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Abstract

This article introduces a new class of instrumental variable (IV) estimators of causal

treatment e�ects for linear and nonlinear models with covariates. The rationale for

focusing on nonlinear models is to improve the approximation to the causal response

function of interest. For example, if the dependent variable is binary or limited, or if

the e�ect of the treatment is a�ected by covariates, a nonlinear model is likely to be

appropriate. However, identi�cation is not attained through functional form restric-

tions. This paper shows how to estimate a well-de�ned approximation to a nonlinear

causal response function of unknown functional form using simple parametric models.

As an important special case, I introduce a linear model that provides the best linear

approximation to an underlying causal relation. It is shown that Two Stage Least

Squares (2SLS) does not always have this property and some possible interpretations
of 2SLS coe�cients are brie
y studied. The ideas and estimators in this paper are

illustrated using instrumental variables to estimate the e�ects of 401(k) retirement

programs on savings.
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1. Introduction

Economists have long been concerned with the problem of how to estimate the e�ect of a

treatment on some outcome of interest, possibly after conditioning on a vector of covariates.

This problem may arise when studying the e�ects of the training programs provided under

the Job Training Partnership Act of 1982 (JTPA). For this example, the treatment variable

is an indicator for enrollment in a JTPA training program, the outcome of interest may

be post-treatment earnings or employment status, and covariates are usually demographic

characteristics such as gender, race or age (Bloom et al. (1997)). The main empirical

challenge in studies of this type arises from the fact that selection for treatment is usually

related to the potential outcomes that individuals would attain with and without the

treatment. Therefore, systematic di�erences in the distribution of the outcome variable

between treated and nontreated may re
ect not only the causal e�ect of the treatment, but

also di�erences generated by the selection process.1

A variety of methods have been proposed to overcome the selection problem (see Heck-

man and Robb (1985) for a review). The traditional approach relies on structural models

which use distributional assumptions and functional form restrictions to identify causal

parameters. Unfortunately, estimators based on parametric assumptions can be seriously

biased by modest departures from the assumptions (Goldberger (1983)). In addition, a

number of researchers have noted that strong parametric assumptions are not necessary

to identify causal parameters of interest (see e.g., Heckman (1990), Imbens and Angrist

(1994), and Manski (1997)). Consequently, it is desirable to develop robust estimators of

treatment e�ects based on nonparametric or semiparametric identi�cation procedures.

Motivated by these considerations, this paper introduces a new class of instrumental

variable (IV) estimators of causal treatment e�ects for linear and nonlinear models with

covariates. Identi�cation is attained through weak nonparametric assumptions. But unlike

1For example, individuals who experience a decline in their earnings are more likely to enroll in training
programs (Ashenfelter (1978) and Ashenfelter and Card (1985)). Therefore, comparisons of post-training
earnings between treated and nontreated are contaminated by pre-training di�erences, and do not re
ect
the causal e�ect of treatment on earnings.
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traditional approaches, which presume a correctly speci�ed parametric model, and more

recent nonparametric estimators, which are often di�cult to interpret and to use for extrap-

olation, the methodology outlined here allows the use of simple parametric speci�cations to

produce well-de�ned approximations to a causal response function of interest. Moreover,

an important feature of the approach outlined here is that identi�cation does not depend

on the parametric speci�cation being chosen correctly. On the other hand, if required,

functional form restrictions and distributional assumptions can also be accommodated in

the analysis. As in the causal IV model of Imbens and Angrist (1994) and Angrist, Imbens

and Rubin (1996), identi�cation comes from a binary instrument that induces exogenous

selection into treatment for some subset of the population. In contrast with earlier work

on causal IV, however, the approach taken here easily accommodates covariates and can

be used to estimate nonlinear models with a binary endogenous regressor.

The ability to control for covariates is important because most instruments in economics

require conditioning on a set of covariates to be valid. Covariates can also be used to re-


ect observable di�erences in the composition of populations, making extrapolation more

credible. Another feature of the approach taken here, the ability to estimate nonlinear

models, is important because in some cases, such as evaluation problems with limited de-

pendent variables, the underlying causal response function is inherently nonlinear. Finally,

as a by-product of the general framework introduced here, I develop an IV estimator that

provides the best linear approximation to an underlying causal relationship of interest, just

as Ordinary Least Squares (OLS) provides the best linear approximation to a conditional

expectation. It is shown that Two Stage Least Squares (2SLS) estimators typically do not

have this property and the causal interpretation of 2SLS coe�cients is brie
y studied.

Previous e�orts to introduce covariates in the causal IV framework include Hirano

et al. (1997) and Angrist and Imbens (1995). Hirano et al. (1997) used parametric

assumptions (in particular, logistic regression models) to accommodate covariates in a

Bayesian extension of the causal IV analysis. The approach in Angrist and Imbens (1995)

is only valid for fully saturated speci�cations involving discrete covariates. In contrast, the
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identi�cation procedure introduced here requires no parametric assumptions, while allowing

the estimation of parsimonious approximations to the causal response of interest.

The rest of the paper is organized as follows. Section 2 outlines the basic causal IV

approach, introducing the concepts and notation used throughout. Section 3 presents the

main identi�cation theorem. Section 4 uses the results from the previous section to develop

estimators of causal response functions. Asymptotic distribution theory is also provided.

The causal interpretation of linear models with covariates is outlined in Section 5. Section 6

applies the approach introduced in this paper to estimate the e�ects of 401(k) programs on

savings, a question originally explored in a series of papers by Engen, Gale and Scholz (1994,

1996) and Poterba, Venti and Wise (1994, 1995 ,1996) among others. Section 7 summarizes

and suggests directions for future research. Proofs are provided in the appendix.

2. The Causal IV Framework

2.1. The Identification Problem

Suppose that we are interested in the e�ect of some treatment, say college graduation, which

is represented by the binary variableD, on some outcome Y of interest, say earnings. Like in

Rubin (1974, 1977), we de�ne Y1 and Y0 as the potential outcomes that an individual would

attain with and without being exposed to the treatment. In the example, Y1 represents

potential earnings as a college graduate while Y0 represents potential earnings as a non-

graduate. The causal e�ect of college graduation on earnings is then naturally de�ned as

Y1 � Y0. Now, an identi�cation problem arises from the fact that we cannot observe both

potential outcomes Y1 and Y0 for the same individual, we only observe Y = Y1 �D + Y0 �
(1 � D). Since one of the potential outcomes is always missing we cannot compute the

causal treatment e�ect, Y1 � Y0, for any individual. We could still hope to estimate the

average treatment e�ect E[Y1 � Y0], or the average e�ect on the treated E[Y1� Y0jD = 1].

However, comparisons of earnings for treated and non-treated do not usually give the right
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answer:

E[Y jD = 1]� E[Y jD = 0] = E[Y1jD = 1]� E[Y0jD = 0]

= E[Y1 � Y0jD = 1]

+ fE[Y0jD = 1]� E[Y0jD = 0]g:
(1)

The �rst term of the right hand side of equation (1) gives the average e�ect of the treatment

on the treated. The second term represents the bias caused by endogenous selection in

the treatment. In general, this bias is di�erent from zero because anticipated potential

outcomes usually a�ect selection in the treatment.

Identi�cation of a meaningful average causal e�ect is a di�cult task when there is

endogenous selection in the treatment. The classical models of causal inference are based

on explicit randomization (Fisher (1935), Neyman (1923)). Randomization of the treatment

guarantees that D is independent of the potential outcomes. Formally, if P (D = 1jY0) =
P (D = 1) then Y0 is independent of D and

E[Y jD = 1]� E[Y jD = 0] = E[Y1jD = 1]� E[Y0jD = 0]

= E[Y1jD = 1]� E[Y0jD = 1]

= E[Y1 � Y0jD = 1]:

Similarly if P (D = 1jY0; Y1) = P (D = 1) then

E[Y jD = 1]� E[Y jD = 0] = E[Y1 � Y0]: (2)

These conditions imply that the treatment is as good as randomly assigned. Therefore, they

are unlikely to hold in most economic settings where selection is thought to be associated

with potential outcomes.

The selection problem can also be easily solved if there exists some vector X of observ-

able predetermined variables such that

P (D = 1jX; Y0) = P (D = 1jX) (3)

or,

P (D = 1jX; Y0; Y1) = P (D = 1jX): (4)
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This situation is called selection on the basis of covariates by Rubin (1977) or selection on

observables in the terminology of Heckman and Robb (1985); and it encompasses the ideas

in Goldberger (1972) and Barnow, Cain and Goldberger (1980). Selection on observables

occurs if the dependence of assignment and potential outcomes disappears once we condition

on some vector of observables. In our example, that would be the case if, once we control

for socio-economic variables such as race, gender or family income, college graduation was

independent of potential earnings. If condition (3) holds, then

E[Y jX;D = 1]� E[Y jX;D = 0] = E[Y1 � Y0jX;D = 1]; (5)

if condition (4) holds, then

E[Y jX;D = 1]� E[Y jX;D = 0] = E[Y1 � Y0jX]: (6)

Integrating equations (5) and (6) over X we recover the parameters of interest. This type

of analysis can be di�cult if the dimensionality of X is high. A large literature (started by

Rosenbaum and Rubin (1983, 1984)) has developed methods to reduce the dimensionality

of the problem by conditioning on the selection probability P (D = 1jX) (or propensity

score) rather than on the whole vector X. Propensity score methods have been applied in

economics to the evaluation of training programs (see e.g., Heckman, Ichimura and Todd

(1997) and Dehejia and Wahba (1998)).

In many relevant settings, economists think that observed variables cannot explain all

the dependence between treatment selection and potential outcomes. In the schooling

example, unobserved ability may a�ect both academic and professional success, biasing

the estimates of the e�ect of schooling on earnings even after controlling for observed

characteristics, like family background variables. One possible solution to this problem is to

use structural equation methods. Structural models impose parametric restrictions on the

stochastic relations between variables, both observable and unobservable. In imposing those

restrictions, the analyst is often helped by some formal or informal economic argument.

In practice, the restrictions imposed by structural models are usually stronger than those

suggested by economic theory, so some concern about misspeci�cation exists.
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When the analyst has an instrument that induces exogenous selection in the treatment,

causal IV models provide an alternative identi�cation strategy that does not use parametric

restrictions.

