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Hamilton suggests a new test for neglected nonlinearity and we compare it
with the neural network test, Tsay’s test, White’s dynamic misspecification
test, Ramsey’s Reset test and the so-called V23 test. With respect to size
and power properties our results on the relative performance of Hamilton’s
test are very encouraging. In particular we find that against almost all the
nonlinear alternatives where the size and power properties of the neural
network test are good the size and power properties of Hamilton’s new test
are even better. Secondly, we examine the convergence properties of Hamil-
ton’s estimator of the conditional mean function. Our findings suggest that
in the case of a true linear relationship, the costs of using the flexible non-
linear approach in terms of efficiency and speed of convergence are minor.
We also show that for many nonlinear models the percentage improvement

in fit relative to the least square estimator can be substantial.

1. Introduction

Mamilton (1998) suggests a new method of estimating models of the form 3, =
p(xe) + €;, where the functional form of p(x;) is unknown. As a by-product a new
Lagrange multiplier test for neglected nonlinearity is suggested. The aim of the

paper is twofold. First, we conduct a Monte Carlo experiment on the size and



power properties of the of the new Lagrange multiplier test for neglected nonlin-
carity suggested by Hamilton (1998). We compare the test with other popular
tests for neglected nonlinearity, tests which - as it is the case for Hamilton’s test
- are not based on any knowledge of the functional form under the alternative.
Secondly we conduct a Monte Carlo experiment on the convergence properties of
Hamilton’s estimator of the conditional mean function p(z;). We report results
on how it performs by applying it to a wide range of the most common nonlinear
models in the literature, and provide some statistics on how big the improvement
is relative to the linear estimator. Finally we investigate the convergence proper-
ties of Hamilton’s estimator when the true model is linear in order to determine
a potential loss in efficiency and convergence speed. The paper is organized as
follows. Section 2 gives a brief introduction to Hamilton’s approach to nonlinear
inference. We show how to obtain a consistent estimate of p(z;) and derive the
Lagrange multiplier test statistic for neglected nonlinearity. Section 3 discusses
some of the most popular alternative tests for neglected nonlinearity. Section 4
describes the simulation design for the Monte Carlo experiment on size and power
and in section 5 the results are reported and discussed. In section 6 the exper-
iment on the convergence properties of Hamilton’s estimator are conducted and

finally section 7 contains concluding remarks.



2. Hamilton’s approach to flexible nonlinear inference

Consider the model

Yo = () + € (2.1)

where € is a sequence of NI(0,0?) error terms and p(z;) is a function of a k x 1
vector x;. In most cases a parametric form for p(z;) can be obtained directly from
economic theory. However, in the more troublesome cases where economic theory
does not give any clear guidance on how to specify the functional form of p(z;)
or in situations where the complexity of the data requires more than a simple
deterministic model - such as low order polynomials - more general or flexible
approaches to represent p(z;) are needed. Building on the ideas of Wahba (1978)
and Wecker and Ansley (1983) who viewed p(x;) as a realization of a Brownian

motion, Hamilton (1998) suggests representing p(z;) as'

p() = ap + yx + Am(g © ) (2.2)

'Here g is a k x 1 vector of parameters and ® denotes element-by-element multiplication.



where m(z) - for any choice of z - represents a realization from a random field

with the following statistical properties

m(z) ~ N(0,1) (2.3)

[N

and where h is defined as h = 5[(z—w)'(z—w)]2. The realization of m(.) is viewed

as having been settled previous to {x1,..,zr€1,..,er} and is therefore considered

to be independent of {z1, .., xr€1, .., €r}. If we define a variable Gy(h,r) as

Gr(h,r) = /7,(7"2 — z2)§dz (2.4)

h
it is possible to write Hy(h) as

Gyo1(h,1)/Gy1(0,1) if h < 1

Hi(h) ={ 0 th>1

(2.5)

Closed form expressions for Hy(h) for k = {1,..,5} are provided by Hamilton
(1998) and are reprinted in the appendix of this paper. Since we cannot observe
m(z) - for any choice of z - directly we are not able to observe the functional

form of p1(z¢). The objective is to draw inference about the unknown parameters



of the model summarized by ¢ = {ap, a1, A, g, 0} by observing the realizations of
y¢ and x, only. Using some basic conditioning rules for multivariate normals and
treating p(x;) as unobservable Hamilton (1998) shows how to obtain a maximum
likelihood estimate of ¢ based on a recursive algorithm very similar to the recursive
algorithm of the Kalman filter used to obtain the maximum likelihood estimates
of state space models. However in order to cut down the amount of computations
Hamilton introduces an equivalent method of calculating the maximum likelihood
estimates. He reformulates the model in a more compact form and applies GLS.

In particular, he defines

y = (1,92 yr) (2.6)
1 )
1

X =
1




and shows that the concentrated log likelihood function can be written as

n(y, X; X\, g,0) = —% In(27) — %In | Py + o217 (2.7)
—ly = X0, g,0) (Bo+ 0*E)ly = XBr(0.9.0)]
BrMg.0) = [X'(Fot olr) X)X (B4 0 ln) Yy 23)

where Iy is the identity matrix of dimension (T x T') and the {t, s} entry of the
matrix Py - denoted Py(t, s) - is equal to

N Hy, (hs) if hes < 1
0 ifhy>1

o . -
he = Sl =)@ -5

F(t,s) = { (2.9)

ol

Ty = gOxXy

The concentrated likelihood function can be maximized with respect to A, g,
using standard maximization algorithms such as BF'GS or Newton — Raphson.
Once the estimates of (A g,0) has been obtained, ET is given. In the case of
continuous valued variables and deterministic regressors Hamilton (1998) proves
that if the true relation given by (2.2) is indeed linear then under some regularity

conditions the estimator of p(x;) given by the t'th row of ET = XET + ]30(]30 +



o2lp) Hy—X ET] - denoted ET (x¢) - is still a consistent estimator of the conditional
mean, implying that ET is a consistent estimator. Furthermore, Hamilton (1998)
proves that his algorithm will provide a consistent estimator of the conditional

mean u(x;), for a very general class of nonlinear models that is

T

T! Z{M<$t) - ET(Q%)}Q —0 (2-10>

t=1

Testing for neglected nonlinearity in this setup amounts to testing whether A = 0.
When Aequals zero, g is not identified by the model under the null. Hamilton
(1998) suggests solving this problem by fixing g; to be proportional to the standard
deviation of the 7’th row in x;. Under this assumption the Lagrange multiplier

statistic for neglected nonlinearity becomes

. [€ He — &2tr (M H M))? (2.11)
F2tr {[MHM — (T — k)" Mtr(MHM)]2}] '
where
€ = My (2.12)

5 = (T—k)'de



M = Ip— X(X'X)'X

and the (t,8) element of the matrix H with dimension (7" x T') is given by

Hk<ht5) if hts S 1

H(t,s) = { 0 ifh. > 1 (2.13)
1 ajz ajzs 2 1
hts = 5 12 L Z ) %
T
s2 = T Z(%t —71! Za:i,t)Q
t=1 t=1

As mentioned earlier the closed form expressions for Hy, k = {1,..,5} is given
in the appendix. The Lagrange multiplier statistic v? is asymptotically x?(1)
distributed. We will evaluate this new test by comparing it to some of the most
powerful tests for neglected nonlinearity reported in the literature. These tests

will be introduced in the following section.

