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ABSTRACT

We examine dynamic asymmetries in U.S unemployment using nonlinear

time series models and Bayesian methods. We �nd strong statistical evi-

dence in favor of a two-regime threshold autoregressive model. Empirical

results indicate that, once we take into account both parameter and model

uncertainty, there are economically interesting asymmetries in the unem-

ployment rate. One �nding of particular interest is that shocks which lower

the unemployment rate tend to have a smaller e�ect than shocks which raise

the unemployment rate. This �nding is consistent with unemployment rises

being sudden and falls gradual.
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1 Introduction

The vast majority of reduced form empirical work in macroeconomics uses linear models (for

example, the entire VAR literature initiated by Sims (1980)) despite the fact that theoretical

arguments for linearity rarely exist. This dominance is undoubtedly due to the convenience of

linear forms: they are easy to work with and their properties are well-understood. In contrast,

some recent work that emphasizes the restrictiveness of linearity (see, among many others,

Hamilton (1989), Beaudry and Koop (1993) and Pesaran and Potter (1997)) has illustrated

by applications to U.S. GNP that there are enormous potential bene�ts from working with

nonlinear macroeconomic models.

However, it is probably fair to state that the general message coming out of this empirical

literature is that, although there is some evidence in favor of the hypothesis that economic time

series contain nonlinearities, the evidence is not overwhelming nor is it precise on the exact

form or meaning of the nonlinearity. In the face of this mixed message, most economists remain

unconvinced about the usefulness of considering nonlinearity in empirical speci�cations. For

some, this reluctance to consider alternatives to linear models is due to the perceived weakness

of the statistical evidence. Others accept the statistical evidence, but argue that statistically

signi�cant results are fragile due to data mining. Still others argue that statistical signi�cance

does not imply economic signi�cance.

The present paper is a step towards developing a nonlinear modeling strategy that attempts

to convert these three types of skeptics. In particular, we focus on the univariate properties

of a time series, the unemployment rate, that captures some of the most important features

of the business cycle. The unemployment rate has several properties that an empirical model

should account for. Two properties are direct observations:

1. The series is bounded between zero and one. This implies that the unemployment rate

cannot exhibit global unit root behavior.

2. As can be seen in Figure 1a and as is commonly believed unemployment dynamics are

characterized by fast rises and slower falls.1 In particular, Neftci (1984) in an in
uential

1We use the civilian male (over 20 years old) unemployment rate (calculated using Citibase LHMU and
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article found statistical evidence in favor of this belief using a novel nonparametric

technique.2

A third observation forms the main motivation for our paper. Unemployment rates are

highly persistent. For example, in Figure 1a note the long decline in rates in the 1960s

compared to the higher rates of the 1980s. An obvious explanation of this persistence is

adjustment costs in the labor market. We focus on whether this persistence is adequately

captured by an empirical model that propagates positive and negative shocks symmetrically.

There are many theoretical reasons and some empirical evidence for believing that shocks

to the labor market will propagate asymmetrically in the unemployment rate. From the

literature on search and matching models for the labor market there are a number of models

that imply asymmetric adjustment costs. For example, Mortenson and Pissarides (1993),

motivated by measures of asymmetry in job creation and destruction, develop a model where

job creation takes longer than job destruction because job creation requires �rms to search

for good matches. In a similar vein, many search and matching models have been constructed

where there is an externality similar to that described in Diamond (1982) which produces more

matches at times when economic activity is higher.3 In general, any model where adjustment

costs vary over the cycle will imply asymmetries in the response of the unemployment rate

to shocks. For example, the various hysteresis theories of unemployment (e.g.. Blanchard

and Summers, 1986) typically focus on the persistence of shocks to unemployment without

emphasizing asymmetries, but can be interpreted or extended to imply asymmetries. For

instance, hysteresis arguments often hinge on the di�erential behavior of insiders and outsiders

in wage bargaining; the idea being that insiders bargain partly out of concern for their jobs

so that the current level of employment is also the equilibrium level. One only needs to add

LHMC). We made this choice to minimize the e�ect of structural changes on the labor market on the analysis.
This monthly series starts in 1948. In our empirical section, we follow Hansen (1997) and use data starting in
1959 through 1996:7. Data from 1996:8 through 1997:6 is used in a forecasting exercise.

2His �nding of signi�cant asymmetries was questioned by Sichel (1989), who found an error in Neftci's
calculations. However, Sichel also argued that Neftci's test had very low power. Rothman (1991) added to the
debate by using a modi�ed version of Neftci's tests and �nding marginally statistically signi�cant asymmetries
in unemployment. Brock and Sayers (1988) found considerable evidence of nonlinearity in unemployment
using the nonparametric BDS test.

3Burgess (1992) and Storer (1994) examine similar models empirically.
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transaction or adjustment costs to this model to obtain a plausible story of asymmetries; viz.

small shocks will have no permanent e�ect on employment since it does not pay to renegotiate

contracts, but large shocks will have a permanent e�ect.

In order to capture asymmetric propagation of shocks, linear models are inadequate. Thus,

nonlinear models are required to assess the validity of these descriptions of labor market dy-

namics. One approach would be to construct structural models of the labor market. A number

of authors have attempted to do this (for example, the collection of papers on asymmetries

in labor market dynamics in Van Ours et al, 1993). However, in order to obtain a form that

allows estimation at the aggregate level, a number of simplifying assumptions are made that

have left many unconvinced (see the review by Rogerson, 1995). Empirical work at the microe-

conomic level by Davis and Haltiwanger (1990) has been in
uential and led to some promising

approaches that hold out the hope of developing structural models at the microeconomic level

that can be consistently aggregated to produce implications for unemployment. The empirical

approach of this paper complements previous analyses by using a relatively simple reduced

form nonlinear model to quantify the extent of dynamic asymmetries without committing to

their source.

Unlike reduced form linear models, an immediate problem arises with nonlinear models:

it is easy to say that a nonlinear model is required, but much harder to choose one model

out of the myriad of possibilities. One modeling choice seems uncontroversial to us. Instead

of analyzing the unemployment data directly we work with a logistic transformation. We

will show that this simple nonlinear transformation captures the �rst two properties of the

unemployment rate described above even when a linear model (for the transformed data) is

used.

Within the class of possible nonlinear models for the transformed data, we concentrate on

the threshold autoregressive model.4 Threshold autoregressions (TAR hereafter) are the most

widely used class of models in the nonlinear time series literature and are extensively described

by their originator Howell Tong (1990). They work by splitting the time series (endogenously)

into di�erent regimes. Within each regime the time series is assumed to be described by a

4Previous nonlinear time series models of unemployment have been examined by Ham and Sayers(1992)
Rothman (1992), Johnson and McCelland (1995) and in particular Hansen (1997).
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linear model. The main e�ort in estimation of TAR is in deciding upon de�nitions for the

di�erent regimes and their number. We examine three possible ways of de�ning regimes based

on: the previous level of unemployment, previous changes in unemployment and averages of

previous changes in unemployment and allow for one, two or three regimes.

In terms of techniques used to analyze the TAR we depart from most of the previous

literature by using Bayesian methods. Bayesian methods allow us to address directly the

concerns of the three types of skeptics of nonlinear modeling. Firstly, as shown in Koop and

Potter (1998) in testing nonlinearity versus linearity, Bayesian tests are more conservative

(in favor of the linear status quo) than classical tests because they include an Occam's razor

type penalty for unnecessary complexity. Secondly, Bayesian methods allow one to jointly

compare the evidence for a range of linear and nonlinear models rather than being limited to

pairwise comparisons using classical methods. Further, instead of focusing on one particular

representation of possible nonlinearities (i.e., one choice for the type of threshold structure),

we can use the posterior probabilities of each model (including the linear model) to produce

an `average' measure of the amount of nonlinearity present. Thus, we are able to measure

asymmetries in the dynamics of the unemployment rate allowing for both parameter and

model uncertainty.