2.2. Identification by Instrumental Variables

Suppose that there is a possible binary instrument Z available to the researcher. The formal

requisites for an instrument to be valid are stated below. Informally speaking, the role of

an instrument is to induce exogenous variation in the treatment variable. The causal IV

model of Imbens and Angrist (1994) recognizes the dependence between the treatment and

the instrument by using potential treatment indicators. The binary variable Dz represents

potential treatment status given Z = z. Suppose, for example, that Z is an indicator of

college proximity (see Card (1993)). Then D0 = 0 and D1 = 1 for a particular individual

means that such individual would graduate from college if living nearby a college at the end

of high school, but would not graduate otherwise. The treatment status indicator variable

can then be expressed as D = Z �D1 + (1�Z) �D0. In practice, we observe Z and D (and

therefore Dz for individuals with Z = z), but we do not observe both potential treatment

indicators. Following the terminology of Angrist, Imbens and Rubin (1996), the population

is divided in groups de�ned by the contingent treatment indicators D1 and D0. Compliers

are those individuals who have D1 > D0 (or equivalently, D0 = 0 and D1 = 1). In the

same fashion, always-takers are de�ned by D1 = D0 = 1 and never-takers by D1 = D0 = 0.

Finally, de�ers are de�ned by D1 < D0 (or D0 = 1 and D1 = 0). Notice that, since only

one of the potential treatment indicators (D0; D1) is observed, we cannot identify which

one of these four groups any particular individual belongs to.

In order to state the properties that a valid instrument should have in a causal model,

we need to include Z in the de�nition of potential outcomes. For a particular individual, the

variable Yzd represents the potential outcome that this individual would obtain if Z = z

and D = d. In the schooling example, Y01 represents the potential earnings that some

individual would obtain if not living near a college at the end of high school but being
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college graduate. Clearly, if D0 = 0 for some individual, we will not be able to observe Y01

for such individual.

The following identifying assumption is used in most of the paper; it states a set of

nonparametric conditions under which instrumental variables techniques can be used to

identify meaningful causal parameters. As before, X represents a vector of predetermined

variables.

Assumption 2.1:

(i) Independence of the Instrument : Conditional on X, the random vector (Y00; Y01; Y10; Y11;

D0; D1) is independent of Z.

(ii) Exclusion of the Instrument : P (Y1d = Y0djX) = 1 for d 2 f0; 1g.

(iii) First Stage : 0 < P (Z = 1jX) < 1 and P (D1 = 1jX) > P (D0 = 1jX).

(iv) Monotonicity : P (D1 � D0jX) = 1.

This assumption is essentially the conditional version of those used in Angrist, Imbens

and Rubin (1996). Assumption 2.1(i) is also called ignorability and it means that Z is \as

good as randomly assigned" once we condition on X. Assumption 2.1(i) implies:

P (Z = 1jY00; Y01; Y10; Y11; D0; D1; X) = P (Z = 1jX);

which, in absence of covariates, is the exact meaning of the expression \as good as randomly

assigned" in this paper. Assumption 2.1(ii) means that variation in the instrument does

not change potential outcomes other than through D. This assumption allows us to de�ne

potential outcomes in terms of D alone so we have Y0 = Y00 = Y10 and Y1 = Y01 = Y11.

Together, assumptions 2.1(i) and 2.1(ii) guarantee that the only e�ect of the instrument

on the outcome is through variation in treatment status. Assumption 2.1(iii) is related to

the �rst stage, it guarantees that Z and D are correlated conditional on X. Assumption

2.1(iv) rules out the existence of de�ers and de�nes a partition of the population into

always-takers, compliers, and never-takers. Monotonicity is usually easy to assess from the

institutional knowledge of the problem. Monotonicity, in this conditional form, is implied
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by the stronger assumption: D1 � D0. For the schooling example this simpler version of the

monotonicity assumption means that those who would graduate from college if not living

nearby a college would also graduate from college if living nearby one, holding everything

else equal. In this setting, a possible instrument, Z, is said to be valid if Assumption 2.1

holds. In what follows, it is enough that Assumption 2.1 holds almost surely with respect

to the probability law of X.

The previous literature on causal IV models uses an unconditional version of Assumption

2.1. The main result of this literature is stated in the following theorem due to Imbens and

Angrist (1994):

Theorem 2.1: If Assumption 2.1 holds in absence of covariates, then a simple IV estimand

identi�es the average treatment e�ect for compliers:

�IV =
cov(Y; Z)

cov(D;Z)
=
E[Y jZ = 1]� E[Y jZ = 0]

E[DjZ = 1]� E[DjZ = 0]
= E[Y1 � Y0jD1 > D0]: (7)

This theorem says that the average treatment e�ect is identi�ed for compliers. More-

over, it has been shown that, under the same assumptions, the entire marginal distributions

of potential outcomes are identi�ed for compliers (see Imbens and Rubin (1997) and Abadie

(1997)). Although Theorem 2.1 does not incorporate covariates, it can easily be extended

in that direction. Note that under Assumption 2.1, the result of Theorem 2.1 must hold

for all X:

E[Y1 � Y0jX;D1 > D0] =
E[Y jX;Z = 1]� E[Y jX;Z = 0]

E[DjX;Z = 1]� E[DjX;Z = 0]
: (8)

In principle, we can use equation (8) to estimate E[Y1 � Y0jX = x;D1 > D0] for all x in

the support of X. If X is discrete and �nite, it is straightforward to compute the sample

counterpart of the right hand side of equation (8) forX = x. If X is continuous, the estima-

tion process can be based on nonparametric smoothing techniques. The main advantage of

this strategy resides in the 
exibility of functional form. However, nonparametric methods

have disadvantages related to the interpretation of the results and the precision of the es-
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timators.2 Futhermore, nonparametric methods are not suitable for extrapolation outside

the observed support of the covariates. Parametric methods based on structural models

do not have these drawbacks but their validity rests on strong assumptions. This paper

proposes a semiparametric strategy that shares many of the virtues of both parametric and

nonparametric models and avoids some of their disadvantages.3

3. Identification of Statistical Characteristics for Compliers

This section presents an identi�cation theorem that includes previous results on causal IV

models as special cases, and provides the basis for new identi�cation results. To study

identi�cation we proceed as if we knew the joint distribution of (Y;D;X; Z). In practice,

we can use a random sample from (Y;D;X; Z) to construct estimators based on sample

analogs of the population results.

Lemma 3.1: Under Assumption 2.1,

P (D1 > D0jX) = E[DjZ = 1; X]� E[DjZ = 0; X] > 0:

This lemma says that, under Assumption 2.1, the proportion of compliers in the population

is identi�ed given X and this proportion is greater than zero. This preliminary result is

important for establishing the following theorem.

Theorem 3.1: Let g(�) be any measurable real function of (Y;D;X) such that Ejg(Y;D;X)j
<1. De�ne

�0 = (1�D) � (1� Z)� P (Z = 0jX)

P (Z = 0jX)P (Z = 1jX)
;

�1 = D � Z � P (Z = 1jX)

P (Z = 0jX)P (Z = 1jX)
;

2For fully nonparametric estimators, the number of observations required to attain an acceptable preci-
sion increases very rapidly with the number of covariates. This problem is called the curse of dimensionality
and makes precision of nonparametric estimators be typically low.

3Stoker (1992) and Powell (1994) review semiparametric estimation and discuss its advantages over fully
parametric or nonparametric methods.
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� = �0 � P (Z = 0jX) + �1 � P (Z = 1jX) = 1� D � (1� Z)

P (Z = 0jX)
� (1�D) � Z
P (Z = 1jX)

:

Under Assumption 2.1,

a: E[g(Y;D;X)jD1 > D0] =
1

P (D1 > D0)
E[� � g(Y;D;X)]:

Also,

b: E[g(Y0; X)jD1 > D0] =
1

P (D1 > D0)
E[�0 � g(Y;X)];

and

c: E[g(Y1; X)jD1 > D0] =
1

P (D1 > D0)
E[�1 � g(Y;X)]:

Moreover, a., b., and c. also hold conditional on X.

Note that setting g(Y;D;X) = 1 we obtain E[�] = P (D1 > D0), so we can think about

� as a weighting scheme that allows us to identify expectations for compliers. However, �

does not produce proper weights since when D di�ers from Z, � takes negative values.

Theorem 3.1 is a powerful identi�cation result; it says that any statistical characteristic

that can be de�ned in terms of moments of the joint distribution of (Y;D;X) is identi�ed

for compliers. Since D is exogenous given X for compliers, Theorem 3.1 can be used to

identify meaningful causal parameters for this group of the population. The next section

applies Theorem 3.1 to the estimation of average causal response functions for compliers.

4. Estimation of Average Causal Response Functions

4.1. Complier Causal Response Functions

Consider the conditional expectation function E[Y jX;D;D1 > D0]. Since D � Z for

compliers and Z is ignorable given X, it follows that

E[Y jX;D = 0; D1 > D0] = E[Y0jX;Z = 0; D1 > D0] = E[Y0jX;D1 > D0];

and

E[Y jX;D = 1; D1 > D0] = E[Y1jX;Z = 1; D1 > D0] = E[Y1jX;D1 > D0]:
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Therefore,

E[Y jX;D = 1; D1 > D0]� E[Y jX;D = 0; D1 > D0] = E[Y1 � Y0jX;D1 > D0];

so E[Y jX;D;D1 > D0] describes a causal relationship for any group of compliers de�ned

by some value for the covariates. In what follows, I refer to E[Y jX;D;D1 > D0] as the

Complier Causal Response Function (CCRF).4

An important special case arises when P (D0 = 0jX) = 1. This happens, for example,

in randomized experiments when there is perfect exclusion of the control group from the

treatment. In such cases,

E[Y jX;D = 0; D1 > D0] = E[Y0jX;Z = 0; D1 = 1]

= E[Y0jX;Z = 1; D1 = 1] = E[Y0jX;D = 1]

and similarly E[Y jX;D = 1; D1 > D0] = E[Y1jX;D = 1], so the CCRF describes the

e�ect of the treatment for the treated given X. Note also that when P (D0 = 0jX) = 1 or

P (D1 = 1jX) = 1, then monotonicity holds trivially.

The fact that the conditional expectation of Y given D and X for compliers has a

causal interpretation would not be very useful in the absence of Theorem 3.1. Since only

one of the potential treatment status, (D0; D1), is observed, compliers are not individually

identi�ed. Therefore, the CCRF cannot be estimated directly because we cannot construct

a sample of compliers. Theorem 3.1 provides a solution to this identi�cation problem by

expressing expectations for compliers in terms of expectations for the whole population.