3. Alternative tests for neglected nonlinearity

In this section we briefly discuss some of the most popular tests for neglected
nonlinearity. The tests presented are all selected because of their relatively good

performance with respect to size and power properties already reported in the



literature. This collection of test statistics will include the Regression Error Spec-
ification Test (Reset2, Ramsey 1969) two tests based on the ”duals” of Volterra
expansions e.g Priestley (1980), denoted the T'sayl test (Tsay 1986) and the V23
test (Terasvirta et al. 1993) respectively, the Neural Network test (Neurall,Lee
et al. 1993) and finally a particular version of White’s information matrix test

(W hite3, White 1987,1992) aimed at detecting dynamic misspecification.

3.1. The Reset2, Tsayl and V23 tests

The Reset test, Tsay’s test and the V23 test can all be conducted within the

following framework. Consider the linear model

Y =20+ (3.1)

where y; is the series of interest and where we consider 2, = {1, v, ..,y } to be
the relevant variables used to explain y;. The first step consists of regressing ; on
x¢ in order to obtain an estimate of # and to calculate the residuals u; = y,— f; and
sum of squared residuals SSRy = YL, 42, where f; = a:ﬁ In the second step
regress Uy on x; and on m auxiliary regressors given by the vector M, (to be defined

later) and compute the residuals from this regression vy = 4y, — xj&; — M|ds and

10



the residual sum of squares SSR = 7, #2. Finally in the third step compute the
F-statistic given by

(SSRo — SSR)/m

F:SSR/(T—p—l—m)

~F(m,T—p—1—m) (3.2)

Under the linearity hypothesis the F'statistic above is approximately [/'-distributed
with m and T'— p — 1 — m degrees of freedom. The Reset test defines M, =
{f2 .., fF} and m = k — 1. Because f/, i = 1,..,k tends to be highly correlated
with x; and with themselves the test is conducted using the p* < k — 1 largest
principal components of f2, .., fF not collinear with z;. Tsay (1986) suggests using
M, = vech(Z:@;) for Ty = {x1t,..,2p} in forming the Tsay-test, while Terasvirta
et al. (1993) suggests M; = wvee(S * (vech(ZT,) © x})) (where S is a selection
matrix removing the identical elements in vech(Z;Z,) ® x} and © denotes element-

by-element multiplication) when forming the V23 statistic.

3.2. The Neural network test

The neural network test for neglected nonlinearity as suggested by White (1989)
and Lee et al. (1993) is based on a single hidden layer feedforward network model.

In this type of network k input units sends signals z;; to so-called "hidden” units

11



across weighted connections v, fori =1,..,k and j = 1,..,q. There are in total q
hidden units each observing the weighted sum of the k input signals, that is, hidden
unit j observes 7y, where x; = {1,71,.., 75} and v, = {Yo;, V15> - V- The
hidden unit j then outputs a signal 1, (a:é’yj) where ¢, denotes the "activation”
or "squashing” function commonly assumed to be bounded and monotonically
increasing. White (1989) and Lee et al. (1993) takes the activation function
to be of the logistic distribution and to be identical for all hidden units, i.e.
Wi(ahy;) = (xhy;) = (14 exp(—xjy;)) " for j = 1,..,q. Augmenting the single
hidden layer network by direct links from the input units to a single output with
weights 0 = {0y,04, ..,0,} and assuming that the output also contains white noise

the total network output can be written as

q
ye=20+> B,(1+exp(—z1;)) '+ e (3.3)

i=1

where 3, .., 3, are hidden-units-to-output weights and €, ~ nid(0, 0?). When the
null hypothesis of linearity is true i.e. Iy : Pr[E(y]X;) = «,0"] = 1 for some
choices of 0" and X; = {7, x5, .., 7;} the optimal network weights 3, are zero for
7 =1,..,q. The neural network test for neglected nonlinearity can therefore be

interpreted as testing the hypothesis Hp : §; = 8 = .. = 3, = 0 for particular

12



choices of g and ;. As in Lee et al.(1993) we set ¢ equal to 10 and draw the direc-
tion vectors ; independently from a uniform distribution on the interval [-2:2].
The test is then carried out by regressing €rx1) = yr — Xr(X7X7) 1 (X}yr) on
1(T><1) and ‘I’(TXq) = {1/)(XT71)(TX1), --,1/)(XT7q)(Tx1)}/ where yr = {y1,y2, --;yT}
and calculate the unadjusted squared multiple correlation coefficient R?. The LM-

test statistic and its asymptotic distribution is given by

T R* — x*(q) (3.4)

Because the observed components of U, typically are highly correlated Lee et al.
(1993) recommend using a small number of principal components instead of the
q original variables. Using the ¢* < ¢ principal components of ¥, - denoted ¥ -

not collinear with x; an equivalent test statistic is given by

T Ry, — x*(q") (3.5)

where R;C is the unadjusted squared multiple correlation coefficient from a linear

regression of €(rx1) on 1irx1) and ‘I’?qu*)'

13



3.3. White’s dynamic information matrix test

White’s dynamic misspecification tests are based on the idea that if a model is
correctly specified then there usually exists a number of consistent estimators for
the parameters of interest. In particular, if a model is well specified then the
information matrix equality will hold under very general conditions. In other
words, a test based on the information matrix equality will have power because
of the failure of the equality in the case of a misspecified model. The version of
White’s dynamic misspecification test considered in this paper will be based on
the covariance of the conditional score functions. For a Gaussian linear model the

log likelihood function can be written as
li(x¢,0,0) = —% log(2m) — log(o) — %uf (3.6)
where u; = 0~ 1(y; — z}0). The conditional score function is then given by
si(we,0,0) = o Mg, uwy, ul — 1) (3.7)

Evaluating the conditional score at the quasi maximum likelihood estimators of

the correctly specified model under Hy gives 5, = st(aﬁt,g, 7). The information

14



matrix test is based on forming the indicator m; = S * vec(5,§,) where S is a
selection matrix. In particular we obtain the test statistic denoted ”White3”
in Lee et al.(1993) by regressing u; = 371(% — xé@) on z; and Et - where Et is
defined as to satisfy m; = Etﬁ; - and calculate the unadjusted squared multiple
correlation coefficient R? from this regression. The test statistic and its asymptotic

distribution is then given by

T * R? — x*(q) (3.8)

where ¢ denotes the dimension of m;.