Empirical results from this `weighted average' model indicate that important nonlinearities

exist in the US unemployment rate and these nonlinearities o�er a deeper understanding of

US labor force dynamics than linear models. For instance, impulse responses indicate that,

when the unemployment rate is falling quickly, positive shocks (which would tend to increase

unemployment) have a much larger e�ect (in absolute value) than negative shocks. Such a

�nding is consistent with much of the theoretical literature cited above. They also complement

the nonlinear empirical literature involving real output (see Beaudry and Koop, 1993 and

Potter 1995) that �nds recessionary shocks are less persistent than expansionary shocks. This

�nding could not be produced by using a reduced form linear model.

The remainder of the paper is organized as follows: Section 2 discusses the data transfor-

mation and threshold models. Section 3 describes our empirical techniques. Section 4 presents

empirical results, including a Monte Carlo study, impulse response analysis and forecasting

exercise. Section 5 is a brief conclusion. There are three appendices. Appendix A gives de-
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tails on our computational techniques. Appendix B contains some results on the sensitivity

for model selection results to the prior. Appendix C gives information on the properties of

the nonlinear model with the highest posterior probability and presents a classical analysis of

the same model.

2 NONLINEAR MODELS FOR UNEMPLOYMENT

2.1 Transforming the Unemployment Data

Since the unemployment rate lies between zero and one it is bounded. If we were to work

directly with this series, the assumption of a symmetric error process would be inappropriate.

Furthermore, the bounded nature of the unemployment rate guarantees `bounded behavior',

a feature often overlooked by those who test for a unit root in this series. Statisticians have

often stressed the importance of developing a model with reasonable limiting behavior. For

instance, Cox and Hinkley (1974, p.6) argue that \even though this limiting behavior may be

far from the region directly covered by the data, it will often be wise to use a family of models

consistent with the limiting behavior."

Statistical analysis of bounded variables is quite di�cult. For instance, to ensure that �tted

and forecast values of a series lie in [0; 1] a linear regression must have an error structure which

is bounded in a complicated way. Wallis (1987) recommends working with transformations of

bounded series; in particular, the logistic transformation. We follow this suggestion and work

with Yt = ln( Ut

1�Ut

), where Ut is the unemployment rate.

The transformed series is now unbounded and we assume it is reasonable to take the errors

as conditionally Gaussian. Figure 1b shows the transformed and untransformed time series,

both normalized to have zero mean and unit variance. The transformation does have some

e�ect, particularly near peaks and troughs in the series. Even the linear model estimated

on the transformed unemployment data will imply nonlinearities when converted back to the

original form of the data.

An issue that arises for unemployment data is whether to impose a stationarity condition

on the models being investigated. In the case of the untransformed series it is clear that one
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needs to do this to ensure bounded behavior. For the transformed data it is less obvious

whether to impose stationarity or not. In this paper we have decided not to explicitly restrict

the models being examined to the stationary regime in the model selection phase of the

analysis. In terms of the untransformed series this means we allow for the possibility of long

term structural shifts in the level of unemployment.

2.2 TAR Models

Let fYt : t = 0; 1; : : :g be a time series and let Jt be an index random variable taking values

in the set f1; 2; : : : ; Kg. Then a threshold autoregression is de�ned by:

Yt = �fJtg + �fJtg(L)Yt�1 + �fJtgVt; (1)

where Vt is an IID sequence of standard normal random variables; and for Jt = j, �fjg is

a constant, �j are regime speci�c scalings of the innovation and �fjg(L) is a �nite order

polynomial in the lag operator L.

In the present application, the most general model we consider is a three-regime TAR

(3TAR). We consider a number of possible choices for the index variable amongst the class of

indicator functions applied to past values of the time series. We label the time series of past

values, Xt. In particular, we have

Yt =

8><
>:

�1 + �1(L)Yt�1 + �1Vt if Xt < r1;

�2 + �2(L)Yt�1 + �2Vt if r1 � Xt < r2;

�3 + �3(L)Yt�1 + �3Vt if Xt > r2;

(2)

where �j(L) is a polynomial of order pj in the lag operator. This model is parameterized

in terms of �j = (�j; �j1; : : : ; �jpj)
0; � = (� 0

1
; � 0

2
; � 0

3
)0; � = (�1; �2; �3)

0; 
 = (r1; r2; d)
0; p =

(p1; p2; p3)
0 and  = (� 0; 
0; p0):

We consider three de�nitions of Xt:

1. Xt = �Yt�d; d = 1; : : : ; p.

2. Xt = Yt�d; d = 1; : : : ; p
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3. Xt =
Yt�1�Yt�d�1

d
; d = 1; : : : ; p.

With the �rst and third type of index variable speci�cation, the model allows for the

dynamics of the unemployment rate to di�er in times when it has risen rapidly, fallen rapidly,

or changed little in recent periods. The di�erence between them is that the d-th di�erence

index is less sensitive to monthly changes that are not permanent. The second type of threshold

nonlinearity is included to capture two possibilities. Firstly, the level of the unemployment

rate may a�ect the dynamics even after the logistic transformation for the reasons discussed

in the introduction. Secondly, if the dominant feature of the sample turns out to be secular

change then this choice of Xt will be very similar to the choice of a model of structural change.

We simplify the analysis by assuming that the order of the autoregression is the same

across all regimes.5 In our empirical study of monthly unemployment data, we follow Hansen

(1997) and set the maximum autoregressive lag at 13.6 We also consider two regime TARs

(2TARs) and homoskedastic versions of TARs as separate classes of models. This gives us 13

separate classes of models to examine:

1. Linear: �1 = �2 = �3; �1 = �2 = �3; �1 = �2 = �3; and the de�nition of Xt is irrelevant.

2. 2TAR1HOM: �2 = �3; �2 = �3; �1 = �2 = �3, Xt = �Yt�d; d = 1; : : : ; p.

3. 2TAR1HET: �2 = �3; �2 = �3; �2 = �3; Xt = �Yt�d; d = 1; : : : ; p.

4. 2TAR2HOM: �2 = �3; �2 = �3; �1 = �2 = �3, Xt = Yt�d; d = 1; : : : ; p.

5. 2TAR2HET: �2 = �3; �2 = �3; �2 = �3; Xt = Yt�d; d = 1; : : : ; p.

6. 2TAR3HOM: �2 = �3; �2 = �3; �1 = �2 = �3, Xt =
Yt�1�Yt�d�1

d
; d = 1; : : : ; p.

7. 2TAR3HET: �2 = �3; �2 = �3; �2 = �3; Xt =
Yt�1�Yt�d�1

d
; d = 1; : : : ; p.

8. 3TAR1HOM: �1 = �2 = �3, Xt = �Yt�d; d = 1; : : : ; p.

5This removes a degree of freedom from the nonlinear model that could lower the posterior probability of

nonlinearity.
6Hansen uses di�erenced data and sets p = 12, implying p = 13 for levels data.
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9. 3TAR1HET: Xt = �Yt�d; d = 1; : : : ; p.

10. 3TAR2HOM: �1 = �2 = �3; Xt = Yt�d; d = 1; : : : ; p:

11. 3TAR2HET: Xt = Yt�d; d = 1; : : : ; p:

12. 3TAR3HOM: �1 = �2 = �3 ,Xt =
Yt�1�Yt�d�1

d
; d = 1; : : : ; p.