4.2. Estimation

This section describes two ways to learn about the CCRF: (i) approximate the CCRF

within some class of parametric functions by Least Squares (LS), (ii) specify a paramet-

ric distribution for P (Y jX;D;D1 > D0) and estimate the parameters of the CCRF by

Maximum Likelihood (ML). Throughout, W = (Y;D;X; Z) and fwigni=1 is a sample of

realizations of W .

4The average response is not necessarily the only causal function of interest. Abadie, Angrist and
Imbens (1998) apply Theorem 3.1 to the estimation of quantile response functions for compliers.
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4.2.1. Least Squares

Consider some class of parametric functions H = fh(D;X; �) : � 2 � � R
mg in the

Lebesgue space of square-integrable functions.5 The best L2 approximation from H to

E[Y jX;D;D1 > D0] is given by h(D;X; �0) where

�0 = argmin�2�E
�fE [Y jD;X;D1 > D0]� h(D;X; �)g2 jD1 > D0

�
= argmin�2�E

�fY � h(D;X; �)g2 jD1 > D0

�
:

Since we do not observe both D0 and D1 the equation above cannot be directly applied to

the estimation of �0. However, by Theorem 3.1 we have

�0 = argmin�2�E
�
� � (Y � h(D;X; �))2

�
: (9)

For expositional purposes, suppose that we know the function �0(x) = P (Z = 1jX = x).

Then, we can construct f�igni=1 and apply equation (9) to estimate �0. The study of the

more empirically relevant case in which the function �0(�) has to be estimated in a �rst

step is postponed until section 4.3. Following the Analogy Principle (see Manski (1988)),

a natural estimator of �0 is given by the sample counterpart of equation (9):

b� = argmin �2�

1

n

nX
i=1

�i � (yi � h(di; xi; �))
2;

where �i = 1� di(1� zi)=(1� �0(xi))� (1� di)zi=�0(xi).

For example, suppose that we want to approximate the CCRF using a linear function.

In this case h(D;X; �) = �D + X 0� and � = (�; �). The parameters of the best linear

approximation to the CCRF are de�ned as

(�0; �0) = argmin (�;�)2� E
h
fE[Y jD;X;D1 > D0]� (�D +X 0�)g2

���D1 > D0

i
: (10)

Theorem 3.1 and the Analogy Principle lead to the the following estimator:

(b�; b�) = argmin (�;�)2�

1

n

nX
i=1

�i � (yi � �di � x0i�)
2: (11)

5To avoid existence problems, H can be restricted such that � 7! h(�; �; �) is a continuous mapping on
� compact.
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Linear speci�cations are very popular because they summarize the e�ect of each covariate on

the outcome in a single parameter. However, in many situations we are actually interested

in how the e�ect of the treatment varies with the covariates. Also, when the dependent

variable is limited, nonlinear response functions may provide a more accurate description

of the CCRF.

Probit transformations of linear functions are often used when the dependent variable

is binary. In such case, the objects of interest are conditional probabilities and the Probit

function restricts the approximation to lie in between zero and one. Another appealing

feature of the Probit speci�cation is that the estimated e�ect of the treatment is allowed

to change with covariates. As usual, let �(�) be the cumulative distribution function of a

standard normal. The best L2 approximation to the CCRF using a Probit function is given

by:

(�0; �0) = argmin (�;�)2� E
h
fE[Y jD;X;D1 > D0]� � (�D +X 0�)g2

���D1 > D0

i
:

Again, Theorem 3.1, along with the Analogy Principle, suggests the following estimator for

�0 = (�0; �0):

(b�; b�) = argmin (�;�)2�

1

n

nX
i=1

�i � (yi � �(�di + x0i�))
2: (12)

Note that no parametric assumptions are used for Least Squares approximation. However,

if E[Y jD;X;D1 > D0] = h(D;X; �0) for some �0 2 �, then Least Squares identi�es �0.

More generally, the methodology developed in this paper can be used to estimate nonlinear

models with endogenous binary regressors without making distributional assumptions.

4.2.2. Maximum Likelihood

In some cases, the researcher may be willing to specify a parametric distribution for

P (Y jX;D;D1 > D0) (with density f(Y;D;X; �0) for �0 2 � and expectation E[Y jD;X;
D1 > D0] = h(D;X; �0)), and estimate �0 by ML. Under this kind of distributional as-

sumption we have

�0 = argmax �2� E [ln f(Y;D;X; �)jD1 > D0] : (13)
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As before, in order to express the problem in equation (13) in terms of moments for the

whole population we apply Theorem 3.1 to get

�0 = argmax �2� E [� � ln f(Y;D;X; �)] :

An analog estimator for the last equation exploits the ML principle after weighting with

�i:

b� = argmax �2�
1

n

nX
i=1

�i � ln f(yi; di; xi; �):

Following with the Probit example of Section 4.2.1, suppose that we consider E[Y jD;X;
D1 > D0] = �(�0D +X 0�0). Since Y is binary, E[Y jD;X;D1 > D0] provides a complete

speci�cation of the conditional distribution P (Y jD;X;D1 > D0). Under this assumption,

for � containing (�0; �0), we have

(�0; �0) = argmax (�;�)2� E [Y � ln�(�D +X 0�) + (1� Y ) � ln�(��D �X 0�)jD1 > D0]

= argmax (�;�)2� E [� � fY � ln�(�D +X 0�) + (1� Y ) � ln�(��D �X 0�)g] :

Therefore, an analog estimator of (�0; �0) is given by

(b�; b�) = argmax (�;�)2�
1

n

nX
i=1

�i � (yi � ln�(�di + x0i�) + (1� yi) � ln�(��di � x0i�)) : (14)

Between the nonparametric approach adopted for LS approximation and the distribu-

tional assumptions needed for ML, there is a broad range of models that impose di�erent

restrictions on P (Y jD;X;D1 > D0). Mean independence and symmetry are examples of

possible restrictions that allow identi�cation of interesting features of P (Y jD;X;D1 > D0).

For the sake of brevity, these kinds of models are not explicitly considered in this paper.

However, the basic framework of identi�cation and estimation presented here also applies

to them. Note also that although this section (and the rest of the paper) only exploits part

a. of Theorem 3.1, parts b. and c. of Theorem 3.1 can also be used in a similar way to

identify and estimate causal treatment e�ects.
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4.3. Distribution Theory

For any measurable real function q(�; �), let q(�) = q(W ; �) and qi(�) = q(wi; �) where �

represents a (possibly in�nite-dimensional) parameter. Also, k � k denotes the Euclidean

norm. The next assumption is the usual identi�cation condition invoked for extremum

estimators.

Assumption 4.1: The expectation E[g(�)jD1 > D0] has a unique minimum at �0 over � 2
�.

The speci�c form of g(�) depends on the model and the identi�cation strategy, and it

will be left unrestricted except for regularity conditions. For LS, the function g(�) is a

quadratic loss, for ML it is minus the logarithm of a density for W .

If we know the nuisance parameter �0, then � is observable and the estimation of �0 is

carried out in a single step:

b� = argmin �2�

1

n

nX
i=1

�i(�0) � gi(�): (15)

The asymptotic distribution for such an estimator can be easily derived from the standard

asymptotic theory for extremum estimators (see e.g., Newey and McFadden (1994)).

If �0 is unknown, which is often the case, we can estimate �0 in a �rst step and then

plug the estimates of �0(xi) in equation (15) to solve for b� in a second step. If �0 has

a known parametric form (or if the researcher is willing to assume one), �0 can be esti-

mated using conventional parametric methods. If the form of �0 is unrestricted (except for

regularity conditions), we can construct a semiparametric two-step estimator that uses a

nonparametric �rst step estimator of �0. Asymptotic theory for b� in each case is provided

below. Section 4.3.1 focuses on the parametric case, when �0 = �(X; 
0) for some known

function � and 
0 2 R
l . Section 4.3.2 derives the asymptotic distribution for b� when �0 is

estimated nonparametrically in a �rst step using power series. One advantage of �rst step

series estimation over kernel methods is that undersmoothing is not necessary to achieve
p
n-consistency for b�. This is important because the estimate of �0 can sometimes be an

interesting by-product of the estimation process.
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4.3.1. Parametric First Step

This section studies two-step estimation procedures for �0 that are based on equation (15)

and that use a parametric estimator in the �rst step.6 First, we establish the consistency

of such estimators.

Theorem 4.1: Suppose that Assumptions 2.1 and 4.1 hold and that (i) the data are i.i.d.;

(ii) � is compact; (iii) �0(�) belongs to some (known) parametric class of functions �(�; 
)
such that for some 
0 2 R

l , �0(X) = �(X; 
0); there exists � > 0 such that for k
�
0k < �,

�(X; 
) is bounded away from zero and one and is continuous at each 
 on the support of

X; (iv) b
 p! 
0; (v) g(�) is continuous at each � 2 � with probability one; there exists

b(W ) such that kg(�)k � b(W ) for all � 2 � and E[b(W )] <1. Then b� p! �0.

We say that an estimator b' of some parameter '0 is asymptotically linear with in
uence

function  (W ) when

p
n(b'� '0) =

1p
n

nX
i=1

 (wi) + op(1); and E[ (W )] = 0; E[k (W )k2] <1:

Next theorem provides su�cient conditions for asymptotic normality of b� when the �rst

step estimator of 
0 is asymptotically linear. This requirement is very weak because most

estimators used in econometrics fall in this class.

Theorem 4.2: If the assumptions of Theorem 4.1 hold and (i) �0 2 interior(�); (ii) there
exist � > 0 and b(W ) such that for k���0k < �, g(�) is twice continuously di�erentiable and

E[sup �:k���0k<�k@2g(�)=@�@�0k] <1, and for k
�
0k < �, �(X; 
) is continuously di�eren-

tiable at each 
, k@�(X; 
)=@
k � b(W ) and E[b(W )2] <1; (iii) b
 is asymptotically linear

with in
uence function  (W ); (iv) E[k@g(�0)=@�k2] <1 and M� = E[� � (@2g(�0)=@�@�0)]
is non-singular. Then,

p
n(b� � �0)

d! N(0; V ) where

V =M�1
� E

��
� � @g(�0)

@�
+M
 �  

��
� � @g(�0)

@�
+M
 �  

�0�
M�1

� ;

6Note that in some cases we may know a parametric form for �0. The main example is when X is
discrete with �nite support. Then �0 is linear in a saturated model that includes indicators for all possible
values of X . For other cases, nonlinear models such as Probit or Logit can be used in the �rst step to
guarantee that the estimate of �0 lies in between zero and one.
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and M
 = E[(@g(�0)=@�) � (@�(
0)=@
0)].