4. The design of the Monte Carlo experiment

We consider three blocks of models. All the chosen models have been used in pre-
vious studies on the testing of linearity and are included to allow for comparisons
with these studies. The models included in block 1 and two of the bivariate models
was originally used by Lee et al. (1993). The models of block 2 have been more
extensively used, in particular by Keenan (1985), Tsay(1986), Ashley, Pattersen
and Hinich (1986), Chan and Tong (1986), and Lee et al. (1993). Finally all of

the models in block 3 have been studied by Terasvirta et al. (1993). The five
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models contained in block 1 are all characterized by being simple dynamic uni-
variate models, where the dynamic is represented by one lag of the endogenous
variable only. The models are all stationary. The models included are the autore-
gressive model (AR), the bilinear model (BL) of Granger and Andersen (1978),
the threshold autoregressive model (T'AR) of Tong (1983), the sign autoregressive
model (SGN) and the nonlinear autoregressive model (NAR). The exact para-
meterization of the models is given in table 4.1. We also consider two bivariate
representations. In order to simplify we do not impose any dynamic structure on
the bivariate models. We consider a squared relation which we denote SQ), and we
consider an exponential relation, denoted X P. We consider these two bivariate
models for 3 different values of o. Varying o, keeping the other parameters fixed,
alters the signal-to-noise ratio. We investigate how this affects the size and power
properties of the various test for neglected nonlinearity. The parameterization of

the bivariate models are also shown in table 4.1.

[Table 4.1]

The models in block 2 are characterized by having a much richer dynamic structure

compared to the models in block 1. The models are presented in table 4.2. Model

16



1 is a M A(2) representation and model 2 is a heteroskedastic M A(2), due to the
last term on the right hand side. These two models together with model 4 - an
AR(2) model - are all linear models. They are included primarily to evaluate
the nominal size of the nonlinearity tests and their ability to distinguish between
dynamic misspecification and misspecification due to nonlinearity. Model 3, 5
and 6 are the truly nonlinear models in block 2. Model 3 is a nonlinear M A(2)
model. Model 5 and model 6 belongs to the family of bilinear models. Model 5 is
a bilinear autoregressive model, while model 6 is a bilinear autoregressive moving

average model.

[Table 4.2]

Terasvirta et al. (1993) argues that the main reason for the neural network test
to perform so very well compared to a wide range of other linearity tests in the
simulation studies by Lee et al. (1993) is because they did not include the ap-
propriate LM or LM type test. By the appropriate LM type or LM type test
Terasvirta et al. (1993) refer to a LM-test designed particular to test linearity
against a specific nonlinear alternative. Now, the simulation design in Lee et al.

(1993) is only concerned with evaluating linearity test where the alternative don’t

17



have to be specified. However the critique raised by Terasvirta et al. (1993) is
still relevant in the sense that the choice of testor-model-mix may undeliberate
have been favoring the neural network test. The models in block 3 are included in
order to reduce this possible source of bias. Still we will restrict ourselves only to
consider the general class of tests for linearity for which the nonlinear alternatives
don’t need to be explicitly specified. The first model in block 3 is the logistic
smooth transition autoregressive model (LSTAR). It’s properties are discussed
in details in Terasvirta (1990). The second model is a special case of the exponen-
tial smooth transition autoregressive model (EST AR). By the parameterization
chosen the model reduces to the exponential autoregressive model of Haggan and
Ozaki (1981). The NN and BN models denotes univariate and bivariate neural

network models respectively.

[Table 4.3]

Throughout ¢, ~ N(0,1) is a white noise series. The information set in the blockl
models and bivariate models contains {y, 1} and {z;} respectively. The informa-
tion set for the models contained in the block 2 and block 3 - except the BN model

- equals {y; 1,y o} . For the BN model the information set contains {y; 1,z:}.
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The exact parameterization of the Reset2, T'sayl and V23 test is summarized
in table 4.4. For the neural network test ¢* = 2for the block 1 models and the

bivariate models. When applied to the models in block 2 + 3 ¢* = 3.

[Table 4.4]

5. Results on size and power properties

In order to make a comparison with previous studies of size and power properties
as straightforward as possible, the setup in this section follows Lee et al.(1993).
The results from a simulation of the critical values at a 5% level are shown in table
5.1. The simulations are based on data being generated from the AR model in
block 1. From inspection of the critical values generated by Hamilton’s Lagrange
multiplier test it appears to have quite good size properties in the sense that the
simulated values based on finite samples are very close to the critical values based
on the asymptotic distribution. In general, the size properties of the test for
neglected nonlinearity in table 5.1 seems good - in the sense that the simulated

size seems to correspond well with the nominal /asymptotic size - when simulations
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are based on the AR(1) model.

[Table 5.1]

The results on size properties does not change very much, when the simulation
of the critical values at a 5% level is based on model 4 in block 2. Again the
simulated critical values of Hamilton’s test are close to the asymptotic values,
and in general this result holds for the other test statistics considered as well, see
table 5.2.

[Table 5.2]

Next we analyze the sensitivity of the simulated critical values at a 5% significance
level, when the autoregressive coefficient of the AR model in block 1 is changing. In
particular, we simulate a set of critical values based on the models vy, = py; 1 + €,
p = {-0.9,-0.6,-0.3,0,0.3,0.6,0.9}. After simulating these critical values we
generate data from the AR model in block 1 and count the number of times (in
percentage) the test rejects the null of linearity based on the simulated set of
critical values. As an example notice that based on the simulated 5% critical
value generated from an AR(1) model with p = 0.9, Hamilton’s test rejects the

hypothesis of linearity in 5% of all cases, when the data actually comes from the

20



AR model of block 1. Ideally the rejection percentages in table 5.3 should equal
5% in all cases. The 95% critical value around 5% is C'ly g5 = {3.6;6.4}. Regarding
Hamilton’s test, the simulated sizes are all inside the confidence interval except
in the case where p = —0.9. However, Hamilton’s test has a satisfactory relative

low spread in size, ranging from 3.3 to 5.0

[T'able 5.3]

Based on the simulated critical values reported in table 5.1, table 5.4 shows the
results on power of the tests using the models in block 1 and the bivariate models
with ¢ = 1, and sample size varying from T = 50 over T" = 100 to T" = 200. It
becomes evident that Hamilton’s test has very strong power against the TAR,
SGN, SQ and EXP alternatives. For these four nonlinear models the power of
Hamilton’s test is at least as high or even higher than the power of the Neurall
test. Hamilton’s test has low power against the N AR model, but this is a common
feature shared by all of the tests. Hamilton’s test has also low power against the

bilinear alternative. Here only White’s test has good power properties.