13. 3TAR3HET: Xt =
Yt�1�Yt�d�1

d
; d = 1; : : : ; p:

Our choice of models and the logistic transformation gives a wide range of possible likeli-

hood functions through which we view the unemployment rate data. A major problem for any

empirical analysis once one leaves the world of linear models is to decide which of the in�nite

types of nonlinearity to adopt. The theories discussed in the �rst section of our paper suggest

that unemployment dynamics may di�er across regimes, and that these regimes should re
ect

the tightness of the labor market or the state of the business cycle in some sense. But theory

o�ers us little guidance as to the number of regimes. That is, it does not say whether there

should be two regimes re
ecting \good times" and \bad times" or, as Pesaran and Potter

(1997) �nd for GDP, three regimes re
ecting \good", \bad" and \normal" times. Theory also

tells us little about what should trigger regime switches. That is, it does not say whether

regimes should be de�ned according to levels or rates of change of lagged dependant vari-

ables. Furthermore, theory provides little help in timing and lag selection issues. We feel that

our approach covers virtually all reasonable possibilities that are in accord with theoretical

possibilities. One advantage of our Bayesian approach is that we can easily work with large

numbers of models. In our case, we have 13 classes and consider p = 1; 2; :::; 13 for a total

of 165 models.7 Classical econometric approaches in the literature typically select a small

number of models and work with one preferred model. For instance, Hansen (1997) considers

only homoskedastic 2TAR models with one choice for p and two threshold de�nitions.

An alternative class of potentially useful models is discussed in Hamilton (1989). This class

is similar in spirit to the TAR. However, simple versions of these so-called Markov switching

7That is, 13� 13� 4 = 165, where the subtractions arise since, for p = 1, JTAR1 and and JTAR3 models

are identical for J=2,3.
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models assume only two regimes and that the probability of switching between regimes depends

only on which regime was applicable in the last period. In a serious empirical exercise, it is

necessary to allow for the possibility of more regimes and to allow the switching probability

to have longer memory. Such extensions are trivial in TAR models, but much more di�cult

in Markov switching models. Furthermore, from either a Bayesian or a classical econometric

perspective, TAR models are easier to work with (see Koop and Potter, 1998, and Hansen,

1992, 1996).

3 BAYESIAN TECHNIQUES

3.1 Bayesian Analysis of Threshold Models

Since the index variable is constructed from the location of observable lags of the time series,

the TAR speci�cations can be estimated and evaluated using classical statistical methods as

described in Tong (1990). However, the unconventional likelihood function of TAR models

causes many problems for classical statistical inference.8 It is very di�cult to obtain a tractable

form for the sampling distribution of the threshold estimates since they converge at a faster

rate than the square root of the sample size. Further, because of their superior speed of

convergence one is unable to relate uncertainty in the true location of the thresholds to the

sampling uncertainty in other parameters in the model (see Chan, 1993). Asymptotically, one

can ignore the uncertainty over the delay and thresholds in measuring the uncertainty over the

other parameters. In practice, experience suggests that in �nite samples there is substantial

covariance between the thresholds and other parameter estimates. Further, the �nite sample

likelihood concentrated with respect to the threshold parameters is very irregular as one would

expect for a threshold model and usually has multiple peaks in the case of more than two

regimes (see Pesaran and Potter, 1997, Figure 2.b).

These features of the likelihood function of TAR models make it very hard to extract

good measures of uncertainty for parameter estimates using classical statistical techniques.

8The likelihood function is discontinuous in the thresholds and also contains numerous 
ats as the threshold

value changes but the underlying index variable does not.
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For example, popular techniques such as the bootstrap will not capture the multiple peaks in

the sample likelihood function since they are centered at the maximum likelihood estimator

and only provide information about the uncertainty at this point.9 In particular, classical

methods have major problems in using the model for out of sample forecasting or generat-

ing dynamic properties since one is unable to accurately capture the uncertainty surrounding

regime classi�cation.10 Bayesian methods, on the other hand, average over the entire param-

eter space and the irregular properties of the likelihood function do not hinder the derivation

of the posterior. In other words, they provide exact small sample results for a model where

asymptotic approximations are guaranteed to be poor.

Other models such as smooth transition autoregressions (Chan and Tong, 1985) or Markov

switching impose a considerably greater burden in estimation than the TAR class of models.

Furthermore, nonlinear time series (by de�nition) su�er generically from the problem of like-

lihood functions with multiple peaks in �nite samples.

Bayesian techniques for analyzing simple TAR models are given in Geweke and Terui

(1993). These authors derive the posterior density of the parameters and advocate the use of

Monte Carlo integration for drawing posterior and predictive inferences. In Appendix A we

describe the form for the posterior in our model using informative priors, discuss calculation of

marginal likelihoods and features of the posterior and advocate the use of analytical methods.

3.2 Bayesian Model Selection

Our main reason for the adoption of Bayesian methods is that they allow us to explicitly

include measures of uncertainty over model type. In the Bayesian approach, no one model has

to capture the true data generating process. Instead of choosing just one model, we can weight

features of interest (such as impulse responses) from di�erent models by their posterior model

probabilities. Leamer (1978) argued that such a weighted average of the properties of di�erent

models is particularly attractive in disciplines like economics where theoretical considerations

might not give sharp views on which speci�cation is best. The classical approach typically

9Sims and Zha (1994) make a similar point in the case of the possibility of unit roots.
10The methods discussed in Hansen (1997) provide classical con�dence intervals for threshold estimates

conditional on the delay lag and do not supply a joint distribution for all the estimates.
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presents results based on one peak of the one likelihood function. The Bayesian approach used

in this paper presents results based on the whole likelihood function weighted by the prior for

several di�erent types of likelihood functions.

Posterior model probabilities can be calculated based on Bayes factors comparing the

various models. The Bayes factor for comparing model 1 to model 2 parameterized by �; �

respectively is given by:

B12 =

R
`(�)b(�)d�

R
`(�)b(�)d�

;

where `(�) is the likelihood function and b(�) is the prior belief for the parameters of the models.

The Bayes factor gives the posterior odds in favor of model 1 over model 2 when the prior

odds are unity. In the types of models we examine in this paper the marginal likelihoods can

be found analytically (see Appendix A) and, hence, the computational burden is not high.

Koop and Potter (1998) discuss the advantages of a Bayesian approach for model com-

parison in the context of testing for nonlinearities in economic time series. Classical tests for

nonlinearity typically run up against the so-called Davies' problem: nuisance parameters that

are present under the alternative are unidenti�ed under the null.11 Andrews and Ploberger

(1994) show that `optimal' solutions to Davies' problem are in the form of average exponen-

tials of standard test statistics (e.g. the LM statistic) where the average is taken over the

unidenti�ed nuisance parameters. However, since these parameters are unidenti�ed under the

null, there is nothing to pin down the distribution used in the averaging. Thus, the clas-

sical approach to model selection is based on a subjectively chosen weighting scheme. The

Bayes factor, too involves integrating out the nuisance parameters. However, the integration

is performed with respect the posterior distribution of the nuisance parameters.

In addition, Bayes factors include an automatic penalty for more complex models. This

Occam's razor property is of great use in nonlinear model selection given the risks of over-

parameterization with such models. The intuition behind this property of Bayes factors is quite

simple in the case of linear versus nonlinear models. Linear models are capable of explaining

a smaller range of types of time series data than nonlinear models. If the time series data is

approximately linear, the linear model will tend to have a higher marginal likelihood than the

11In our case, 
 is unidenti�ed for the linear model.
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nonlinear model which places considerable weight on time series data that are far from linear.

A major di�culty for many with a Bayesian analysis is the need to specify a prior distri-

bution. Geweke and Terui (1993) carry out a Bayesian analysis of threshold autoregressive

models using a `noninformative prior'.12 However, for our purposes we require an informative

prior. It is well known in the Bayesian literature that in a nested testing situation, improper

priors (i.e., priors which do not integrate to one) typically result in Bayes factors containing

little information from the observed sample. In general, if priors are too 
at and noninforma-

tive relative to the data, the restricted (in our case linear) model will always be selected, even

if the unrestricted (nonlinear) model is the `correct' one. The reason for this is that from the

point of view of Occam's razor, the nonlinear model under a very 
at prior is able to explain

an enormous variety of data sets containing nonlinearity. Hence, the marginal likelihood of

the observed sample will be low even if it contains important nonlinearities. Alternatively

very tight priors on the parameters centered at the same values for the linear and nonlinear

models lead to Bayes factors equal to 1 since a priori the two models are assumed to be close

and the sample information cannot change this too much.