In order to make inference operational, we need a consistent estimator of the asymptotic

variance matrix V . Consider,

bV = cM�1
� �

 
1

n

nX
i=1

f�i(b
) � @gi(b�)
@�

+ cM
 � b igf�i(b
) � @gi(b�)
@�

+ cM
 � b ig0
!
� cM�1

� ;

where cM� and cM
 are the sample analogs of M� and M
 evaluated at the estimates.

Typically, b is also some some sample counterpart of  where 
0 has been substituted byb
.
Theorem 4.3: If the conditions of Theorem 4.2 hold and (i) there is b(W ) such that for


 close enough to 
0, k�(
)@g(�)=@� � �(
0)@g(�0)=@�k � b(W )(k
 � 
0k+ k� � �0k) and
E[b(W )2] <1; (ii) n�1

Pn
i=1 kb i �  ik2 p! 0, then bV p! V .

4.3.2. Semiparametric Estimation using Power Series

First step parametric estimation procedures are easy to implement. However, consistency ofb� depends on the correct speci�cation of the �rst step. Therefore, nonparametric procedures

in the �rst step are often advisable when we have little knowledge about the functional

form of �0.

This section considers two-step estimators of �0 that use power series in a �rst step to

estimate �0. The main advantage of this type of semiparametric estimators over those which

use kernel methods is that undersmoothing in the �rst step may not be necessary to attain
p
n-consistency of b� (see e.g., Newey and McFadden (1994)). Other advantages of series

estimation are that it easily accommodates dimension-reducing nonparametric restrictions

to �0 (as e.g., additive separability) and that it requires low computational e�ort. The

motivation for focusing on a particular type of approximating functions (power series) is

to provide primitive regularity conditions. For brevity, other types of approximating series

such as splines are not considered here but the results can be easily generalized to include

them.
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Theory for semiparametric estimators that use �rst step series has been developed in

Andrews (1991) and Newey (1994a, 1994b) among others. This section applies results

from Newey (1994b) to derive regularity conditions for semiparametric estimators of causal

response functions.

Let � = (�1; :::; �r)
0 be a vector of non-negative integers where r is the dimension of X.7

Also let X� =
Qr

j=1X
�j

j and j�j =Pr
j=1 �j. For a sequence f�(k)g1k=1 with j�j increasing

and a positive integerK, let pK(X) = (p1K(X); :::; pKK(X))0 where pkK(X) = X�(k). Then,

for K = K(n)!1 a power series nonparametric estimator of �0 is given by

b�(X) = pK(X)0 b� (16)

where b� = (
Pn

i=1 p
K(xi) p

K(xi)
0)� (

Pn
i=1 p

K(xi) zi) and A
� denotes any symmetric gener-

alized inverse of A.

The next three theorems present results on the asymptotic distribution of b� when equa-

tion (16) is used in a �rst step to estimate �0.
8

Theorem 4.4: If Assumptions 2.1 and 4.1 hold and (i) the data are i.i.d.; (ii) � is compact;

(iii) X is continuously distributed with support equal to a Cartesian product of compact

intervals and density bounded away from zero on its support; (iv) �0(X) is bounded away

from zero and one and is continuously di�erentiable of order s; (v) g(�) is continuous at

each � 2 � with probability one; (vi) there is b(W ) such that for � 2 �, kg(�)k � b(W ),

E[b(W )] <1 and K � [(K=n)1=2 +K�s=r]! 0. Then b� p! �0.

Let �(X) = E[(@g(�0)=@�) � �jX] where � = @�(�0(X))=@� = Z(1 � D)=(�0(X))2 �
D(1� Z)=(1� �0(X))2. The function �(X) is used in the following theorem that provides

su�cient conditions for asymptotic normality of b�.
Theorem 4.5: Under the assumptions of Theorem 4.4 and (i) �0 2 interior(�); (ii)

there is � > 0 such that for k� � �0k < �, g(�) is twice continuously di�erentiable and

7If �0 depend only on a subset of the covariates considered in the CCRF, then r is the number of
covariates that enter �0.

8Typically we may want to trim the �tted values from equation (16) so that b� lies between zero and one.
All the results in this section still apply when the trimming function converges uniformly to the identity
in the open interval between zero and one.
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E[sup �:k���0k<�k@2g(�)=@�@�0k] < 1; (iii)
p
nK2[(K=n) + K�2s=r] ! 0 and for each K

there is �K such that nE[k�(X)� �Kp
K(X)k2]K�2s=r ! 0; (iv) E[k@g(�0)=@�k2] <1 and

M� = E[� � (@2g(�0)=@�@�0)] is non singular. Then,
p
n(b� � �0)

d! N(0; V ) where

V =M�1
� E

��
� � @g(�0)

@�
+ �(X)(Z � �0(X))

��
� � @g(�0)

@�
+ �(X)(Z � �0(X))

�0�
M�1

� :

The second part of condition (iii) in last theorem deserves some comment. To minimize

the mean square error in the �rst step we need that K�2s=r goes to zero at the same rate

as K=n. This means that, as long as �(X) is smooth enough, undersmoothing in the �rst

step is not necessary to achieve
p
n-consistency in the second step. Therefore, when �(X)

is smooth enough, cross-validation techniques can be used to select K for the �rst step.

This feature is not shared by semiparametric estimators that use kernel regression in a �rst

step; those estimators usually require some undersmoothing.

An estimator of V can be constructed by using the sample counterparts of its compo-

nents evaluated at the estimates:

bV = cM�1
�

 
1

n

nX
i=1

f�i(b�) � @gi(b�)
@�

+ b�(xi)(zi � b�(xi))g �
f�i(b� ) � @gi(b�)

@�
+ b�(xi)(zi � b� (xi))g0

! cM�1
� ;

where cM� = n�1
Pn

i=1 �i(b�) � (@2gi(b�)=@�@�0). Following the ideas in Newey (1994b), an

estimator of �(X) can be constructed by projecting f(@gi(b�)=@�) � �i(b�)gni=1 on the space

spanned by fpK(xi)gni=1:

b�(xi) =  nX
i=1

@gi(b�)
@�

�i(b�) pK(xi)0! nX
i=1

pK(xi) p
K(xi)

0

!�

pK(xi):

The next theorem provides su�cient conditions for consistency of bV constructed as above.

Theorem 4.6: If the assumptions of Theorem 4.5 hold and there is � > 0 such that

E[sup �:k���0k<�k@2g(�)=@�@�0k2] <1, then bV p! V .
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Institutional knowledge about the nature of the instrument can often be used to restrict

the number of covariates from X that enter the function �0. This dimension reduction can

be very important to overcome the curse of dimensionality when X is highly dimensional.

For example, in a fully randomized experiment no covariate enters �0, which is constant.

However, randomization is not informative about the conditional response function esti-

mated in the second step. Therefore, a nonparametric approach based directly on equation

(8) may be highly dimensional relative to the alternative approach suggested in this sec-

tion. Occasionally, we may want to reduce the dimensionality of the �rst step estimation

by restricting some subset of the covariates in X to enter �0 parametrically. When �0 is

correctly speci�ed in that way, the results of this section will still apply under a condi-

tional version of the assumptions, and for r equal to the number of covariates that enter �0

nonparametrically (see Hausman and Newey (1995)).

5. The Causal Interpretation of Linear Models

In econometrics, linear models are often used to describe the e�ect of a set of covariates

on some outcome of interest. This section brie
y discusses the conditions under which

traditional estimators based on linear models (OLS and 2SLS) have a causal interpreta-

tion. Since no functional form assumption is made, I will say that a linear model has a

causal interpretation if it provides a well-de�ned approximation to a causal relationship

of interest. I focus here on least squares approximations since the object of study will

be E[Y jD;X;D1 > D0], and expectations are easy to approximate in the L2 norm. The

term \best approximation" is used in the rest of the section meaning \best least squares

approximation" and CCRF speci�cally refers to E[Y jD;X;D1 > D0].

The parameters of the best linear approximation to the CCRF, de�ned in equation (10),

have a simple form that is given by the following lemma.

Lemma 5.1: Under Assumption 2.1, the parameters of the best linear approximation to the
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CCRF are given by�
�0
�0

�
=

�
E

��
D
X

�
�

�
D
X

�0���1
E

��
D
X

�
� Y

�
: (17)

Now, consider the OLS parameters:�
�OLS
�OLS

�
=

�
E

��
D
X

� �
D
X

�0���1
E

��
D
X

�
Y

�
:

It follows trivially that OLS has a causal interpretation when the treatment is ignorable

after conditioning on X, since in such a case we can use Z = D and � = 1. In other words,

when Z � D, then D is ignorable given X, so E[Y jD;X] describes a causal relation.

Proposition 5.1: If Assumption 2.1 holds with Z = D then OLS provides the best linear

approximation to the CCRF.

Often the treatment cannot be assumed to be ignorable given the covariates. In such

cases, if some instrument is available to the researcher, 2SLS estimators are frequently used

to correct the e�ect of the endogeneity. The 2SLS coe�cients are given by:�
�2SLS
�2SLS

�
=

�
E

��
Z
X

� �
D
X

�0���1
E

��
Z
X

�
Y

�
: (18)

Theorem 2.1, shows that the coe�cient of the treatment in a simple IV model without

covariates has a causal interpretation as the average treatment e�ect for compliers. How-

ever, this property does not generalize to 2SLS in models with covariates: 2SLS does not

estimate the best linear approximation to the CCRF. This can be easily seen by comparing

equations (17) and (18). In IV models without covariates, we use variation in D induced by

Z to explain Y , and only compliers contribute to this variation. In models with covariates,

the whole population contributes to the variation in X. So the estimands do not only

respond to the distribution of (Y;D;X) for compliers. This raises the question of how to

interpret 2SLS estimates in this setting. The rest of this section addresses this question.