[Table 5.4]
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Table 5.5 shows the power properties of the test based on block 2 models and
the simulated critical values reported in table 5.2. By inspection of table 5.5 we
notice that for the true nonlinear models, the power of Hamilton’s test is almost
as good as the power of the neural network test in case of model 3 and at least
as good or better in the case of model 5 and model 6. Furthermore, looking
at the rejection frequencies for the linear models it seems evident that the size
properties of Hamilton’s test and the Newurall test are almost identical. This
implies that also the size-corrected power properties of Hamilton’s test appears to
be good compared to the Neurall test. Also the T'sayl, the White3 and the V23
tests seems to have a little more power against model 3 relative to Hamilton’s
test. However their size properties in the case of model 1 and model 2 are not
as good as the size properties of Hamilton’s test. This might indicate that the
size-corrected power for these tests may be somewhat lower than the rejection
frequencies actually reported. However as pointed out by Lee et al. (1993) and
Granger and Terasvirta (1993) ARCH effects causes the size of the neural network
test, the Tsay, White, Reset and V23 test to be incorrect. By inspection of table

5.5 and the results based on model 2 it becomes clear that this particular feature
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also seems to be shared by Hamilton’s test.

[Table 5.5]

Considering the results on power of the various test statistics when applied to the
models of block 3, Hamilton’s tests again seems to perform relatively well. In the
case of the neural network models the neural network test and the V23 test turns
out to be the appropriate LM-test statistics - apart from a missing constant,
see Terasvirta et al. (1993). As expected their power properties are very good
when applied to the neural network models. However the power properties of
Hamilton test are just as good. With respect to the LST AR model all the test
considered has very good power. If the nonlinearity is of the ESTAR type only
Hamilton’s test, W hite3, Reset2 and the V23 test has satisfactory power. Against
the EST AR type of nonlinearity the neural network test has very low power. The
results on the block 3 models again seems to confirm that Hamilton’s test have
better power or at least as good power properties as the neural network test even

in the case where the true nonlinear model is in fact of the neural network type.

[T'able 5.6]
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Table 5.7 and table 5.8 shows the power of the nonlinearity tests against the SQ)
alternative and the F X P alternative respectively, when the signal-to-noise ratio
decreases. The results from these tables suggest that Hamilton tests do perform
almost as well as the Neurall, T'sayl and the Reset2 test, when the signal-to-
noise ratio falls. The White3 test performs very poorly in terms of power when

the signal-to-noise ratio decreases in these bivariate models.

[Table 5.7]

[Table 5.8]

6. Convergence properties of Hamilton’s estimator

In the following we will analyze and compare four different measures of conver-

gence. These measures are defined as

N T
Crv = NI {uzn) — @i}’ (6.1)
n=1 t=1
N T R
C%,N = N Z[Til Z{M@tn) - fT(a%,n)}Q]
n=1 t=1
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N T

C%,N = Nil Z [Til Z{M@jt,n) - £T<ajt,n)’Aza,ng(kV(mn))*l/Q}Q]

n=1 t=1
N T

Crn = N YT {plwin) — &, Ein )
n=1 t=1

Common for all four measures is that p(z.,) denote a realization of the true
functional form conditional on x,, N denotes the number of replications in the
Monte Carlo experiment and 1" equals the number of observations in each sample.
C’;lp’ y 1s the average mean square error between p(z¢,) and a linear estimator of
p(zen). The linear estimator is given by &’T’natt,n where ap, is obtained from
an ordinary least square regression of y., on zy, for t = {1,.T}. C’%’N is the
mean square error between p(zy,) and Hamilton’s estimator of p(z¢,) - denoted
ET<$t,n) - averaged over N replications. ET<$t,n) is obtained by maximizing the
profile likelihood function stated in equation (2.7) and equation (2.8) with respect
to A, g and o using the C ML procedure and the BF'GS algorithm in G AUSS>.
If Hamilton’s estimator improves on the linear estimator, one would expect C’%’ N
< Cfy - If the estimator is consistent, the CF y should converge to zero when

the sample size increases whereas C. »; should converge to a positive constant if

the true model 1s nonlinear. In order to measure how much Hamilton’s estimator

2With a maximum of 10 iterations.
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improves on a linear estimator in finite samples we consider two statistics, denoted

Gf;p’ ~ and 77 respectively. GiT’N is defined as

. C
by =1——% =23 (6.2)

and is a measure of the percentage improvement in fit of Hamilton’s estimator(s)
relative to the linear estimator. As suggested by Ngern (1996) we calculate a

measure of the rate of convergence of Cr 5 by assuming that

Chn = hnn T 5= 1{1,.,4} (6.3)

where £,y is a constant independent of T', and 77 for j = {1, ..,4} is the measure of
convergence. C’%’ ~ 1s the average mean square error between () and a generic
version of Hamilton’s estimator of p(zsy) - denoted §p(Ten)|r—og—amv(an))-1/2 -
where \ and g equals o and 2(kV (2,,)) /2 respectively. We refer to &p(x¢.,) g2 (BV () ~1/2
as generic because 1t is obtained without involving any kind of estimation. Fi-
nally we calculate C%’ ~ defined as the average mean square error between p(zy,)
and a least square estimator of p(zy,) based on knowledge of the true functional
form i.e. the true nonlinear regressors. Wy, is obtained as the least square esti-

mator from a regression of y,,, on ¥, for t = {1,..T'} where the regressors 7,
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is defined in table 6.1 for all of the models under consideration. In all models
except model 2 Wy, 1s a consistent and efficient estimator, implying that @/T,nft,n
will be a consistent (and efficient) estimator of yu(y,). For that reason Cf 5 has
the interpretation of being an estimate of the lower bound on the average mean
squared error between p(z:,) and any possible estimate of p(z:,) conditional
on available information up to time ¢ — 1. Finally it is worth mentioning that
C’r}’ Ny & = 1,..,4are all out-of-sample measures. This will become evident from

the following description of the simulation design:

1. For every n = 1,.., N draw the sequence {yz"n,atz"n,fzn}f:lfrom the model

under consideration. Based on these realizations obtain the various esti-

mates given by {&r.,, Orn, ST,nu ng}

2. For every n = 1,..,N draw a whole new sequence {tn,ZTtn, Ttn tiqlrom
the model under consideration. Compute C% v, i =1, ..,4 based on p(xy,),
o~/ o~ o~ =
ozT’na:t,n, wT’naﬁt,n, fT(a:t,n) and £T<a:t,n)’A:o‘,g:Q(kV(mn))’l/Q forn = 1, . N and

t=1."T.