4 Empirical Results

4.1 Prior Selection

We use a prior that attempts to capture some of the theoretical considerations discussed

above. We start by considering possible values of the thresholds. For the 3TARs we assume

that the prior support of the two thresholds is non-intersecting. In particular r1 is assumed

to take on negative values only and r2 positive values only.13

We take b(
) = b(r1)b(r2)b(d) where b(r1) and b(r2) are uniform (for the transformed data)

over [~r1; 0] and [0; ~r2], respectively. The hyperparameters ~r1 < 0 and ~r2 > 0 are chosen to

12The issue of noninformative prior selection in time series is controversial (see Phillips (1991) plus accom-
panying discussion). In order to keep the computational burden reasonable we do not attempt to take these
issues into account. Since we are not directly interested in testing for `unit roots' we do not think this is a
major issue.

13In the case of the 3TAR2 model negative and positive should be interpreted relative to mean adjusted
data.
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ensure that at least 15 per cent of the observations lie in each of the upper and lower regimes.

For the 2TAR, b(r1) is chosen as above, except that it is no longer restricted to be negative.

These priors ensure that our model is not merely �tting a small number of outliers. For both

the 3TAR and the 2TAR, b(d) is assumed to be uniform over the integers 1; 2; : : : ; p:

As discussed in Appendix A, conditional on 
, the heteroskedastic JTARs (where J=2,3)

break down into J di�erent regression models, each using a di�erent subset of the data. For

each of these J models we use a standard Normal-inverted Gamma prior for the regression

coe�cients and error variance (see Judge, Gri�ths, Hill, Lutkepohl and Lee, 1985, pp. 106-

110). Formally, we let b(�j; �
2

j ) have a Normal-inverted Gamma distribution. We assume prior

independence across regimes and between 
 and the other parameters so that the prior can

be written as:

b(�; �; 
) = b(
)
JY

j=1

b(�j; �
2

j ):

The homoskedastic JTAR's can, through the use of appropriate dummy variables, be

written in the form of a linear regression model, conditional on 
: The prior for these models

can be written as b(�; �2
1
; 
) = b(
)b(�; �2

1
) where b(
) is described above and b(�; �2

1
) is

Normal-inverted Gamma. For the linear autoregressive model, we let b(�1; �
2

1
) be Normal-

inverted Gamma.

It remains to specify the hyperparameters of the Normal-inverted Gamma priors. Precise

details are given in Appendix A. The results presented in this section are based on a prior

that is reasonably 
at. Furthermore, the various models have basically the same prior. The

relative 
atness of the prior tends to stack the odds in favor of the linear model as we noted

above.

4.2 Performance of Bayes Factors in Arti�cial Data Sets

Before examining the properties of U.S. unemployment, it is useful to brie
y examine the

properties of our Bayesian methodology using simulated data. To this end, we arti�cially

simulated 100 data sets, each of length 200, from each of six data generating processes. These

six DGPs are selected to represent a wide variety of behavior, but are not intended to be
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exhaustive. We focus on linear models (i.e. to investigate "size" issues) and 3TAR's (i.e. to

investigate "power" issues). We do not consider 2TAR DGPs on the grounds that, if our

methods work well for less parsimonious 3TARs, they will likely also work well for 2TARs.

All of the DGPs are restricted versions of (2) where intercepts are always set to zero (i.e.

�1 = �2 = �3 = 0) and, with one exception, p1 = p2 = p3 = 1. The exception is DGP2 which

is an AR(2) model. The �ve DGPss are given by:

1. DGP1: �11 = �21 = �31 = 0:8; �1 = �2 = �3 = 1:0:

2. DGP2: �11 = �21 = �31 = 1:2; �12 = �22 = �32 = �0:6; �1 = �2 = �3 = 1:

3. DGP3: �11 = 0:2; �21 = 0:8; �31 = �0:5; �1 = �2 = �3 = 1; r1 = �0:5; r2 = 0:5; Xt =

Yt�1:

4. DGP4: same as DGP3, except �1 = 0:5; �2 = 1:0; �3 = 1:5:

5. DGP5: same as DGP4, except �11 = �21 = �31 = 0:8:

6. DGP6: same as DGP3, except Xt = �Yt�1:

In other words, we simulate from a linear AR(1), AR(2), a homoskedastic 3TAR, a het-

eroskedastic 3TAR, a linear heteroskedastic model and another homoskedastic 3TAR. The

latter 3TAR has thresholds triggered by lagged di�erences, while the former use lagged levels.

The prior is identical to that used with the unemployment data, except that the prior mean

of �2

j is set to 1:0. We set the maximal lag length to 2.

Table 1 presents posterior model probabilities averaged across the 100 simulated data sets.

The correct DGP is indicated by a *. It can be seen that the Bayesian methodology tends

to allocate most of the posterior model probability in virtually every case. Results for DGP1

and DGP2 indicate that, if the DGP is truly linear, then our Bayesian methodology indicates

this. A comparison of results for these two DGPs also indicates that the methodology also

works well in �nding the correct lag length.

DGP3 is a nonlinear homoskedastic model with one lag with threshold de�ned by lagged

levels, and our methods allocate, on average, over thirty per cent of the posterior model
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probability to this model. However, substantial weight is allocated to the linear and to the

corresponding 2TAR model. This �nding is undoubtedly due to the large prior standard

deviations on the autoregressive coe�cients. As discussed previously, Bayes factors have a

strong reward for parsimony built in, especially if the prior is relatively noninformative. We

view this property in a positive light: only if there is overwhelming evidence against the linear

status quo will our methods indicate nonlinearity.

The next two DGPs exhibit heteroskedasticity. The posterior model probabilities indicate

this strongly and in all simulated data sets. As before, the corresponding 2TAR's receive some

posterior model probability indicating the Occam's razor property of Bayes' factors, especially

where relatively 
at priors are used.

DGP6 was introduced to see if our Bayesian methodology is good at selecting the correct

threshold de�nition. Results strongly indicate that it is.

Overall, we �nd these Monte Carlo results to be strongly supportive of the theoretical

properties discussed in the previous section of this paper. Posterior model probabilities based

on Bayes factors do seem to perform well in repeated samples and contain a strong reward for

parsimony.

4.3 Model Selection Results

We calculate posterior probabilities for the various models using equal prior probabilities for

each model.14 The results are presented in Table 2. Since none of the 3TAR models receive

probability greater than 0.00001, we do not include these models in the table. Furthermore,

since no model with p > 8 receives appreciable posterior model probability, we do not present

results for high lag lengths individually. The poor performance of these classes of models with

a large number of parameters is undoubtedly due to the reward for parsimony built into Bayes

factors.

It is clear that the 2TAR3HET models (i.e. two regime heteroskedastic TAR with regimes

14In particular, since we have 165 models each receives prior probability equal to 1/165. If the reader
wishes to choose di�erent prior model probabilities, he/she can simply reweight the numbers in the tables.
For instance, if one wishes to double the prior weight attached to each of the linear models, then the model
probabilities in the \Linear" row of Table 2 can be doubled and the other rows downweighted appropriately.
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de�ned by average di�erences of the dependant variable) receive the majority of the posterior

model probability. Note that it is the average change, rather than the level, of the unemploy-

ment rate which de�nes the two regimes in the model. The preferred model has p = 5, and

for all model classes this tends to be the preferred lag length. If we average across values of

p then the posterior probability of the 2TAR3HET is 0.802, indicating this model in partic-

ular and nonlinearity in general is strongly supported in this data set. The remainder of the

probability is allocated to the 2TAR3HOM models (0.143) and the linear models (0.055). The

prior sensitivity in Appendix B suggests these results are robust to changes in the prior. It is

worth noting that much of the nonlinearity we �nd seems to be of a heteroskedastic nature

(i.e. nonlinear heteroskedastic models tend to outperform nonlinear homoskedastic models).