For some random sample, let (b�; b�) and (b�2SLS; b�2SLS) be analog estimators of the

parameters in equations (17) and (18) respectively. That is,� b�b�
�
=

 
1

n

nX
i=1

�
di
xi

�
�i(b� )� di

xi

�0!�1

�
 
1

n

nX
i=1

�
di
xi

�
�i(b� ) yi

!
; (19)
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and � b� 2SLSb� 2SLS

�
=

 
1

n

nX
i=1

�
zi
xi

��
di
xi

�0!�1

�
 
1

n

nX
i=1

�
zi
xi

�
yi

!
: (20)

Proposition 5.2: Suppose that (
Pn

i=1 xi x
0
i) is non-singular and that b� in equation (19) is

given by the OLS estimator, that is, b�(xi) = x0i b� with

b� =

 
1

n

nX
i=1

xi x
0
i

!�1 
1

n

nX
i=1

xi zi

!
:

Suppose also that (
Pn

i=1 xi b�i x0i) is non-singular and that
Pn

i=1(zi � x0ib�) � di 6= 0. Then,b� 2SLS = b�.
Corollary 5.1: If there exists � 2 R

l such that �0(x) = x0 � for almost all x in the support

of X, then � 2SLS = �0.

Therefore, the coe�cient of the treatment indicator in 2SLS has a causal interpretation

when the �0(X) is linear in X. However, the covariate coe�cients (b�2SLS) do not have a

clear causal interpretation under these assumptions. The reason is that the e�ect of the

treatment for always-takers may di�er from the e�ect of the treatment for compliers. Once

we subtract the e�ect of the treatment with � 2SLS, we expect the covariate coe�cients to

re
ect the conditional distribution of Y0 given X. Although the conditional distribution

of Y0 is identi�ed for never-takers and for compliers, this is not the case for always-takers.

On the other hand, if the e�ect of the treatment is constant across units, the conditional

distribution of Y0 for always-takers is also identi�ed (as Y0 = Y1 � �, and � can be iden-

ti�ed through compliers). As a result, under constant treatment e�ects, the conditional

distribution of Y0 given X is identi�ed for the whole population.9 The next proposition is

a direct consequence of this fact.

9Something similar can be said about the more general model

Y = �(X) + �(X) �D + � where E[�jX;Z] = 0:

For this model, �(X) is given by the left hand side of equation (8). However, �(X) does not have a clear
causal interpretation unless the treatment e�ects are constant given X .
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Proposition 5.3: Under constant treatment e�ects (that is, Y1 � Y0 is constant), if there

exists � 2 R
l such that �0(x) = x0 � for almost all x in the support of X, then � 2SLS and

� 2SLS are given by � 2SLS = Y1 � Y0 and � 2SLS = argmin� E[fE[Y0jX]�X 0�g2].

The result of this proposition also holds when �0 is nonlinear as long as E[Y0jX] is linear.

Note that monotonicity is not needed here. When the e�ect of the treatment is constant,

the usual IV identi�cation argument applies, and monotonicity does not play any role in

identi�cation.

6. Empirical Application: The Effects of 401(k) Retirement
Programs on Savings

Since the early 1980s, tax-deferred retirement plans have become increasingly popular in the

US. The aim of these programs is to increase savings for retirement through tax deductibility

of the contributions to retirement accounts and tax-free accrual of interest. Taxes are

paid upon withdrawal and there are penalties for early withdrawal. The most popular

tax-deferred programs are Individual Retirement Accounts (IRAs) and 401(k) plans. IRAs

were introduced by the Employee Retirement Income Security Act of 1974 and were initially

targeted at workers not covered by employer sponsored pensions. Participation in IRAs

was small until the Economic Recovery Act of 1981, which extended eligibility for IRA

accounts to previously covered workers and raised the contribution limit to $2,000 per year.

Contributions to IRAs grew rapidly during the �rst half of the 1980s but declined after the

Tax Reform Act of 1986, which limited tax deductibility for medium and high-income wage

earners. The decline in IRA contributions was o�set in part by the increasing importance

of 401(k) plans, created by the Revenue Act of 1978. 401(k) contributions started growing

steadily after the IRS issued clarifying regulations in 1981. Unlike IRAs, 401(k) plans

are provided by employers. Therefore, only workers in �rms that o�er such programs are

eligible, and employers may match some percentage of employees' contributions. The Tax

Reform Act of 1986 reduced the annual contribution limit to 401(k) plans from $30,000 to
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$7,000 and indexed this limit to in
ation for subsequent years.10

Whether contributions to tax-deferred retirement plans represent additional savings or

they simply crowd out other types of savings is a central issue for the evaluation of this type

of program. This question has generated considerable research in recent years.11 The main

problem when trying to evaluate the e�ects of tax-deferred retirement plans on savings

is caused by individual heterogeneity. It seems likely that individuals who participate

in such programs have stronger preferences for savings, so that even in the absence of the

programs they would have saved more than those who do not participate. Therefore, simple

comparisons of personal savings between those who participate in tax-deferred retirement

plans and those who do not participate are likely to generate estimates of the e�ects of

tax-deferred retirement programs that are biased upwards. Even after controlling for the

e�ect of observed determinants of savings (such as age or income), unobserved preferences

for savings may still contaminate comparisons between participants and non-participants.

In order to overcome the individual heterogeneity problem, Poterba, Venti and Wise

(1994, 1995) used comparisons between those eligible and not eligible for 401(k) programs,

instead of comparisons between participants and non-participants. The idea is that since

401(k) eligibility is decided by employers, preferences for savings should play a minor role

in the determination of eligibility, once we control for the e�ects of observables. To support

this view, Poterba, Venti and Wise present evidence that eligibles and non-eligibles that fall

in the same income brackets held similar amounts of assets at the outset of the program

in 1984. This fact suggests that, given income, 401(k) eligibility could be unrelated to

individual preferences for savings. Di�erences in savings in 1991 between eligibles and non-

eligibles that fall in the same income brackets are therefore interpreted as being caused by

participation in 401(k) plans. Poterba, Venti and Wise results show a positive e�ect of

participation in 401(k) programs on savings. However, since not all eligibles participate in

401(k) plans, the magnitude of such e�ect is left unidenti�ed.

10See Employee Bene�t Research Institute (1997) for a more detailed description of tax-deferred retire-
ment programs history and regulations.

11See the reviews Engen, Gale and Scholz (1996) and Porteba, Venti and Wise (1996) for opposing
interpretations of the empirical evidence on this matter.
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This section applies the methodology developed above to the study of the e�ects of

participation in 401(k) programs on saving behavior. As suggested by Poterba, Venti and

Wise (1994, 1995), eligibility is assumed to be ignorable given some observables (most

importantly, income) so it can be used as an instrument for participation in 401(k) pro-

grams.12 Note that since only eligible individuals can open a 401(k) account, monotonicity

holds trivially and, as explained in section 4.1, the estimators proposed here approximate

the average causal response function for the treated (i.e., for 401(k) participants).

The data consist of 9,275 observations from the Survey of Income and Program Partici-

pation (SIPP) of 1991. These data were prepared for Poterba, Venti and Wise (1996). The

observational units are household reference persons aged 25-64 and spouse if present. The

sample is restricted to families with at least one member employed and where no member

has income from self-employment. In addition to the restrictions used in Poterba, Venti

and Wise (1996), here family income is required to fall in the $10,000-$200,000 interval.

The reason is that outside this interval, 401(k) eligibility is rare.

Table I presents descriptive statistics for the analysis sample. The treatment variable is

an indicator of participation in a 401(k) plan and the instrument is an indicator of 401(k)

eligibility. To study whether participation in 401(k) crowds out other types of saving,

net �nancial assets and a binary indicator for participation in IRAs are used as outcome

variables. The covariates are family income, age, marital status and family size. Table

I also reports means and standard deviations of the variables in the sample by 401(k)

participation and 401(k) eligibility status. The proportion of 401(k) eligibles in the sample

is 39% and the proportion of 401(k) participants is 28%. The proportion of eligibles who

hold 401(k) accounts is 70%. Relative to non-participants, 401(k) participants have larger

holdings of �nancial assets and are more likely to have an IRA account. On average, 401(k)

participation is associated with larger family income and a higher probability of being

married. Average age and family size are similar for participants and non-participants.

Table I allows us to compute some simple estimators that are often used when either

12The possible exogeneity of 401(k) eligibility is the subject of an exchange between Poterba, Venti and
Wise (1995) and Engen, Gale and Scholz (1994).
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the treatment or the instrument can be assumed to be \as good as randomly assigned".

For example, if 401(k) participation were independent of potential outcomes, we could

use the simple comparison of means in equation (2) to estimate the average e�ect of the

treatment. This comparison gives $38,473 - $11,667 = $26,806 for family net �nancial

assets and 0.36 - 0.21 = 0.15 for average IRA participation. Since 401(k) participation

is thought to be a�ected by individual preferences for savings, these simple comparisons

of means between participants and non-participants are likely to be biased upwards. If

401(k) participation was not \as good as randomly assigned" but 401(k) eligibility was a

valid instrument in absence of covariates, then we could use Theorem 2.1 to identify the

average e�ect of 401(k) participation on participants. Equation (7) in Theorem 2.1 suggests

a Wald estimator which gives ($30,535 - $11,677) � 0.70 = $26,940 for family net �nancial

assets and (0.32 - 0.21) � 0.70 = 0.16 for average IRA participation. These simple IV

estimates are similar to those which use comparisons of means between participants and

non-participants. This fact suggests that, without controlling for the e�ect of covariates,

401(k) eligibility may not be a valid instrument. Indeed, the last two columns of Table

I show systematic di�erences in the averages of the covariates between 401(k) eligibles

and non-eligibles. In fact, the comparison of averages for the covariates between eligibles

and non-eligibles gives similar numbers to that between participants and non-participants.

Eligibles have higher average income and they are more likely to be married.

To control for these di�erences, the procedure proposed in this paper estimates the

probability of 401(k) eligibility conditional on the covariates in a �rst step. This �rst step

is carried out here by using nonparametric series regression of 401(k) eligibility on income,

as explained in section 4.3.2. Another two covariates, age and marital status, are also

strongly associated with eligibility. To control for the e�ect of these discrete covariates I

adopt an approach similar to that in Hausman and Newey (1995), including in the �rst

step regression 80 indicator variables that control for all the combinations of age and

marital status. Family size and interactions between covariates were excluded from the

regression since they did not seem to explain much variation in eligibility. Figure 1 shows
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the estimated conditional probability of eligibility given income (with the age-marital status

variables evaluated at their means). The probability of being eligible for 401(k) is mostly

increasing with income up to $170,000 and decreasing beyond that point. Interestingly,

the conditional probability of eligibility appears to be a highly nonlinear function of family

income.