PAN

By this approach it is possible to avoid the effects of overfitting in-sample, a
common feature often associated with flexible nonlinear modelling. In fact the

costs of capturing spurious nonlinear patterns turns out to be very high by this
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approach.

[Table 6.1]

Table 6.2, table 6.3 and table 6.4 report the estimates of Cf,y, CFy ,C% y and
C’%N together with the statistics GiT’N , v for i = 2,3 and j = 1..4 based on
a "small” Monte Carlo experiment with N = 100. Looking at the Monte Carlo
results for the linear AR model it is evident that C} and C% numerically are
approximately of the same size. This implies that the rate of convergence of C4.
and C% is almost identical. The result based on the AR(2) model, i.e. model 4 in
table 6.3, seems to confirm this result although the average mean squared errors
from the linear regression tends to be a bit lower than the average mean squared
errors obtained from the flexible nonlinear estimator. However the convergence
of the latter seems to be almost as high. This suggest that when the true model
is truly linear and the linear model is correctly specified in terms of &’T’naﬁt,n, the
rate of convergence of ET (%n) to p(xt,) in finite samples is almost as fast as that
of &’T’naﬁt,n, that is, little is lost by forming a general nonlinear inference when the

true relation is linear.

[Table 6.2]
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In general the convergence of ET@t,n) appears to be good for all the models in
block 1, except for the BL model. The measure of the percentage improvement in
fit of Hamilton’s estimator relatively to the linear estimator in block 1 are largest
in the case of nonlinearity of the TAR and SGN type. Here the improvement
of Hamilton’s estimator is about 70 pct., when T" = 200. The improvement
of fit is very modest in the case of the NAR model, which may seem a little
disappointing. Looking at the AR model we see that loss of fit in the cases where
T = 50 or T" = 100 seems very minor while it tends to increase a little when
T grows to 200 . It is also worth noticing that in the case of the TAR and
SGN alternative the percentage improvement in fit of the generic estimator is
larger than the improvement in the maximum likelihood based estimator when
T = 50. However, the rate of convergence of this estimator seems in general to
be somewhat lower. Comparison of C2 and C% clearly illustrates that although
Hamilton’s estimator improves a lot upon the estimation of p(x¢,) relatively to
the linear estimator, it is still lacking some efficiency, as one would expect. The
results on the bivariate models show the overall best percentage improvement in fit
measures amounting to nearly 90 pct. when the true model is the S¢) model and
nearly 60 pct. in the case of an FX P model. Also the convergence measures are

very good. These result suggests very clearly that applying Hamilton’s estimator
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to nonlinear multivariate models seems to be a particular fruitful approach.

[T'able 6.3]

By inspecting the results on the block 2 models reported in Table 6.3, we observe
that for all of the models that are linear in mean C% tends to be about 10-20
pct. higher than Cifor T = 50. However in the case of model 1 and model
2 the efficiency loss of the flexible approach seems to be reduced rather quickly
as the sample size increases because the convergence rate C2 tends to be some-
what higher than the convergence rate for C1. The percentage improvement of
fit arising from applying Hamilton’s estimator to model 3 - the N M A(2) model
- 1s rising from about zero pct. when T' = 50 to approximately 30 pct. when
T = 200. As it is the case for some of the models in block 1 the generic esti-
mator again seems to perform almost as well as the maximum likelihood based
estimator when 1t comes to the percentage improvement in fit in situations where
the true underlying model is nonlinear. Looking at the results from the bilinear
models 5 and 6 when T" = 200 we notice that the improvement in fit amounts
to about 25 pct. and 5 pct. respectively. In particular in the case of model 6

the rate of convergence of Hamilton’s estimator appears rather low as it was the
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case for the bilinear model in block one. One reason for the poor convergence
results observed with respect to two of the bilinear models could be caused by
some very undesirable properties featuring this family of models as pointed out
by Brunner and Hess (1995). They show that the expected likelihood function
associated with the bilinear models in some cases will exhibit bimodality, with
the true optimum characterized by a long narrow spike, that becomes more pro-
nounced as the sample size increases. Furthermore, these features becomes more
pronounced for parameterizations where the model is close to violating at least
one of four moment restrictions that establishing invertability and stationarity
conditions. In this light Brunner and Hess (1995) recommend extreme caution

when dealing with the bilinear models.

[T'able 6.4]

The results based on the regime switching and the neural network models of
block 3 are indeed encouraging. The improvement in fit of the flexible nonlinear
estimator range from 45 pct. in the case of the true model being an ESTAR
model up to 60 pct. for the LSTAR model in the case of 200 observations. In

addition, the speed of convergence of the flexible nonlinear estimator is much
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higher than the speed of convergence of the linear estimator promising an even

higher improvement in fit when the sample size increases.

7. Conclusion

We find that the new test for neglected nonlinearity proposed by Hamilton per-
forms well in finite samples. In general it has good size and power properties when
compared to existing tests. In particular our findings indicate that against non-
linear alternatives where the power properties of the neural network test is good
the power properties of Hamilton’s test are in most cases even better. Looking at
the properties of Hamilton’s nonlinear estimator our main finding is that even in
situations where the true model is linear the costs of using the flexible nonlinear
approach are limited in terms of efficiency and speed of convergence. We have
also found that for many nonlinear models the percentage improvement in fit of

Hamilton’s estimator relative to the least square estimator can be substantial.
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8. Tables

Table 4.1

Block 1 models and bivariate models

AR

BL

TAR

SGN

NAR

SQ

EXP

y = 0.6y, 1 + €

Y = 0.7y 160 9+ €

Y = 0.9y 10(y, 11<1) — 0.3%-10(y,_,|>1) + €
Yo = Oy 121) = Oy 1) T

Yo = (0.7Tye1])/(lp—1| +2) + &

Yy = a7 + e

2y = 0.6x4_1 + €

er ~ N(0,0?), 02 =1,25,400

Y = exp(xy) + e

Ty = 0.63%,1 —I— €¢
er ~ N(0,0?), 02 =1,25,400
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Table 4.2

Block 2 models

Modell

Model2

Model3

Model4

Modelb

Model6

Y = € — 0-461&71 + O.SEt,Q

Y = €¢ — 0.461&71 + 0-361&72 + 0'561&62&72

Yy =€ — 036,17 +0.2¢, 9+ 0.4e; 16, 9 — 0.256?72

Y = 0.4y, 1 — 0.3y,—o + €

Yy = 0-4yt71 - 0.3yt,2 + 0-5yt71€t71 + ¢

ye = 0.4y, 1 — 0.3y 9+ 0.5y, 16,1+ 0.8¢, 1 + &
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Table 4.3
Block 3 models

Yt = 1.8yt71 - 1-06yt72 + (002 — O.Qytfl + 0-795%72)17(%71) + vy
LSTAR  F(y, 1) = [1 + exp(—100(y,_; — 0.02))] !
vy ~ N(0,0%), 0? = 0.02?