Appendix C contains a brief discussion of parameter estimates and a comparison with the

classical analysis of Hansen (1997). Su�ce it to note here that our results are in line with

those obtained by a classical econometric study of this data set.

4.4 Generalized Impulse Responses

Potter (1997) presents a thorough discussion of impulse response analysis in nonlinear univari-

ate models. Koop (1996) extends the discussion by allowing for parameter uncertainty using

Bayesian methods. The generalized impulse response (GI) developed in these papers measures

the e�ect on a time series of a shock relative to a suitably-de�ned base case. These papers

note that, unlike in linear models, impulse responses depend both on the initial conditions

when the shocks hits and the other shocks in the model. To motivate this, consider a simple

AR(1) model with autoregressive coe�cient �. Any realization of this series can be written

as:

Yt+n = �n+1Yt�1 +
nX

i=0

�iVt+n�i:

This expression depends on Yt�1 (the initial condition or history, which we will denote in

the general case !t�1), the shocks Vt; : : : ; Vt+n, and the parameter, �. In a linear model,

when we take the di�erence between a perturbed and base case, many simpli�cations arise.

However, with nonlinear models we have to take into account the e�ect of initial conditions

and future shocks and their interaction with the estimated parameters. Many di�erent types
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of generalized impulse responses can be de�ned depending on the treatment of these three

factors. In this paper, we always integrate out the parameters with respect to the posterior

distribution and all shocks expect for Vt in the perturbed case. We condition on values for Vt

and the initial condition !t�1: de�ned by the particular speci�cation of the 3TAR or linear

model drawn from the posterior.

Formally, we de�ne the generalized impulse response at horizon n as:

GI(n; Vt = �1�Xt;�Ut�i = �2 : i = 1; : : : ; p; Ut�p�1 = �3) =

E[Ut+njVt = �1�(Xt);�Ut�i = �2 : i = 1; : : : ; p; Ut�p�1 = �3]

-

E[Ut+nj�Ut�i = �2 : i = 1; : : : ; p; Ut�p�1 = �3]:

The expectations in the previous expression are taken over all parameters in the model as

well as the errors which are not speci�ed as conditioning arguments (i.e. Vt+1; ::; Vt+n for the

�rst and Vt; ::; Vt+n for the second expectation). Note that we consider the e�ect of a shock

of size �1�(Xt), which hits after a period which unemployment has been growing by �2 per

cent for each of the last p years starting from a level of �3. That is, �2 and �3 de�ne the initial

condition when the shock hits. The standard deviation of the shock in the HET models will

depend on the regime. Hence, we make � a function of Xt. In principal, we could integrate

out �2 and �3 (see Koop, 1996), but it is often revealing to consider the e�ect of shocks which

hit at various points on the business cycle. Note also that we are calculating the e�ect of

shocks to the unemployment rate (Ut), not to Yt, the logistically transformed series.

We consider shocks equal to twice the standard deviation (from a particular draw of the

posterior) of the innovation for each model. That is, �1 = �2: Hence, we are considering the

e�ects of shocks that are large, but not unreasonably so. For the history, we try three di�erent

setups corresponding to a shock hitting when the unemployment rate is

1. Fast Decrease i.e., falling rapidly,

2. No Change i.e., constant
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3. Fast Increase i.e., rising rapidly.

In particular, we choose initial conditions based on data considerations. �3 is set to

the mean unemployment rate (4:72%) for all setups and �2 is selected based on the aver-

age absolute value of the monthly change in the unemployment rate (i.e. 0:15%). That is,

�2 = �0:15%; 0:0%; 0:15% correspond to fast decrease, no change and fast increase setups.

Since we report the impulse responses for the original unemployment series (i.e.. Ut) a value

of 1:00 implies a 1 point rise in the level of the unemployment rate relative to the base case

(i.e., the second conditional expectation in the de�nition of the GI). Recall that, because of

the logistic transformation, even the linear model will show some nonlinearities in its GI. As

described in Koop (1996) or Koop, Pesaran and Potter (1996), GIs can be calculated in a

simple manner using simulation methods. That is, we can simulate from the posterior for the

parameters and the distribution of the errors to construct simulated draws of Yt+n, which can

be transformed to provide draws of Ut+n. Averages of these latter draws will converge to the

expectations in the formula for the GI.

We concentrate on GI averaged across all models.15 The weights in this average are

given by the posterior model probabilities given in Table 2. Appendix C presents results for

the preferred model (2TAR3HET with p = 5) and the most popular linear model (p = 5)

separately. We present the results in various forms. Table 3 contains all the information

on the responses for the 24 month horizon. In order to help describe the various dynamic

asymmetries we also present the information in graphical form. It is worth stressing that we

have six GI's, coming from two shocks and three histories. We start by grouping the GI by

type of shock (i.e. positive/negative) in Figures 2a and 2b. We also normalize so the initial

e�ect of the shock is unity for all histories. In Figures 2c-2e we plot the e�ect of the two

di�erent shocks for each history (i.e. fast decrease/no change/fast increase). The GI's in

these latter �gures are not normalized. To aid in comparison, we take the absolute value of

the GI for the negative shock.

Three main �ndings are evident in the GI's. First, the classic hump-shaped pattern often

15In practice, to save computer time we average across all models which receive posterior model probability
of 1% or more.
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seen in the impulse response functions of business cycle variables is still clearly present. Sec-

ondly, Figure 2 shows clearly that the e�ects of positive and negative shocks are asymmetric.

In particular, positive shocks (which raise unemployment) tend to have a larger e�ect than

negative shocks (which lower unemployment). This is consistent with the commonly observed

fast rise/slow fall behavior of the unemployment rate. Thirdly, the e�ect of shocks di�ers

markedly over the histories. In particular, shocks which hit during times when the unemploy-

ment rate is decreasing have a larger e�ect than those which hit when the unemployment rate

is stable. Shocks which hit when the unemployment rate is increasing have least e�ect. This

�nding probably relates to the hysteresis of the unemployment rate. That is, if unemployment

is more sluggish during bad times (i.e. when it is increasing), then shocks should have little

e�ect in bad times. This is exactly what we observe in Figure 2d.

The GIs re
ect all the models considered, but the 2TAR3HET with p = 5 receives most of

the weight in the averaging process. In fact, the overall GI's look quite similar to those for the

preferred model (see Appendix C). However, the GIs coming from the linear model are not

that di�erent from the 2TAR. The asymmetry between positive and negative shocks is more

pronounced for the nonlinear model, but the linear model exhibits the same type of history

dependence as the nonlinear ones. This latter �nding is due to the logistic transformation. In

the present application, this transformation of the series has a role at least as important as

the nonlinear modelling in uncovering important regularities in the unemployment rate.16

Overall, there seem to be several interesting dynamic asymmetries in the U.S. unemploy-

ment rate. From one point of view, we are merely discovering stylized facts about this variable

that are commonly known by macroeconomists. However, it is worth emphasizing that such

stylized facts could not be found using linear methods and an untransformed unemployment

rate. Furthermore, we are able to exactly quantify the degree of asymmetry in a manner that

is di�cult to do using alternative methodologies. The GIs presented here relate to the mean

of the series rather than the variance. The fact that the heteroskedastic models receive so

16Note that our transformation is not imposing asymmetries in the model in the same way that a linear

model with untransformed data would impose symmetry. It would be possible for our TAR models to remove

the e�ect of the transformation. That is, it is possible for the nonlinear model with transformed data to look

like the linear model with untransformed data.
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much support indicates that there may also be interesting nonlinearities in the variance. The

GI methodology can be used to investigate the e�ect of shocks on the variance of the series.

However, to do so here would be beyond the scope of the present paper.