Table II reports the estimates of a linear model for the e�ect of 401(k) participation on

net �nancial assets. In order to describe a more accurate age pro�le for the accumulation

of �nancial assets, the age variable enters the equation quadratically. Three di�erent esti-

mators are considered. The OLS estimates in column (1) show a strong positive association

between participation in 401(k) and net �nancial assets given the covariates. As said above,

this association may be due not only to causality, but also to di�erences in unexplained

preferences for asset accumulation. Financial assets also appear to increase rapidly with

age and income and to be lower for married couples and large families. Columns (3) and

(4) in Table II control for the endogeneity of the treatment in two di�erent ways: the

conventional 2SLS estimates are shown in column (3) (with �rst stage results in column

(2)), while column (4) shows the estimates for the best linear approximation to the causal

response function for the treated (which is the estimator described in equation (11)). In

both cases, the treatment coe�cient is attenuated but remains positive, suggesting that

participation in 401(k) plans may increase net �nancial assets. The magnitude of this e�ect

for the treated is estimated to be $10,800 in 1991. Note also that the coe�cients of the co-

variates for OLS and 2SLS are similar, but that they di�er from those in column (4) which

are estimated for the treated. These di�erences suggest that the conditional distribution of

net �nancial assets given the covariates would still di�er between 401(k) participants and

non-participants in the absence of 401(k) plans.

The positive e�ect of 401(k) participation on net �nancial assets is not consistent with

the view that IRAs and 401(k) plans are close substitutes. To assess the degree of substi-

tution between these two types of saving plans, the rest of this section studies the e�ect of

401(k) participation on the probability of holding an IRA account.13

13Note that substitution between 401(k) and IRA cannot be explained only through participation in these
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The �rst three columns of Table III report the coe�cients of linear probability models

for IRA participation on 401(k) participation and the covariates. The OLS estimates in

column (1) show that 401(k) participation is associated with an increase of 5.7% in the

probability of holding an IRA account, once we control for the e�ect of the covariates in a

linear fashion. The estimated e�ect of 401(k) participation decreases when we instrument

this variable with 401(k) eligibility. The 2SLS estimates in column (2) show a 2.7% increase

in the probability of IRA participation due to participation in a 401(k) plan. Column (3)

uses the methodology proposed in this paper to estimate the best linear approximation

to the causal response function of participants. The e�ect of 401(k) participation on the

probability of holding an IRA account is further reduced and it is no longer signi�cant.14

Linear speci�cations are often criticized when the dependent variable is binary. The rea-

son is that linear response functions may take values outside the [0,1] range of a conditional

probability function. Nonlinear response functions into [0,1], such as the Probit response

function, are customarily adopted for binary choice models. Columns (4) to (9) in Table III

report marginal e�ect coe�cients (partial derivatives) of a Probit response function for an

indicator of having an IRA account on 401(k) participation and the covariates.15 Marginal

e�ects are evaluated at the mean of the covariates for the treated. Columns (4) and (5)

present the results obtained using simple Probit and Nonlinear Least Squares estimators

(i.e., treating 401(k) participation as exogenous). These results show that, after control-

ling for the e�ect of the covariates with a Probit speci�cation, participation in 401(k) is

associated with an increase of 7% in the probability of holding an IRA account. However,

this association cannot be interpreted as causal, because simple Probit and Nonlinear Least

Squares estimators do not correct for endogeneity of 401(k) participation.

The Bivariate Probit model provides a simple way to deal with an endogenous binary

regressor in a dichotomous response equation. This model is based on a structural simul-

programs. Even if participation is constant, substitution can work through the amount of the contributions
to each program. Unfortunately, the SIPP only reports participation in IRA and not contributions.

14Inference throughout this section uses the conventional 5% level of signi�cance.
15For binary indicator variables (Participation in 401(k) and Married) the table reports the change in

the response function due to a change in the indicator variable, with the covariates evaluated at the mean
for the treated.
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taneous equations system which completely speci�es a joint conditional distribution for

the endogenous variables.16 The results from applying the Bivariate Probit model to the

present empirical example are contained in column (6) of Table III; they show an important

attenuation of the treatment coe�cient even though it remains signi�cant. However, the

validity of these estimates depends on the parametric assumptions on which the Bivariate

Probit model is based.

The last three columns of Table III use the techniques introduced in this paper to es-

timate a Probit functional form for the causal response function for the treated. Column

(7) uses the Probit function as a literal speci�cation and estimates the model by Maximum

Likelihood, as described in equation (14). The estimated e�ect of the treatment is smaller

than the Bivariate Probit estimate in column (6), even though it remains signi�cant. The

interpretation of the estimates in column (7) as the coe�cients of the average causal re-

sponse for the treated depends on functional form speci�cation. However, as shown in

section 4.2.1, functional form restrictions are not necessary to identify a well-de�ned ap-

proximation to the causal response function of interest. Column (8) reports the estimated

coe�cients of the best least squares approximation to the average causal response for the

treated using a Probit function; this is the estimator described in equation (12). In this

case, when no parametric assumptions are made, the estimated e�ect of participation in

401(k) on the probability of holding an IRA account vanishes.

Column (9) reports marginal e�ects for a structural model which speci�es random

coe�cients. Consider the following model for compliers:

Y = 1f� �D +X 0� � U > 0g;

where U is normally distributed with zero mean and variance equal to �2U and is independent

of D and X, and � is normally distributed with mean equal to �� and variance equal to �2�

and is independent of U , D and X. Then, it can be easily seen that

E[Y jD;X;D1 > D0] = �(�0 �D + (1 + 
0 �D) �X 0�0); (21)

16For the problem studied in this paper, the Bivariate Probit model speci�es Y = 1f�0 �D+X 0�0�UY >
0g and D = 1f�0 � Z +X 0�0 � UD > 0g, where 1fAg denotes the indicator function for the event A and
the error terms UY and UD have a joint normal distribution. See Maddala (1983), p. 122 for details.
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where �0 = ��=�, �0 = �=�U , 
0 = (�U=� � 1) and � =
q
�2U + �2� . Column (9) is

based on least squares estimation of the model in equation (21). Under misspeci�cation of

the random coe�cients model, the estimates in column (9) can still be interpreted as those

produced by the best least squares approximation to the causal response function for 401(k)

participants that use the speci�cation in equation (21). This alternative speci�cation of

the functional form is slightly more 
exible than the speci�cation in previous columns

since it includes an interaction term between the treatment indicator and the covariates.

The results do not vary much with respect to column (8) suggesting that this particular

structure of random coe�cients is not very informative of the causal response of 401(k)

participants relative to the more basic Probit speci�cation.

On the whole, Table III shows that IV methods attenuate the estimated e�ect of 401(k)

participation on the probability of holding an IRA account. This is consistent with the

view that estimators which do not control for endogeneity of 401(k) participation are biased

upwards. However, Table III does not o�er evidence of substitutability between 401(k)

plans and IRA accounts through participation.

Finally, it is worth noticing that the simple estimates produced by using the uncondi-

tional means in Table I are much bigger than those in Tables II and III, which control for

the e�ect of observed covariates. The reason is that much of the heterogeneity in saving

preferences which a�ects our estimators can be explained by observed individual charac-

teristics. This example illustrates the important e�ect that conditioning on covariates may

have on causal estimates.

7. Conclusions

This paper introduces a new class of instrumental variable estimators of treatment e�ects

for linear and nonlinear models with covariates. The distinctive features of these estimators

are that they are based on weak nonparametric assumptions and that they provide a well-

de�ned approximation to a causal relationship of interest. In the context of the previous

literature on causal IV models, this paper generalizes existing identi�cation results to situ-
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ations where the ignorability of the instrument is confounded by observed covariates. This

is important because unconditionally ignorable instruments are rare in economics. The es-

timators proposed in this paper are demonstrated by using eligibility for 401(k) plans as an

instrumental variable to estimate the e�ect of participation in 401(k) programs on saving

behavior. The results suggest that participation in 401(k) does not crowd out savings in

�nancial assets. On the contrary, participation in 401(k) seems to have a positive e�ect

on �nancial assets accumulation and a small or null e�ect on the probability of holding an

IRA account.

Some questions remain open. First, it would be interesting to generalize these results

to cases with polychotomous and continuous treatments. Also, the systematic study of the

asymptotic e�ciency properties of the class of estimators presented in this paper is left

for future work. The causal least squares approximation estimators described in section

4.2.1 are probably e�cient, like most other estimators based on nonparametric restrictions.

However, results in Newey and Powell (1993) for a similar problem suggest that two-step

semiparametric estimators directly based on parametric restrictions for compliers, like those

described in section 4.2.2, may not attain the semiparametric e�ciency bound. For this

type of problems, asymptotically e�cient estimators can be constructed as one-step versions

of an M-estimator that uses the e�cient score (see Newey (1990)).
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Appendix: proofs

Proof of Theorem 2.1: See Imbens and Angrist (1994).

Proof of Lemma 3.1: Under Assumption 2.1

P (D1 > D0jX) = 1� P (D1 = D0 = 0jX)� P (D1 = D0 = 1jX)

= 1� P (D1 = D0 = 0jX;Z = 1)� P (D1 = D0 = 1jX;Z = 0)

= 1� P (D = 0jX;Z = 1)� P (D = 1jX;Z = 0)

= P (D = 1jX;Z = 1)� P (D = 1jX;Z = 0)

= E[DjX;Z = 1]�E[DjX;Z = 0]:

The �rst and third equalities hold by monotonicity. The second equality holds by independence of Z. The
last two equalities hold because D is binary. By monotonicity, (D1 �D0) is binary. So, the second part of
Assumption 2.1(iii) can be expressed as P (D1 �D0 = 1jX) > 0 or P (D1 > D0jX) > 0. Q.E.D.