Y = 1.8yt,1 — 1.06yt,2 + (-0.9yt,1 + 0.795yt,2)F(yt,1) + vy
ESTAR F(ytfl) =1- exp(—4000(yt,1)2)
v ~ N(0,0%), 0? =0.01%

Yo = —1+ [1+exp(—100(y; 1 — 0.8y, )]
+[1 4 exp(—100(y;—1 + 0.8y;-2))] " + v
v ~ N(0,0%), 0% = 0.05?

NN

yt = —1 —I— [1 —I— exp(—lOO(yt,l — a’)t))]il —I— [1 —I— exp(—lOO(yt,l —I— a’)t))]il —I— V¢
BN Ty = 0.83’%,1 —I— Ut
vy ~ N(0,0%), 0® = 0.05% u, ~ N(0,02), 02 = 0.05
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Table 4.4. Definitions of the Reset, Tsay and V23 test used in the simulation study

M, Distribution
YEfl Yt—1¥t—2 YE72 Y;)Ll yz71}’t72 Yt71y1%72 Y;)LQ
block 1
Reset F(1,T-3)
Tsay X F(1,T-3)
V23 X X F(2,T-4)
block 243
Reset F(1,T-4)
Tsay X X X F(3,T-5)
V23 X X X X X X X F(7,T-10)
Note:
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Table 5.1
Critical values (5%) based on the AR model in block 1

Test T=50 T=100 T=200
HAMILTON 3.35 3.49 3.69
(3.84) (3.84) (3.84)
[0.067] [0.062] [0.055]
NEURALI 5.40 5.48 5.66
(5.99) (5.99) (5.99)
[0.067] [0.065] [0.059]
TSAY1 3.10 3.39 3.65
(4.05) (3.94) (3.84)
[0.085] [0.069] [0.058]
WHITE3 9.32 9.39 9.16
(9.49) (9.49) (9.49)
[0.054] [0.052] [0.057]
RESET?2 3.41 3.42 3.53
(4.05) (3.94) (3.84)
[0.071] [0.067] [0.062]
V23 2.73 2.75 2.84
(3.20) (3.09) (3.04)
[0.076] [0.069] [0.061]

Note: The first number equals the simulated 5% critical value. The number in
parantheses in the second row is the asymptotic 5% critical value. The number
in brackets denotes the "asymptotic” size of the statistic when based on the
simulated 5% critical values (equals the area under the asymptotic distribution
to the right of the simulated 5% critical value). The results are based on 10000
replications.
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Table 5.2
Critical values (5%) based on model 4 in block 2

Test T=50 T=100 T=200
HAMILTON 3.47 3.41 3.58
(3.84) (3.84) (3.84)
[0.062] [0.065] [0.058]
NEURALI 7.59 7.58 7.75
(7.81) (7.81) (7.81)
[0.055] [0.056] [0.051]
TSAY1 2.65 2.56 2.64
(2.81) (2.70) (2.60)
[0.060] [0.060] [0.051]
WHITE3 15.23 15.31 15.35
(15.51) (15.51) (15.51)
[0.055] [0.053] [0.053]
RESET?2 3.92 3.76 3.88
(4.06) (3.94) (3.84)
[0.054] [0.055] [0.050]
V23 2.14 2.01 2.03
(2.25) (2.12) (2.01)
[0.061] [0.062] [0.053]

Note: The first number equals the simulated 5% critical value based on model
4. The number in parantheses in the second row is the asymptotic 5% critical
value. The number in brackets denotes the ”asymptotic” size of the statistic
when based on the simulated 5% critical values (equals the area under the
asymptotic distribution to the right of the simulated 5% critical value). The
results are based on 10000 replications..
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Table 5.3

Size of test and similarity

Test, -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 Asymp.
HAMILTON 3.3 4.3 4.8 3.9 3.8 4.3 5.0 4.2
NEURALI1 3.7 5.5 4.7 4.4 44 4.5 44 4.6
TSAY1 1.9 3.1 2.9 3.5 4.3 4.7 8.0 34
WHITE3 4.8 6.0 5.1 5.8 5.3 4.6 5.1 4.2
RESET2 3.9 3.6 2.9 2.9 3.5 4.6 2.2 3.5
V23 3.7 4.2 44 3.7 4.3 4.3 3.3 3.7

Note: (1) Each column shows the size (%) for AR(1) y, = 0.6y,_1 +
€;, using the 5% critical values simulated with vy, = ¢y, 1 + ¢ ,¢ =
—0.9,-0.6,—0.3,0,0.3,0.6,0.9. The last column shows the size (%) for the
AR(1) using 5% asymptotic critical values. (2) 95% confidence interval of
the observed size is {3.6;6.4}. (3) Sample size = 100, replications = 1000.
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Table 5.4

Power vs. sample size for block 1 and bivariate models

Test AR BL TAR SGN NAR S5Q EXP
HAMILTON

T=50 5.2 12.7 63.3 75.5 8.4 100.0 96.6
T=100 4.3 19.4 93.1 98.1 11.9 100.0 99.8
T=200 3.8 244 99.8 100.0 224 100.0 100.0

NEURALI1

T=50 5.8 31.0 34.2 53.3 9.9 100.0 98.9
T=100 4.5 45.6 52.7 81.1 12.0 100.0 99.9
T=200 4.8 58.7 80.5 98.0 184 100.0 100.0

TSAY1

T=50 6.1 23.9 9.5 19.6 12.6 100.0 98.8
T=100 4.7 33.7 6.1 17.8 154 100.0 99.9
T=200 5.1 40.8 5.8 17.4 21.6 100.0 100.0

WHITE3

T=50 5.1 784 6.4 32.8 7.2 41.3 324
T=100 4.6 97.1 5.2 58.6 7.6 74.7 55.5
T=200 6.5 99.6 8.0 87.0 14.1 97.1 88.0

RESET2

T=50 6.0 24.2 28.5 13.7 8.6 86.2 72.8
T=100 4.6 33.7 48.4 10.9 12.8 95.2 77.0
T=200 5.3 42.2 71.9 12.7 184 99.1 80.3

V23

T=50 6.6 32.2 35.3 55.0 10.0 100.0 99.1
T=100 4.3 44.4 52.6 82.2 13.1 100.0 100.0
T=200 4.6 58.9 77.6 98.6 174 100.0 100.0

Note: Power using 5% simulated critical values reported in table 5.1 is shown.

