Theorem 3.1 and 3.3b are easy corollaries of Theorem 3.3a.

Sketch of Proof of Theorem 3.3a: For convenience, assume the L process and A process jump at

times 0−, 1−, . . . and 0, 1, . . . respectively. Then by Theorem 3.2 of Robins (1997), Eq. (4) implies the

G-computation algorithm formula

fY a(k)
[
y (k) | v†

]
= (A1)∫

k∏
m=0

f
[
y (m) , v (m) | y (m− 1) , v (m− 1) , a (m− 1) , v†

] k∏
m=1

dµ [v (m)] dµ
(
•
v
)
,

with
•
v ≡ v (0) \v†. Thus, if for some j < k, the proposition f

[
a (j) | a (j − 1) , L (j) , v†

]
�= 0 w.p.1

given V † is false, then (A1) is not identified. Hence, a MSM model places no (local) restrictions on

f
[
L (m) | L (m− 1) , A (m− 1)

]
for m > C†. Hence, in semiparametric model (ii), every function of O

with mean zero given O† is in the nuisance tangent space for the model. It follows that all members of

Λ⊥ in model (ii) depend on the data only through O†.

Because of our assumed knowledge of Λ⊥,∗ (the orthogonal complement to the nuisance tangent space

under F ∗), it is sufficient to show that U ∈ Λ⊥ ⇔ UW ∈ Λ⊥,∗ when F ∗ is chosen such that C†,∗ is equal

to C†. This follows from the fact that
◦
Λ =

◦
Λ
∗

where
◦
Λ ≡ Λ

⋂
{Utp (φ)}

⊥⋂{
z
(
O†
)}

and the fact that

E [UB] = E∗ [UWB] for any B ∈
◦
Λ by Lemma 3.1.

Appendix 2
Proof: In our model, Eq. (12) states that

E[h
(
A, V †

)
εW−1{heff

(
A, V †

)
εW−1 − heff

(
A, V †

)
W−1E

[
ε | A,L (0)

]
+
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E
[
heff

(
A, V †

)
W−1E

[
ε | A,L (0)

]
| L (0)

]
}] = κ (h) ≡ E

[
h
(
A, V †

)
W−1∂g

(
A, V †, β0

)
/∂β

]
. This can

be rewritten as

E[h
(
A, V †

)
{heff

(
A, V †

)
W−2var

[
ε | A,L (0)

]
+ B (heff )}] =

E
[
h
(
A, V †

)
W−1∂g

(
A, V †, β0

)
/∂β

]
(A2.1)

where B (heff ) = εW−1E
{
heff

(
A, V †

)
W−1E

[
ε | A,L (0)

]
| L (0)

}
. Now (A2.1) is true for all h

(
A, V †

)
if and only if

heff
(
A, V †

)
E
[
W−2var

[
ε | A,L (0)

]
| A, V †

]
+ (A2.2)

E
[
B (heff ) | A, V †

]
= E

[
W−1∂g

(
A, V †, β0

)
/∂β | A, V †

]
.

To simplify (A2.2), note for any q
[
A,L (0)

]
, E
[
q
(
A,L (0)

)
W−1 | A, V †

]
=

f∗
(
A | V †

) ∫
q
(
A,L (0)

){
f
(
A | L (0)

)}−1
{f
(
A | L (0) , V †

)
f
[
L (0) | V †

]
/

f
(
A | V †

)
}dµ (V •) = f∗

(
A | V †

) {
f
(
A | V †

)}−1 ∫
q
(
A,L (0)

)
f
(
V • | V †

)
dµ (V •). Thus, we have

E
[
W−1 | A, V †

]
= f∗

(
A | V †

)
/f
(
A | V †

)
. (*)

E
[
W−2var

[
ε | A,L (0)

]
| A, V †

]
= (**)

f∗
(
A | V †

){
f
(
A | V †

)}−1 ∫
W−1var

[
ε | A,L (0)

]
f
(
V • | V †

)
dµ (V •)

and

E
[
B (heff ) | A, V †

]
=

f∗
(
A | V †

) {
f
(
A | V †

)}−1 ∫
E
[
ε | A,L (0)

]
f
(
V • | V †

)
dµ (V •) (***){∫

E [ε | a, L (0)] f∗
(
a | V †

)
heff

(
a, V †

)
dµ (a)

}
=∫

heff
(
a, V †

)
f∗
(
a | V †

)
dµ (a)ω

(
a,A, V †

)
.

Substituting *, **, *** into (A2.2) proves the theorem.

Appendix 3: Sensitivity analysis for continuous and
failure-time outcomes

Suppose rather than making the assumption (4) of sequential randomization, we instead assume for a

model with a continuous outcome Y measured at end of follow-up at time K +1− (e.g., model 1c of Sec.

2.2) or a continuous failure-time outcome T (models 2a - 2c of Sec. 2.2) the existence of a known function

qm
(
y, �m, a, a∗m

)
such that for Ya the continuous counterfactual variable measured at end of follow-up

pr
[
Ya < y | � (m) , a (m− 1) , a∗ (m)

]
= pr

[
q
(
Ya, � (m) , a, a∗ (m)

)
< y | � (m) , a (m)

]
(A3.1)

and, for Ta the counterfactual failure time variable,

pr
[
Ta < y | � (m) , a (m− 1) , a∗ (m) , T ≥ m

]
= pr

[
q
(
Ta, � (m) , a, a∗ (m)

)
< y | � (m) , a (m) , T ≥ m

]
.