Proof of Theorem 3.1: Monotonicity implies

E[g(Y;D;X)jX;D1 > D0] =
1

P (D1 > D0jX)
fE[g(Y;D;X)jX ]

�E[g(Y;D;X)jX;D1 = D0 = 1]P (D1 = D0 = 1jX)

�E[g(Y;D;X)jX;D1 = D0 = 0]P (D1 = D0 = 0jX)g:

Since Z is ignorable and independent of the potential outcomes givenX , and since we assume monotonicity,
the above equation can be written as

E[g(Y;D;X)jX;D1 > D0] =
1

P (D1 > D0jX)
fE[g(Y;D;X)jX ]

�E[g(Y;D;X)jX;D = 1; Z = 0]P (D = 1jX;Z = 0)

�E[g(Y;D;X)jX;D = 0; Z = 1]P (D = 0jX;Z = 1)g:

Consider also

E[D(1� Z)g(Y;D;X)jX ] = E[g(Y;D;X)jX;D = 1; Z = 0]P (D = 1; Z = 0jX)

= E[g(Y;D;X)jX;D = 1; Z = 0]P (D = 1jX;Z = 0)P (Z = 0jX);

and

E[Z(1�D)g(Y;D;X)jX ] = E[g(Y;D;X)jX;D = 0; Z = 1]P (D = 0; Z = 1jX)

= E[g(Y;D;X)jX;D = 0; Z = 1]P (D = 0jX;Z = 1)P (Z = 1jX):

Under Assumption 2.1(iii), we can combine the last three equations in:

E[g(Y;D;X)jX;D1 > D0]

=
1

P (D1 > D0jX)
E

�
g(Y;D;X)

�
1� D(1� Z)

P (Z = 0jX)
� Z(1�D)

P (Z = 1jX)

�����X� :
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Applying Bayes' theorem and integrating yieldsZ
E[g(Y;D;X)jX;D1 > D0]dP (X jD1 > D0)

=
1

P (D1 > D0)

Z
E

�
g(Y;D;X)

�
1� D(1� Z)

P (Z = 0jX)
� Z(1�D)

P (Z = 1jX)

�����X� dP (X);

or

E[g(Y;D;X)jD1 > D0] =
1

P (D1 > D0)
E[� � g(Y;D;X)]:

This proves part a. of the theorem. To prove part b. note that

E[g(Y;X)(1�D)jX;D1 > D0] = E[g(Y0; X)jD = 0; X;D1 > D0]P (D = 0jX;D1 > D0)

= E[g(Y0; X)jZ = 0; X;D1 > D0]P (Z = 0jX;D1 > D0)

= E[g(Y0; X)jX;D1 > D0]P (Z = 0jX):

Where the second equality holds because for compliers D = Z. The last equality holds by independence
of Z. The proof of parts b. and c. of the theorem follows now easily. For part b., note that,

E[g(Y0; X)jX;D1 > D0] = E

�
g(Y;X)

(1�D)

P (Z = 0jX)

����X;D1 > D0

�
=

1

P (D1 > D0jX)
E

�
�

(1�D)

P (Z = 0jX)
g(Y;X)

����X�
=

1

P (D1 > D0jX)
E[�0 � g(Y;X)jX ]:

Integration of this equation yields the desired result. The proof of part c. of the theorem is analogous to
that of part b. By construction, the theorem also holds conditioning on X. Q.E.D.

Proof of Theorem 4.1: Theorem 3.1 implies that

�0 = argmin �2�E [�(D;Z; �0(X)) � g(Y;D;X ; �)]

and that the minimum is unique. Denote g(�) = g(Y;D;X ; �) and �(
) = �(D;Z; �(X; 
)). By (iii) and
(v), for 
 close enough to 
0, the absolute value of �(
) is bounded by some constant and �(
) � g(�) is
continuous with probability one ; by (iv) this happens with probability approaching one (w.p.a.1). This,
along with the second part of (v) and Lemma 2.4 in Newey and McFadden (1994), implies

sup (�;
)2��e�






 1n
nX
i=1

�i(
) � gi(�)�E [�(
) � g(�)]





 p! 0 (A.1)

where e� is any compact neighborhood of 
0 contained in f
 2 R
l : k
 � 
0k < �g for � in (iii), �i(
) =

�(di; zi; �(xi; 
)) and gi(�) = g(yi; di; xi; �). Also, E[�(
) � g(�)] is continuous at each (�; 
) in �� e�. By
the Triangle Inequality,

sup �2�






 1n
nX
i=1

�i(b
) � gi(�) �E [�(
0) � g(�)]







� sup �2�






 1n
nX
i=1

�i(b
) � gi(�)�E [�(b
) � g(�)]





+ sup �2� kE [�(b
) � g(�)]�E [�(
0) � g(�)]k : (A.2)
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The �rst term of the right hand side of (A.2) is op(1) by (A.1); the second term is op(1) by (iv) and uniform

continuity of E[�(
) � g(�)] on � � e� compact. This result, along with (i) and (ii) and Theorem 2.1 in

Newey and McFadden (1994), implies consistency of b�. Q.E.D.

Proof of Theorem 4.2: By (i), (ii) and consistency of b�, with probability approaching one

0 =
1p
n

nX
i=1

�i(b
) � @gi(b�)
@�

=
1p
n

nX
i=1

�i(b
) � @gi(�0)
@�

+

 
1

n

nX
i=1

�i(b
) � @2gi(e�)
@�@�0

!
p
n(b� � �0);

where ke���0k � kb���0k and e� possibly di�ers between rows of @2gi(�)=@�@�0. As �(b
) is bounded w.p.a.1,
then by (ii) and Lemma 4.3 in Newey and McFadden (1994), we have that n�1

Pn
i=1 �i(b
)(@2gi(e�)=@�@�0) p!

M�, which is non singular by (iv). Now, the second part of (ii) implies that w.p.a.1

p
n(b� � �0) = � �M�1

� + op(1)
�( 1p

n

nX
i=1

�i(
0) � @gi(�0)
@�

+

 
1

n

nX
i=1

@gi(�0)

@�
� @�i(e
)

@
0

!
p
n(b
 � 
0)

)
:

From (ii), (iv) and H�older's Inequality, it follows that E[sup

2e�k(@g(�0)=@�)(@�(
0)=@
0)k] < 1. So, by

using the same argument as for M�, n
�1
Pn

i=1(@gi(�0)=@�)(@�(e
)=@
0) p!M
 . Then, by (iii) and the �rst

part of (iv), b� is asymptotically linear with in
uence function equal to �M�1
� f� � (@g(�0)=@�) +M
 �  g,

and the result of the theorem follows. Q.E.D.

Proof of Theorem 4.3: From (i) it is easy to show that n�1
Pn

i=1 k�(b
) @g(b�)=@���(
0) @g(�0)=@�k2 p!
0. The results now follows from the application of the Triangle and H�older's Inequalities. Q.E.D.

Proof of Theorem 4.4: By the Triangle Inequality,

sup �2�






 1n
nX
i=1

�i(b� ) � gi(�)�E [�(�0) � g(�)]







� sup �2�






 1n
nX
i=1

(�i(b� )� �i(�0)) � gi(�)







+ sup �2�






 1n
nX
i=1

�i(�0) � gi(�) �E [�(�0) � g(�)]





 : (A.3)

By (iv), (v), (vi) and Lemma 2.4 in Newey and McFadden (1994), the second term in equation (A.3) is op(1)
and E[�(�0)�g(�)] is continuous. It can be easily seen that for � close enough to �0, j�(�)��(�0)j � C �j���0j
(where j�j stands for the supremum norm) for some constant C. By Theorem 4 of Newey (1997), jb���0j p! 0.
From (vi), sup �2�



n�1Pn

i=1 (�i(b� )� �i(�0)) � gi(�)


 � C � jb� � �0j � n�1

Pn

i=1 b(wi) = op(1). Then, the
result follows easily from Theorem 2.1 in Newey and McFadden (1994). Q.E.D.

Proof of Theorem 4.5: From (i), (ii) and consistency of b�, w.p.a.1 we have
0 =

1p
n

nX
i=1

�i(b� ) � @gi(b�)
@�

=
1p
n

nX
i=1

�i(b� ) � @gi(�0)
@�

+

 
1

n

nX
i=1

�i(b� ) � @2gi(e�)
@�@�0

!
p
n
�b� � �0

�
:

Using an argument similar to that of the proof of Theorem 6.1 in Newey (1994b), it can be shown that
(iii) implies

1p
n

nX
i=1

�i(b� ) � @gi(�0)
@�

=
1p
n

nX
i=1

�
�i(�0) � @gi(�0)

@�
+ �(xi) � (zi � �0(xi))

�
+ op(1):
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To show consistency of the Hessian, note that

1

n

nX
i=1

�i(b� ) � @2gi(e�)
@�@�0

=
1

n

nX
i=1

�i(�0) � @
2gi(e�)
@�@�0

+
1

n

nX
i=1

(�i(b� )� �i(�0)) � @
2gi(e�)
@�@�0

: (A.4)

By (ii) and Lemma 4.3 in Newey and McFadden (1994), we have that n�1
Pn

i=1 �i(�0) � (@2gi(e�)=@�@�0) p!
M� which is non singular by (iv). Also, with probability approaching one, we have




 1n

nX
i=1

(�i(b� )� �i(�0)) � @
2gi(e�)
@�@�0






 � C � jb� � �0j � 1
n

nX
i=1

sup �:k���0k<�





@2gi(�)@�@�0





 ;
so the second term of equation (A.4) is op(1). Then, from (iv), b� is asymptotically linear with in
uence
function �M�1

� f� � (@g(�0)=@�) + � � (Z � �0)g and the result of the theorem holds. Q.E.D.

Proof of Theorem 4.6: Using E[sup �:k���0k<�k@2g(�)=@�@�0k2] < 1 and conditions of Theorem 4.5,

it is easy to show that n�1
Pn

i=1 k�i(b� ) �@gi(b�)=@���i(�0) �@gi(�0)=@�k2 p! 0. To show n�1
Pn

i=1 kb�i(xi) �
(zi� b� (xi))� �i(xi) � (zi� �0(xi))k2 p! 0 an argument similar to that of the proof of Theorem 6.1 in Newey
(1994) applies. However, for the class of estimators introduced in this paper we have that kD(W; e� ; �; �)�
D(W; e� ; �0; �0)k � C � k@2g(e�)=@�@�0k � k� � �0k � je� j for � close enough to �0, e� 2 G (where G is the set of

all square-integrable functions of X) and ke�� �0k � k�� �0k. The fact that there is a function dominating
kD(W; e� ; �; �) � D(W; e� ; �0; �0)k that does not depend on j� � �0j allows us to specify conditions on the
rate of growth of K that are weaker than those in Assumption 6.7 of Newey (1994b). These conditions are
implied by the assumptions of Theorem 4.5. Q.E.D.