Replications = 1000, sample size = 50, 100, 200.
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Table 5.5

Power vs. sample size for block 2 models

Test Modell Model2 Model3 Modeld Modelb Model6
HAMILTON
T=50 5.2 7.0 25.2 4.8 51.8 37.0
T=100 5.2 8.4 53.7 5.5 91.7 74.9
T=200 3.8 13.0 87.4 3.9 100.0 98.9
NEURAL1
T=50 4.4 9.2 49.9 5.5 61.0 50.8
T=100 5.9 14.4 79.5 5.8 79.1 68.7
T=200 5.3 15.8 97.2 5.2 90.5 83.6
TSAY1
T=50 5.1 9.8 53.5 5.0 76.2 56.9
T=100 7.0 15.9 85.5 4.9 95.0 77.8
T=200 5.9 19.0 99.3 5.5 98.7 90.8
WHITE3
T=50 5.2 13.2 29.8 3.9 81.4 71.7
T=100 14.2 18.6 58.1 5.8 99.4 93.8
T=200 24.7 30.8 90.7 5.2 100.0 99.5
RESET?2
T=50 6.1 8.8 14.9 3.7 21.4 40.5
T=100 6.0 10.5 21.4 6.4 374 52.3
T=200 4.4 11.9 29.0 5.5 60.3 65.6
V23
T=50 4.5 13.8 43.5 4.2 82.9 72.9
T=100 6.0 19.8 77.8 6.4 99.0 93.0
T=200 5.3 21.2 97.8 4.7 100.0 99.4

Note: Power using 5% simulated critical values reported in table 5.2 is shown.
Replications = 1000, sample size = 50, 100, 200.
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Power vs. sample size for block 3 models

Table 5.6

LSTAR ESTAR NN BN
HAMILTON
T=50 33.8 20.7 61.3 61.0
T=100 71.0 47.2 96.6 96.5
T=200 98.7 82.2 100.0 100.0
NEURALI1
T=50 56.6 9.2 45.3 45.2
T=100 85.7 11.2 76.0 71.7
T=200 95.6 13.5 93.6 88.3
TSAY1
T=50 65.0 9.4 9.6 17.6
T=100 93.8 9.7 11.5 15.9
T=200 100.1 8.9 13.6 154
WHITE3
T=50 33.2 22.8 13.2 18.2
T=100 69.3 45.7 21.2 30.3
T=200 95.9 74.2 41.3 60.9
RESET2
T=50 33.1 44.0 5.4 11.4
T=100 424 76.5 6.8 7.7
T=200 63.1 93.5 6.4 8.2
V23
T=50 63.1 324 47.0 49.0
T=100 93.0 65.2 88.0 86.7
T=200 100.0 92.8 99.5 99.7

Note: Power using 5% simulated critical values reported in table 5.2 is shown.



Power vs. sample size and noise for bivariate model (SQ)

Table 5.7

=1 g=>5 =20
HAMILTON
T=50 100.0 40.7 7.3
T=100 100.0 75.4 9.2
T=200 100.0 96.7 14.7
NEURAL1
T=50 100.0 62.9 12.1
T=100 100.0 90.2 16.1
T=200 100.0 99.6 27.0
TSAY1
T=50 100.0 75.1 14.1
T=100 100.0 94.7 19.5
T=200 100.0 99.8 33.8
WHITE3
T=50 41.3 8.3 4.2
T=100 74.7 14.3 4.4
T=200 97.1 27.9 5.9
RESET?2
T=50 86.2 40.9 37.1
T=100 95.2 64.5 62.9
T=200 99.1 86.1 85.3
V23
T=50 100.0 63.7 11.0
T=100 100.0 92.3 17.6
T=200 100.0 99.7 26.5

Note: Power using 5% simulated critical values reported in table 5.1 is shown.
The signal-to-noise ratio equals 700% for 0 = 1, 28% for ¢ = 5 and 2% for
0 = 20. 1000 replications. Sample size = 50, 100, 200.
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Table 5.8

Power vs. sample size and noise for bivariate model (EXP)

=1 g=>5 =20
HAMILTON
T=50 96.6 37.5 8.8
T=100 99.8 60.9 10.4
T=200 100.0 87.8 15.7
NEURAL1
T=50 98.9 56.2 14.5
T=100 99.9 81.5 22.8
T=200 100.0 97.9 35.4
TSAY1
T=50 99.1 59.2 15.1
T=100 100.0 82.7 22.5
T=200 100.0 97.6 35.3
WHITE3
T=50 324 10.3 5.7
T=100 55.5 15.1 5.7
T=200 88.0 28.4 7.3
RESET?2
T=50 72.8 28.7 10.8
T=100 77.0 40.8 15.1
T=200 80.3 49.6 21.9
V23
T=50 99.1 55.1 15.6
T=100 100.0 83.2 23.8
T=200 100.0 98.5 36.7

Note: Power using 5% simulated critical values reported in table 5.1 is shown.
The signal-to-noise ratio equals 216% for ¢ = 1, 8.6% for ¢ = 5 and 0.5% for

0 = 20. Number of replications equals 1000. Sample size = 50, 100, 200.
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Table 6.1

The regressors included in it,n for the various models under consideration

Model Regressors, y.n Model Regressors, T,
AR Lyiim Modell 1 €—1n,€-2n
BL Ly in€on Model2 L& 1, €on
TAR 1yt 100y, 1 n<1)> Yt 1,00(lys 1 n|>1) | Model3 L€ 1, €-2n, - 1n€t—2,m, €19,
SGN L [0 1ms1) = Owe-rmen)) Model4 LY 1n, Yt—2n
NAR L 0.7y 1.0)/ (|9t 1n] +2) Model5 LY im: Yo Ye—1,n€—1,n
5Q 1, aj?n Model6 Loyt 1m, Y20, Yt 1,n€ 1,0, €41,
EXP 1,exp(a:t n)
L F(yi—1n), 1,
LSTAR Ye 1y Y10 * F(Yeo1n), NN [1 + exp(—100(ys—1 — 0.8y:—2))]
Yt—ons Y20 * F(Yi—1,n) [1 4+ exp(—100(y—1 + 0.8y;_2))]"
L F(Ye-1.n), L
ESTAR Ye 1m Yot * F (Y1), BN [1 + exp(—100(ys-1 — a:t))]*i,