4.5 Forecasting Exercise

Throughout our empirical work, we use data from 1959:1 through 1996:7, even though data

through 1997:6 is currently available. This is partly done to aid in comparison with the results

of Hansen (1997). However, the withholding of data from 1996:8 through 1997:6 allows us to

carry out a forecasting exercise. As for the GIs, we present results averaged over all models.17

Figure 3a contains our results. If we let U�

t
for t=1996:8,...,1997:6 denote the predictive

random variables, then Figure 3a is plotted using E(U�

t
) and V AR(U�

t
). Note that the actual

value of unemployment does tend to lie with the band de�ned by the predictive mean +/-

two standard deviations, although our model is tending to predict too high unemployment

rates. This is seen most clearly in Figure 3b where predictive means for several models are

presented. Even though 2TAR3HET with p=5 does tend to predict the best, all models tend

to be predicting poorly. If we examine the actual data, note that U1996:7 = 4:62% while

U1996:8 = 4:23%. In other words, there is a sizeable drop in unemployment just as we begin

our out-of-sample period.

Even though all models forecast somewhat poorly, it is worth stressing that the 2TAR3HET

with p=5 does outperform the linear AR(5) model. This is noted most clearly by considering

the expectation of predictive sum of squares errors:

PSSE = E(
1997:6X

i=1996:8

(U�

t
� Ut)

2);

where the expectation is with respect to the posterior of the parameters and models. PSSE =

7:941 for the 2TAR3HET with p=5 while PSSE = 8:231 for the AR(5). This provides

additional evidence in support of the nonlinear speci�cation.

17Note that variances cannot simply be averaged across models since they are not moments. Rather we

average �rst and second moments across models and then use these to build up an overall variance.
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5 Conclusions

In this paper, we have advocated the use of nonlinear methods and suitable transformation

of the variable of interest for macroeconomic modeling, arguing that linear models using

untransformed data are too restrictive to uncover important features of many economic time

series. Unfortunately, with nonlinear models we run into problems of model choice and possible

over-parameterization. As a way of getting around these problems, we use multiple-regime

TAR models which have several advantages. Firstly, they are based in economic theory in

the sense that they can exhibit the types of dynamic asymmetries that theoretical labor

models lead us to expect. Secondly, even though they are very 
exible, they are reasonably

parsimonious. Thirdly, they are computationally easy to work with.

We use Bayesian methods to estimate our models since these allow for the recovery of

small-sample properties in a case where we would expect classical asymptotic approximations

to be very poor. Furthermore, classical model selection methods are plagued by Davies'

problem, which is not a problem for Bayesian methods. The use of such methods allows us to

avoid the selection of one single model. Rather we consider 165 di�erent models and present

results which average across all these models using posterior model probabilities.

Empirical results indicate that there are both statistically and economically signi�cant

nonlinearities in the unemployment rate. For instance, impulse responses indicate that positive

shocks (which would tend to increase unemployment) have a much larger e�ect (in absolute

value) than negative shocks.
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Appendix A

Geweke and Terui (1993) carry out a Bayesian analysis of a two-regime TAR model using

a noninformative prior using Monte Carlo integration. The techniques used in this paper

are extensions of their techniques to incorporate informative priors and calculate marginal

likelihoods. Given that our formulae are closely related to theirs, we do not provide exact

details here. Rather we describe the steps necessary to extend the Geweke and Terui results.

Throughout we will refer to the JTAR model, where J = 2; 3 indicates the appropriate number

of regimes.

We �rst specify the hyperparameters of the Normal-inverted Gamma priors for �j and �
2

j :

For all models we set the prior mean of �j (j = 1; :::; J for JTAR, j = 1 for AR) equal to

zero. The prior degrees of freedom for �2j is set to 3, which is the smallest (and hence least

informative) value consistent with the existence of the �rst two prior moments of �j. The prior

mean of �2j is set to 45. This value was set after looking at the variance of the transformed

data. The prior covariance matrix for �j is assumed to be diagonal. The prior variance is set

to 16 for the intercept term(s) and 1 for the �rst autoregressive coe�cient (i.e. var(�j1)=1).

For autoregressive coe�cients for lags greater than 1, we use a prior which gradually tightens

as lag length increases (i.e. var(�ji)=.81var(�j;i�1) for i = 2; ::; p). This prior tightening is

common in the Bayesian VAR literature (see, e.g. Hamilton, 1994, chapter 12.2). Given the

bounded nature of the underlying data, we believe this prior is sensible and, if anything, errs

on the side of being too 
at and noninformative. All these values are the same for all models.

The posterior, p( jdata); can easily be calculated once one notes that, conditional on


; the JTAR breaks into J independent linear regression models, and results for the linear

regression model are well-known (Judge, Gri�ths, Hill, Lutkepohl and Lee, 1985). Given the

Normal-inverted Gamma form for the prior, it follows immediately that p(�j; �
2

j j
;data) has

a Normal-inverted Gamma form. Further, there are only a �nite number of ways of breaking

the data into three subsets, and the delay parameter d also takes on a �nite number of values.

Hence, 
 can be treated as having a discrete distribution with each point of the probability

mass function involving the integration of the product of normal-inverted gamma densities.

This latter integration has a known form. Marginal likelihoods can then be found by summing
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the posterior mass function of 
 weighted by the width of the thresholds interval where the

split of the data remains constant.

The posterior for the homoskedastic JTAR is even simpler since, conditional on 
, it

can be written in the form of a linear regression model, using appropriate dummy variables.

p(
jdata) can be calculated as described above so that unconditional results can easily be

obtained. For the linear model, we can draw directly on standard results (e.g.. Judge et al

1985).

In order to obtain features of the posterior distribution of  we use Monte Carlo simulation

techniques. In generating draws of �j; j = 1; ::; 3 we impose the usual stationarity restrictions

on the polynomials for the outer regimes �1(L) and �J(L) (see Tong (1990) for a discussion

of stationarity conditions in nonlinear models). We do not adjust the posterior distribution

of p(
jdata) for the stationarity condition so there is an element of approximation in the

analysis. The stationarity condition is enforced by rejecting draws of � that do not satisfy it.

Since these were small in number we do not think the approximation error is large.

The GI are calculated by generating 1000 paths of length 24 from each initial condition

and for �xed parameters. The resulting paths are transformed back to the original units of

the unemployment data and averaged to approximate the conditional expectations (see Koop,

Pesaran and Potter (1996) for more details). This exercise is repeated for 10,000 draws from

the posterior and an overall average taken.
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Appendix B: Prior Sensitivity Analysis

In this appendix we examine the sensitivity of the posterior model probabilities to changes

in the prior distribution. As is well known posterior model probabilities are more sensitive

to the prior than features of the posterior distribution of the particular models. In addition i

the similarity of the GIs from various models implies the e�ect of changes in the prior on the

model weighted GI will be small. We know from Koop and Potter (1998) that as the variance

of the prior on the regression coe�cients becomes large, the more parsimonious linear model

will receive more support (assuming homoskedasticity). This property is illustrated in Table

4 where we double the prior standard deviation for the regression coe�cients. This sizeable

change in the prior has relatively little e�ect on our results. As we would expect, there is

some tendency for more probability to be allocated to parsimonious models (i.e. either linear

models or models with lower lag lengths). But, overall the main thrust of our empirical results

are unchanged.

We also examine separately the e�ect of halving the prior mean of the variance of the

innovations keeping the degrees of freedom �xed at 3 (see Table 5). This relatively sizeable

change in prior also has little e�ect on our empirical results. For the sake of brevity, we do

not present results for other priors. But other priors that are similar to the ones we consider

yield similar results. It is only if we use completely 
at priors, or priors which are very tight

in unreasonable areas of the parameter space that our basic empirical conclusions are altered.
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Appendix C: Posteriors and GI from Two Models

In this appendix we present properties of the posteriors and GIs for the preferred model

(2TAR3HET with p = 5) and the linear model which receives most support (p = 5). Tables

6, 7 and Figure C1 present results for the 2TARHET3 model while Tables 8, 9 and Figure C2

present results for the linear model. Note that we are working with transformed data so that

it is di�cult to interpret the estimates of r1. Beyond what has already been said in the body

of the paper, the GIs for the individual models contain no surprises.