(A3.2)

The chosen conditional quantile - quantile function qm
(
y, �m, a, a∗m

)
must satisfy

qm
(
y, � (m) , a, a∗ (m)

)
= y if a∗ (m) = a (m) (A3.3)
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qm
(
y, � (m) , a, a∗ (m)

)
is increasing in y (A3.4)

and, in the failure time case (A3.2),

qm
(
y, � (m) , a, a∗ (m)

)
> m (A3.5a)

and writing µ = qm
(
y, �m, a, a∗m

)
, then

qm
(
y, �m, a, a∗m

)
is a function of a only through a [max (y, u)] . (A3.5b)

This last restriction follows by consistency assumption (2). Note that the sequential randomization

assumption (4) implies that qm
(
y, �m, a, a∗m

)
≡ y.

We now sketch how to construct a regular asymptotically linear (RAL) estimator of the parameter β0

of a MSM such as model (1c) or model (2a) - (2c). Consider first the continuous outcome Y measured

at end of follow-up. We shall replace each subject’s observed outcome Y with J pseudo-Y ’s obtained by

use of the following algorithm.

• Step 1: Do for j = 1, . . . , J .

• Step 2: Do for m = 0, . . . ,K.

– Draw a∗j (m) from f
[
a (m) | L (m) , A (m− 1)

]
.

• Step 3: Set Y(K+1)j = Y .

• Step 4: Do for m = K, . . . , 0 Ymj = qm
(
Y(m+1)j , L (m) , A, a∗j (m)

)
.

• Create a new data set with n× J observations, Oij =
(
Ai (K) , Li (K) , Yi0j

)
,

i = 1, . . . , n, j = 1, . . . , J . Now for each observation Oij , calculate D̂sm (β, a) and Dtp (φ) as

described in the paragraph following Lemma 3.1, with Yi0j in place of the actual data Yi. Then

let β̂ (h, φ) solve 0 =
n∑
i=1

J∑
j=1

D̂ij (β, h, φ) where, for each observation Oij , D̂ (β, h, φ) = D̂sm (β, h) /

W +Dtp (φ).

Then it can be shown that, subject to regularity conditions, under the model characterized by (A3.1),

an appropriate MSM, such as model 1c, and (11), β̂ (h, φ) will be a RAL estimator of β0.

The above algorithm can be modified so as to apply to a study with failure time outcomes under the

assumption that the treatment process only jumps at times 0, 1, 2, 3, . . . as follows.

To describe our algorithm for failure-time outcomes, we first discuss how to obtain a function

qm
(
y, �m, a, a∗m

)
guaranteed to satisfy (A3.5a) and (A3.5b).

Define, for m ≤ [y − 1] where [x] is the greatest integer less than or equal to x, the function

q∗
(
x, � (m) , a [y] , a∗ (m)

)
by

pr
[
T(a[y],0) > u | � (m) , a (m− 1) , a∗ (m) , t ≥ m,T(a[y−1],0) > [y]

]
= (A3.6)

pr
[
q∗
(
T(a[y−1],0), � (m) , a [y] , a∗ (m)

)
> u | � (m) , a (m− 1) , a∗ (m) , T(a[y−1],0) > [y]

]
.

Then qm
(
y, � (m) , a, a∗ (m)

)
is determined by q∗m

(
x, � (m) , a [y] , a∗ (m)

)
and qm

(
y, � (m) , (a [y] , 0) , a∗m

)
through the following algorithm.

• Step 1: p← qm
(
y, � (m) , (a [y] , 0) , a∗m

)
.
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• Step 2: Do for k = 1, 2, . . .

if p < [y + k], stop and declare qm
(
y, � (m) , a, a∗ (m)

)
= p.

Otherwise, p← q∗m
(
p, � (m) , a [y + k] , a∗ (m)

)
.

In conducting a sensitivity analysis, we choose qm
(
y, � (m) , (a [y] , 0) , a∗ (m)

)
and

q∗m
(
x, � (m) , a [y] , a∗ (m)

)
restricted only by the fact that the first function qm is increasing in y, exceeds

m and equals y if a∗ (m) = a (m) and that the second function q∗m is increasing in y and exceeds [y].

Then we use the above algorithm to compute qm
(
y, � (m) , a, a∗m

)
, which will then be guaranteed to satisfy

(A3.5a) and (A3.5b).

We now describe how to construct a RAL estimator for the parameter of β0 of a MSM failure time

model such as model (2a). We assume we have on each of n subjects the data ∆ = I (T = C) , X =

min (T,C) , A (X) , L (X) where T is the failure time variable and C is the censoring variable. The

algorithm goes as follows.

• Step 1: Do for j = 1, . . . , J

• Step 2: Set K = [X]

• Step 3: For s = K + 1,K + 2, . . .

– Draw aj (s) from a chosen density f∗
[
a (s) | AK , aj (K + 1) , . . . , aj (s− 1)

]
• Step 4: Set X(K+1)j = X

• Step 5: Do for m = K,K − 1, . . . , 0

– Draw a∗j (m) from f
[
a (m) | L (m) , A (m− 1) , T > m

]
– DefineAj =

(
A (K) , aj (K + 1) , aj (K + 2) , . . .

)
and setXmj = q

(
X(m+1)j , L (m) , Aj , a

∗
j (m)

)
• Step 6: Create a new data set with n× J observations

Oij =
(
Aij (Xioj) , Xioj ,∆i

)
.

We then fit the Cox model (2a) as we described previously in the paper but based on the n × j

observations Oij , with each observation on subject i associated with the same weight Wi, where in

calculating the numerator of Wi ≡ W (Xi), we must use density f∗ that was used in step 3 above.

The resulting estimator will be consistent under the assumption that the hazard of censoring at

time t given all the data only depends on the observed past.

Robins et al. (1999, Sec. 8.7b) discuss some potential problems with the sensitivity analysis methods

discussed in this section due to the lack of a variation independent parameterization.
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