Yt—on, Yt—2,n * F(ytﬂ,n)

[1 + exp(—100(ye—1 + x))]
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Table 6.2

Convergence properties of block 1 and bivariate models

1

Crv v Cinv Gf Crw 7 Gr Crw 7
AR
T=50  0.052 0.053 -0.025 0.117 -1.238 0.052
T=100 0.029 0.844 0.030 0.844 -0.024 0.088 0.398 -2.047 0.029 0.844
T=200 0.015 0.986 0.016 0.888 -0.107 0.059 0.579 -3.023 0.015 0.986
BL
T=50  2.439 2.642 -0.083 2.650 -0.087 0.095
T=100 2.202 0.272 2.235 0.241 -0.106 2.219 0.256 -0.099 0.027  1.828
T=200 1851 0.251 1.968 0.184 -0.063 2.023 0.133 -0.093 0.018 0.585
TAR
T=50 0.276 0.181 0.345 0.157 0.430 0.059
T=100 0.258 0.097 0.112 0.685 0.564 0.116 0.442 0.551 0.029 1.028
T=200 0.245 0.076 0.073 0.614 0.701 0.082 0.505 0.666 0.013 1.158
SGN
T=50  0.368 0.213 0.422 0.203 0.450 0.047
T=100 0.344 0.099 0.145 0.552 0.577 0.143 0.505 0.585 0.021 1.171
T=200 0.333 0.048 0.100 0.537 0.700 0.095 0.583 0.713 0.012 0.807
NAR
T=50  0.057 0.061 -0.084 0.121 -1.129 0.046
T=100 0.040 0.500 0.042 0.541 -0.054 0.084 0.526 -1.091 0.022  1.081
T=200 0.030 0.420 0.029 0.558 0.046 0.059 0.505 -0.980 0.011  1.00
SQ
T=50  5.362 2.044 0.619 2.374 0.557 0.045
T=100 5.644 -0.074 1.216  0.749 0.785 1.578 0.589 0.720 0.027  0.729
T=200 5.251 0.104 0.630 0.839 0.871 0916 0.785 0.826 0.012 0.826
EXP
T=50 13.220 8.506 0.357 9.250 0.300 0.118
T=100 9.858  0.423 4.755 0.839 0.518 5.369 0.785 0.455 0.035 1.751
T=200 9.502 0.053 2,882 0.722  0.697 3.743 0.520 0.606 0.013 1.429

Note: le“,Nu C%,N? C%,N and C%,N are calculated according to the their definitions stated
above where {Qip,p,, ZT()} and {Wr,} are estimated conditional on a pair of {yzn, aﬁzn}
and {yzn, f:’n}tha‘c differs nummerically from {yt,n, a:t,n} and {yt,n, ft,n} but is generated
from same underlying process/model. This is done in order to avoid overfitting. The number

of replications equals N=100.
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Table 6.3

Convergence properties of block 2 models

cr 7 ¢k ¥ G cr ¥ Gr Cr v

Modell

T=50 0.113 0.126 -0.114 0.209 -0.855 0.069

T=100 0.062 0.866 0.067 0.906 -0.084 0.152 0.460 -1.458 0.031 1.144

T=200 0.047 0.387 0.048 0484 -0.011 0.120 0.337 -1.538 0.017 0.867
Model2

T=50 0.393 0.445 -0.132 0.515 0-.309 0.334

T=100 0.352 0.160 0.374 0.250 -0.063 0.461 0.160 -0.309 0.291 0.199

T=200 0.321 0.132 0.337 0.152 -0.048 0.415 0.153 -0.290 0.259 0.166
Model3

T=50 0.384 0.377 0.018 0.386 -0.004 0.104

T=100 0.386 0.007 0.344 0.132 0.109 0.351 0.134 0.090 0.061 0.783

T=200 0.331 0.223 0.241 0516 0.272 0.269 0.382 0.186 0.026 1.213
Model4

T=50 0.061 0.074 -0.208 0.156 -1.555 0.061

T=100 0.039 0.634 0.044 0729 -0.131 0.125 0.321 -2.172 0.039 0.634

T=200 0.016 1.300 0.019 1.204 -0.206 0.092 0.437 -4.828 0.016 1.300
Model5

T=50 1.343 1.271 0.054 1.175 0.125 0.129

T=100 1.018 0.400 0.820 0.633 0.195 0.773 0.604 0.240 0.046 1.505

T=200 1.001 0.024 0.746 0.136 0.254 0.698 0.147 0.302 0.023 1.011
Model6

T=50 2.773 2.877 -0.038 2.614 0.057 0.144

T=100 2.728 0.024 2.715 0.084 0.005 2.499 0.065 0.084 0.060 1.259

T=200 2.321 0.233 2.190 0.310 0.056 2.035 0.296 0.123 0.025 1.256

Note: See table 6.2.
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Table 6.4

Convergence properties of block 3 models

Cr v ¢k ¥ G cr ¥ Gp Cr v
LSTAR
T=50 1.754 1.627 0.072 1.271 0.275 0.384
T=100 1.518 0.208 1.018 0.676 0.329 0.828 0.618 0.454 0.173 1.147
T=200 1.488 0.068 0.590 0.786 0.592 0.553 0.582 0.618 0.064 1.44
ESTAR
T=50 0.231 0.236 -0.022 0.227 0.015 0.055
T=100 0.203 0.184 0.172 0454 0.153 0.158 0.528 0.224 0.034 0.688
T=200 0.183 0.150 0.100 0.777 0.451 0.113 0487 0.384 0.017 1.028
NN
T=50 0.182 0.151 0.168 0.128 0.296 0.018
T=100 0.172 0.080 0.103 0.555 0.402 0.095 0.425 0.446 0.007 1.325
T=200 0.167 0.040 0.076 0.432 0.544 0.073 0371 0.561 0.004 0.871
BN
T=50 0.220 0.182 0.173 0.157 0.287 0.027
T=100 0.159 0.468 0.104 0.809 0.347 0.096 0.712 0.398 0.009 1.524
T=200 0.151 0.067 0.070 0.570 0.536 0.069 0485 0.545 0.005 0.951

Note: See table 6.2.
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Appendix A.

Table A.1
Closed form expressions for [ k(h)

K Hy(h)

1 1—h

2 1= 2[h(1 = h?) +sin”'(h)]

; - @)+ )

1 1— 2[2h(1 — h%)? + h(1 — h?)% +sin ()]
° L= 5h3h? =1 =077

Note: Hk<h) equals unity when A = 0, and Hk<h) equals zero when h > 1.
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