It is worthwhile to brie
y compare our Bayesian results with classical results. Bayesian

posterior means are roughly similar to MLEs, but asymptotic standard errors are quite dif-

ferent. This is undoubtedly due to the fact that the Bayesian measure takes into account

uncertainty in the estimation of d and r1, whereas classical standard errors condition on the

MLEs for these parameters. Posterior means of d and r1 are hard to interpret since the former

variable takes on only integer values while the interpretation of the latter depends on the value

of d. Hence, Figures C3a and b plot the entire posterior p.d.f.'s for these parameters. The

posterior for r1 is plotted conditional on the most likely value for d (i.e. d = 5). It can be seen

that the data strongly support a value for r1 which is near, but not at, the lowest acceptable

threshold value. The only noteable di�erence between Bayesian posteriors and MLEs is for d.

We have investigated this di�erence closely and it does not seem to be due to the Bayesian

prior. Rather, it appears to be due to the way the data enters the relevant criteria. Both

likelihood function and the Bayesian marginal likelihood depend on the sum of squared errors

in the two regimes (i.e. SSE1 and SSE2). The likelihood depends on SSE1+SSE2, but the

marginal likelihood depends on SSE1 and SSE2 in a more complicated way (roughly, SSEa

1
SSEb

2

where a and b depend on the number of observations in each regime). In practice, it seems

these linear and multiplicative functions can be somewhat di�erent.

Figure C3b is similar to Figure 3 in Hansen (1997) and is calculated using the 2TAR3HET

speci�cation. This �gure can be used to construct a classical con�dence interval for r1. A

detailed explanation of the procedure is given in Hansen (1997) and the reader is referred there

for precise details. Brie
y, consider the likelihood ratio statistic for testing H0: r1 = r
� against

an unrestricted alternative. This depends on the residual variance under H0. Hansen derives
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critical values for such a test (see his Table 1). Our �gure C3c plots the residual variance for

every possible r
�. The horizontal line is the 95% critical value from Hansen's test. Values for

r1 where the residual variance lies below this horizontal line are in the con�dence interval.

Note that the resulting con�dence interval will be disconnected. However, it exhibits a similar

pattern to the Bayesian posterior, i.e. it indicates the threshold is near the lower bound.

It is di�cult to compare Bayesian model selection procedures with classical testing proce-

dures since they are, by their nature, very di�erent. However, it is worth noting that Hansen

(1997) carries out a classical econometric analysis of this data. He �rst di�erences the data

(although classical tests do not �nd a unit root once a 2TAR is used), rather than transforming

the data logistically, considers only p=12 and does not explicitly consider heteroskedasticity.

His classical test procedures lead him to select a 2TAR with regimes de�ned by long di�er-

ences of the series. In other words, despite great di�erences in analysis, he ends up with a

preferred model similar to the one which receives most support in our Bayesian analysis.
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Table 1: Average Posterior Model Probabilities

Model DGP1 DGP2 DGP3 DGP4 DGP5 DGP6

Linear(p=1) 0.7794� 0.0000 0.2985 0.0000 0.0001 0.0457
Linear(p=2) 0.1065 0.9868� 0.0568 0.0000 0.0000 0.0085

2TAR1HOM(p=1) 0.0136 0.0002 0.0549 0.0000 0.0000 0.0107
2TAR1HOM(p=2) 0.0006 0.0023 0.0008 0.0000 0.0000 0.0107
2TAR1HET(p=1) 0.0113 0.0000 0.0233 0.0000 0.0001 0.0048
2TAR1HET(p=2) 0.0049 0.0015 0.0010 0.0000 0.0000 0.0000
2TAR2HOM(p=1) 0.0513 0.0000 0.1499 0.0000 0.0000 0.0331
2TAR2HOM(p=2) 0.0022 0.0059 0.0009 0.0000 0.0000 0.0008
2TAR2HET(p=1) 0.0188 0.0000 0.0382 0.2585 0.3465 0.0130
2TAR2HET(p=2) 0.0006 0.0015 0.0003 0.0000 0.0000 0.0002
2TAR3HOM(p=1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2TAR3HOM(p=2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2TAR3HET(p=1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2TAR3HET(p=2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3TAR1HOM(p=1) 0.0003 0.0001 0.0108 0.0000 0.0000 0.7809�

3TAR1HOM(p=2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3TAR1HET(p=1) 0.0006 0.0000 0.0014 0.0000 0.0000 0.0000
3TAR1HET(p=2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3TAR2HOM(p=1) 0.0074 0.0000 0.3035� 0.0000 0.0000 0.0197
3TAR2HOM(p=2) 0.0000 0.0002 0.0002 0.0000 0.0000 0.0002
3TAR2HET(p=1) 0.0024 0.0000 0.0593 0.7415� 0.6533� 0.0025
3TAR2HET(p=2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3TAR3HOM(p=1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3TAR3HOM(p=2) 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
3TAR3HET(p=1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3TAR3HET(p=2) 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
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Table 2: Posterior Model Probabilities

p Linear 2TAR1HOM 2TAR1HET 2TAR2HOM 2TAR2HET 2TAR3HOM 2TAR3HET

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.000 0.000 0.000 0.017 0.020

4 0.001 0.000 0.000 0.000 0.000 0.049 0.132

5 0.035 0.000 0.000 0.000 0.000 0.067 0.618

6 0.016 0.000 0.000 0.000 0.000 0.006 0.031

7 0.002 0.001 0.000 0.000 0.001 0.003 0.001

� 8 0.001 0.000 0.000 0.000 0.000 0.001 0.000
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Table 3: Generalized Impulse Responses: Average over all Models

History Fast Decrease Fast Increase No Change

Horizon n Shock +2 -2 +2 -2 +2 -2

0 0.3636 -0.3450 0.3249 -0.3094 0.3551 -0.3369

1 0.3912 -0.3701 0.2875 -0.2304 0.3731 -0.3437

2 0.4617 -0.4329 0.3038 -0.2341 0.4280 -0.3691

3 0.5682 -0.5208 0.3480 -0.2343 0.5102 -0.4009

4 0.6356 -0.5776 0.3860 -0.2745 0.5550 -0.4294

5 0.6669 -0.6006 0.3840 -0.2582 0.5654 -0.4236

6 0.7017 -0.6246 0.3953 -0.2621 0.5798 -0.4225

7 0.7220 -0.6366 0.4027 -0.2614 0.5835 -0.4195

8 0.7271 -0.6353 0.4075 -0.2682 0.5764 -0.4129

9 0.7232 -0.6265 0.4054 -0.2632 0.5636 -0.4011

10 0.7133 -0.6132 0.4046 -0.2635 0.5485 -0.3900

11 0.6962 -0.5943 0.4016 -0.2611 0.5297 -0.3776

12 0.6740 -0.5719 0.3973 -0.2602 0.5084 -0.3645

13 0.6489 -0.5473 0.3914 -0.2563 0.4864 -0.3508

14 0.6211 -0.5214 0.3852 -0.2538 0.4641 -0.3374

15 0.5917 -0.4945 0.3784 -0.2499 0.4413 -0.3242

16 0.5619 -0.4674 0.3712 -0.2463 0.4191 -0.3114

17 0.5318 -0.4408 0.3636 -0.2419 0.3976 -0.2991

18 0.5022 -0.4150 0.3558 -0.2378 0.3772 -0.2873

19 0.4733 -0.3902 0.3481 -0.2333 0.3577 -0.2760

20 0.4455 -0.3666 0.3403 -0.2288 0.3395 -0.2654

21 0.4190 -0.3444 0.3324 -0.2241 0.3224 -0.2556

22 0.3941 -0.3236 0.3246 -0.2195 0.3066 -0.2463

23 0.3708 -0.3041 0.3170 -0.2148 0.2919 -0.2376

24 0.3487 -0.2861 0.3095 -0.2102 0.2784 -0.2294
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Table 4: Prior Standard Deviation of � Doubled

p Linear 2TAR1HOM 2TAR1HET 2TAR2HOM 2TAR2HET 2TAR3HOM 2TAR3HET

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.000 0.000 0.000 0.000 0.000 0.001