Proof of Lemma 5.1: It follows directly from the �rst order conditions (under exchangeability of deriva-
tive and integral) and convexity of E[��(Y �(�D+X 0�))2] = P (D1 > D0)�E[(Y �(�D+X 0�))2jD1 > D0].

Q.E.D.

Proof of Proposition 5.1: It derives directly from Lemma 5.1 and Z = D. Q.E.D.

Proof of Proposition 5.2: It can be easily seen that b�i � (di � x0i b�) = (zi � x0i b�). Then,
0 =

nX
i=0

xi (zi � x0i b�) = nX
i=0

xi b�i (di � x0i b�):
So,

b� =

 
nX
i=1

xi b�i xi0
!�1 nX

i=1

xi b�i di:
Using this result along with equation (19) we have:

b� =
(
P
di b�i yi)� (

P
di b�i x0i) (Pxi b�i x0i)�1 (Pxi b�i yi)

(
P
di b�i di)� (

P
di b�i x0i) (Pxi b�i x0i)�1 (Pxi b�i di)

=

P
(di � x0i b�) b�i yiP
(di � x0i b�) b�i di =

P
(zi � x0i b�) yiP
(zi � x0i b�) di = b� 2SLS :
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Q.E.D.

Proof of Corollary 5.1: It follows from Proposition 5.2 and a Weak Law of Large Numbers for the
estimators in equations (19) and (20). Q.E.D.

Proof of Proposition 5.3: Consider (�0; �0) given in the proposition, that is �0 = Y1 � Y0 and
�0 = argmin� E[(Y0 � X 0�)2]. Let us show that the orthogonality conditions of 2SLS hold for (�0; �0).
Note that

Y � �0D �X 0�0 = Y0 + (Y1 � Y0 � �0) �D �X 0�0 = Y0 �X 0�0:

Then,

E [Z � (Y � �0D �X 0�0)] = E [Z � (Y0 �X 0�0)] = �0E [X � (Y0 �X 0�0)] = 0

and,

E [X � (Y � �0D �X 0�0)] = E [X � (Y0 �X 0�0)] = 0:

So, the result of the proposition holds. Q.E.D.

36



References

Abadie, A. (1997), \Bootstrap Tests for the E�ect of a Treatment on the Distribution of an Outcome
Variable," MIT, mimeo.

Abadie, A., J. D. Angrist and G. W. Imbens (1998), \Instrumental Variables Estimation of Quantile
Treatment E�ects," National Bureau of Economic Research, Technical Working Paper No. 229.

Andrews, D. W. K. (1991), \Asymptotic Normality of Series Estimators for Nonparametric and Semi-
parametric Regression Models," Econometrica, vol. 59, 307-345.

Angrist, J. D. and G. W. Imbens (1995), \Two-Stage Least Squares Estimation of Average Causal
E�ects in Models With Variable Treatment Intensity," Journal of the American Statistical Associ-
ation, vol. 90, 431-442.

Angrist, J. D., G. W. Imbens and D. B. Rubin (1996), \Identi�cation of Causal E�ects Using
Instrumental Variables," Journal of the American Statistical Association, vol. 91, 444-472.

Ashenfelter, O. (1978), \Estimating the E�ects of Training Programs on Earnings," Review of Eco-
nomics and Statistics, vol. 60, 47-57.

Ashenfelter, O. and D. Card (1985), \Using the Longitudinal Structure of Earnings to Estimate
the E�ects of Training Programs," Review of Economics and Statistics, vol. 67, 648-660.

Barnow, B. S., G. G. Cain and A. S. Goldberger (1980), \Issues in the Analysis of Selectivity
Bias," in Evaluation Studies, vol. 5, ed. by E. Stromsdorfer and G. Farkas. San Francisco: Sage.

Bloom, H. S., L. L. Orr, S. H. Bell, G. Cave, F. Doolittle, W. Lin and J. M. Bos (1997),
\The Bene�ts and Costs of JTPA Title II-A Programs," Journal of Human Resources, vol. 32,
549-576.

Card, D. (1993), \Using Geographic Variation in College Proximity to Estimate the Return to School-
ing," National Bureau of Economic Research, Working Paper No. 4483.

Dehejia, R. H. and S. Wahba (1998), \Causal E�ects in Non-Experimental Studies: Re-Evaluating
the Evaluation of Training Programs," National Bureau of Economic Research, Working Paper No.
6586.

Employee Benefit Research Institute (1997), Fundamentals of Employee Bene�t Programs. Wash-
ington, DC: EBRI.

Engen, E. M., W. G. Gale and J. K. Scholz (1994), \Do Saving Incentives Work?," Brookings
Papers on Economic Activity, vol. 1, 85-180.

Engen, E. M., W. G. Gale and J. K. Scholz (1996), \The Illusory E�ects of Saving Incentives on
Saving," Journal of Economic Perspectives, vol. 10, 113-138.

Fisher, R. A. (1935), The Design of Experiments. Edinburgh: Oliver & Boyd.

Goldberger, A. S. (1972), \Selection Bias in Evaluating Treatment E�ects: Some Formal Illustra-
tions," University of Wisconsin, Institute for Research on Poverty, Discussion Paper No. 123-72.

Goldberger, A. S. (1983), \Abnormal Selection Bias," in Studies in Econometrics, Time Series and
Multivariate Statistics, ed. by S. Karlin, T. Amemiya and L. Goodman. New York: Academic Press.

Hausman, J. A. and W. K. Newey (1995), \Nonparametric Estimation of Exact Consumers Surplus
and Deadweight Loss," Econometrica, vol. 63, 1445-1476.

Heckman, J. J. (1990), \Varieties of Selection Bias," American Economic Review, vol. 80, 313-318.

37



Heckman, J. J., H. Ichimura and P. E. Todd (1997), \Matching as an Econometric Evaluation
Estimator: Evidence from Evaluating a Job Training Programme," Review of Economic Studies,
vol. 64, 605-654.

Heckman, J. J. and R. Robb, Jr. (1985), \Alternative Methods for Evaluating the Impact of
Interventions," Ch. 4 in Longitudinal Analysis of Labor Market Data, ed. by J. J. Heckman and B.
Singer. New York: Cambridge University Press.

Hirano, K., G. W. Imbens, D. B. Rubin and X. Zhou (1997) \Causal Inference in Encouragement
Designs with Covariates," Harvard University, mimeo.

Imbens, G. W., and J. D. Angrist (1994), \Identi�cation and Estimation of Local Average Treatment
E�ects," Econometrica, vol. 62, 467-476.

Imbens, G. W., and D. B. Rubin (1997), \Estimating Outcome Distributions for Compliers in In-
strumental Variable Models," Review of Economic Studies, vol. 64, 555-574.

Maddala, G. S. (1983), Limited-Dependent and Qualitative Variables in Econometrics. Econometric
Society Monograph No. 3. Cambridge: Cambridge University Press.

Manski, C. F. (1988), Analog Estimation Methods in Econometrics. New York: Champman and Hall.

Manski, C. F. (1997), \Monotone Treatment Response," Econometrica, vol. 65, 1311-1334.

Newey, W. K. (1990), \Semiparametric E�ciency Bounds," Journal of Applied Econometrics, vol. 5,
99-135.

Newey, W. K. (1994a), \Series Estimation of Regression Functionals," Econometric Theory, vol. 10,
1-28.

Newey, W. K. (1994b), \The Asymptotic Variance of Semiparametric Estimators," Econometrica, vol.
62, 1349-1382.

Newey, W. K. (1997), \Convergence Rates and Asymptotic Normality for Series Estimators," Journal
of Econometrics, vol. 79, 147-168.

Newey, W. K., and D. McFadden (1994), \Large Sample Estimation and Hypothesis Testing," Ch.
36 in Handbook of Econometrics, vol. IV, ed. by R. F. Engle and D. McFadden. Amsterdam:
Elsevier Science.

Newey, W. K., and J. L. Powell (1993), \E�ciency Bounds for Some Semiparametric Selection
Models," Journal of Econometrics, vol. 58, 169-184.

Neyman, J. (1923), \On the Application of Probability Theory to Agricultural Experiments. Essay on
Principles. Section 9," reprinted in Statistical Science 1990, vol. 5, 463-480.

Poterba, J. M., S. F. Venti and D. A. Wise (1994), \401(k) Plans and Tax-Deferred Savings," in
Studies in the Economics of Aging, ed. by D. Wise. Chicago: University of Chicago Press.

Poterba, J. M., S. F. Venti and D. A. Wise (1995), \Do 401(k) Contributions Crowd Out other
Personal Saving?," Journal of Public Economics, vol. 58, 1-32.

Poterba, J. M., S. F. Venti and D. A. Wise (1996), \Personal Retirement Saving Programs and
Asset Accumulation: Reconciling the Evidence," National Bureau of Economic Research, Working
Paper No. 5599.

Powell, J. L. (1994), \Estimation of Semiparametric Models," Ch. 41 in Handbook of Econometrics,
vol. IV, ed. by R. F. Engle and D. McFadden. Amsterdam: Elsevier Science.

Rosenbaum, P. R., and D. B. Rubin (1983), \The Central Role of the Propensity Score in Observa-
tional Studies for Causal E�ects," Biometrika, vol. 70, 41-55.

38



Rosenbaum, P. R., and D. B. Rubin (1984), \Reducing the Bias in Observational Studies Using
Subclassi�cation on the Propensity Score," Journal of the American Statistical Association, vol. 79,
516-524.

Rubin, D. B. (1974), \Estimating Causal E�ects of Treatments in Randomized and Nonrandomized
Studies," Journal of Educational Psychology, vol. 66, 688-701.

Rubin, D. B. (1977), \Assignment to Treatment Group on the Basis of a Covariate," Journal of Edu-
cational Statistics, vol. 2, 1-26.

Stoker, T. M. (1992), Lectures on Semiparametric Econometrics. CORE Lecture Series. Louvain-La-
Neuve: CORE.

39



 50,000 100,000 150,000 200,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Family Income

Figure 1: Conditional Probability of Eligibility for 401(k) Plan given Income
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