3 0.000 0.000 0.000 0.000 0.000 0.167 0.119

4 0.006 0.000 0.000 0.000 0.000 0.089 0.172

5 0.144 0.000 0.000 0.000 0.000 0.037 0.221

6 0.032 0.000 0.000 0.000 0.000 0.000 0.000

7 0.002 0.000 0.000 0.000 0.000 0.000 0.000

� 8 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 5: Prior Mean of �2

j Halved

p Linear 2TAR1HOM 2TAR1HET 2TAR2HOM 2TAR2HET 2TAR3HOM 2TAR3HET

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.000 0.000 0.000 0.087 0.046

4 0.003 0.000 0.000 0.000 0.000 0.094 0.154

5 0.109 0.000 0.000 0.000 0.001 0.074 0.378

6 0.035 0.000 0.000 0.000 0.000 0.004 0.010

7 0.004 0.000 0.000 0.000 0.000 0.000 0.001

� 8 0.001 0.000 0.000 0.000 0.000 0.000 0.000
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Table 6: Bayesian and ML Properties of Parameters: 2TAR3HET with p=5

Parameter Posterior Mean Posterior SD MLE Asymptotic SE

�1 -0.8292 0.8468 5.1081 2.1507

�11 0.7678 0.1333 1.2443 0.2855

�12 0.1816 0.1594 0.5098 0.1783

�13 -0.0140 0.1584 -0.6995 0.2992

�14 0.2004 0.1369 0.0213 0.1351

�15 -0.1589 0.1278 -0.1191 0.1389

�2

1
12.4926 | 12.5937 |

�2 -0.2252 0.2028 -0.4457 0.1998

�21 1.0615 0.0516 1.1607 0.0523

�22 0.1090 0.0721 0.0468 0.0692

�23 0.0813 0.0709 -0.0224 0.0744

�24 -0.1115 0.0684 -0.0579 0.0688

�25 -0.1506 0.0481 -0.1328 0.0464

�2

2
14.9226 | 13.5903 |

d 4.9580 | 2.0000 |

r1 -2.1761 | -2.9562 |
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Table 7: Generalized Impulse Responses: 2TAR3HET with p=5

History Fast Decrease Fast Increase No Change

Horizon n Shock +2 -2 +2 -2 +2 -2

0 0.3623 -0.3437 0.3229 -0.3076 0.3551 -0.3369

1 0.3868 -0.3660 0.2798 -0.2274 0.3717 -0.3517

2 0.4543 -0.4264 0.2931 -0.2266 0.4256 -0.3725

3 0.5594 -0.5178 0.3333 -0.2256 0.5079 -0.4063

4 0.6345 -0.5812 0.3802 -0.2766 0.5599 -0.4401

5 0.6665 -0.6053 0.3761 -0.2558 0.5695 -0.4313

6 0.7047 -0.6325 0.3889 -0.2615 0.5852 -0.4300

7 0.7303 -0.6481 0.3995 -0.2619 0.5913 -0.4272

8 0.7382 -0.6483 0.4069 -0.2717 0.5844 -0.4204

9 0.7369 -0.6405 0.4064 -0.2670 0.5715 -0.4079

10 0.7292 -0.6279 0.4079 -0.2689 0.5565 -0.3964

11 0.7133 -0.6089 0.4068 -0.2676 0.5370 -0.3836

12 0.6914 -0.5858 0.4043 -0.2682 0.5148 -0.3700

13 0.6661 -0.5601 0.3998 -0.2651 0.4918 -0.3557

14 0.6375 -0.5329 0.3949 -0.2636 0.4684 -0.3418

15 0.6069 -0.5043 0.3893 -0.2604 0.4443 -0.3281

16 0.5755 -0.4753 0.3831 -0.2576 0.4208 -0.3148

17 0.5436 -0.4467 0.3764 -0.2537 0.3980 -0.3020

18 0.5120 -0.4189 0.3694 -0.2502 0.3764 -0.2898

19 0.4812 -0.3921 0.3623 -0.2461 0.3558 -0.2782

20 0.4513 -0.3667 0.3550 -0.2419 0.3366 -0.2672

21 0.4229 -0.3427 0.3476 -0.2375 0.3186 -0.2572

22 0.3961 -0.3202 0.3402 -0.2331 0.3021 -0.2476

23 0.3709 -0.2992 0.3328 -0.2285 0.2868 -0.2387

24 0.3472 -0.2798 0.3255 -0.2240 0.2727 -0.2304
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Table 8: Bayesian and ML Properties of Parameters: Linear model with p=5

Parameter Posterior Mean Posterior SD MLE SE

�1 0.0144 0.1829 0.0146 0.1852

�1 1.0063 0.0471 1.0113 0.0475

�2 0.1535 0.0660 0.1489 0.0668

�3 0.0230 0.0639 0.0222 0.0647

�4 -0.0395 0.0630 -0.0385 0.0640

�5 -0.1547 0.0450 -0.1552 0.0456

�2 14.9323 0.0000 15.0241 0.0000
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Table 9: Generalized Impulse Responses: Linear model with p=5

History Fast Decrease Fast Increase No Change

Horizon n Shock +2 -2 +2 -2 +2 -2

0 0.3956 -0.3755 0.3215 -0.3048 0.3568 -0.3385

1 0.4334 -0.4118 0.2886 -0.2736 0.3545 -0.3363

2 0.5415 -0.5109 0.3059 -0.2876 0.4088 -0.3848

3 0.6636 -0.6210 0.3310 -0.3083 0.4718 -0.4402

4 0.7745 -0.7195 0.3549 -0.3277 0.5286 -0.4892

5 0.8155 -0.7568 0.3487 -0.3215 0.5385 -0.4976

6 0.8636 -0.7995 0.3519 -0.3235 0.5572 -0.5134

7 0.8924 -0.8249 0.3526 -0.3237 0.5673 -0.5217

8 0.9023 -0.8337 0.3503 -0.3213 0.5686 -0.5226

9 0.8969 -0.8289 0.3450 -0.3167 0.5626 -0.5171

10 0.8858 -0.8189 0.3403 -0.3126 0.5549 -0.5102

11 0.8660 -0.8011 0.3342 -0.3073 0.5433 -0.4999

12 0.8407 -0.7782 0.3271 -0.3012 0.5290 -0.4873

13 0.8120 -0.7524 0.3193 -0.2945 0.5133 -0.4732

14 0.7813 -0.7246 0.3111 -0.2874 0.4966 -0.4585

15 0.7497 -0.6959 0.3024 -0.2797 0.4791 -0.4428

16 0.7178 -0.6669 0.2934 -0.2718 0.4613 -0.4269

17 0.6864 -0.6383 0.2842 -0.2637 0.4436 -0.4110

18 0.6560 -0.6104 0.2749 -0.2553 0.4261 -0.3952

19 0.6268 -0.5835 0.2656 -0.2470 0.4092 -0.3798

20 0.5987 -0.5577 0.2565 -0.2388 0.3927 -0.3649

21 0.5724 -0.5335 0.2476 -0.2307 0.3769 -0.3505

22 0.5473 -0.5105 0.2388 -0.2227 0.3620 -0.3369

23 0.5240 -0.4889 0.2304 -0.2150 0.3477 -0.3239

24 0.5020 -0.4686 0.2224 -0.2076 0.3343 -0.3115
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