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In recent years there has been an increasing interest in nonlinear models

as an alternative to the linear speci�cations which have dominated the ap-

plied macroeconomics literature. For many series empirical evidence for

nonlinearity exists. However, it is possible that this apparent nonlinearity

could be due to structural breaks or outliers. Hence, this paper devel-

ops methods for comparing linear, nonlinear, structural break and outlier

models. We adopt a Bayesian approach which allows for the easy com-

parison of non-nested models and surmounts the problems associated with

nuisance parameters which are unidenti�ed under the null which plague

classical tests. The computational di�culties associated with the Bayesian

approach are surmounted by working with autoregressive switching models

for which analytical posterior results for most of the parameters are avail-

able. After motivating and deriving Bayesian methods for such models, an

empirical section analyzes the behaviour of the growth of US real GDP and

British industrial production.

Keywords: Bayesian, Marginal Likelihood, threshold autoregressive model,
changepoint problem, structural instability, outliers



1 Introduction

Time series models are often used to predict or improve understanding of the dynamic

properties of macroeconomic data. Parametric models are commonly used which assume

a constant linear dynamic structure over time. For instance, much of modern macroeco-

nomics, including the unit root literature, have been based on autoregressive or autoregres-

sive moving average models. However, this assumption may be inappropriate. For example,

U.S. post-World War II macroeconomic series cover a time span which includes wars, rapid

technical change, the breakdown of the Bretton Woods agreement, the change in the Fed's

operating behavior under Paul Volcker and numerous other shifts in monetary and �scal

policy.

All of these factors may imply that it is inappropriate to assume the same dynamic

model exists for the 1950's, say, as for the 1980's. We refer to models where the dynamics

change permanently in a way that cannot be predicted by the history of the series as

\structural break" models. Alternatively, it is possible that dynamic properties can vary

over the business cycle. For instance, it is likely that shocks to real output have di�erent

e�ects if the economy is operating below capacity (i.e. is in a recession), relative to cases

where the economy is in normal times or is overheating (i.e. is expanding rapidly). With

some abuse of terminology, we refer to models which allow for dynamics which vary over

the business cycle in a predictable way as \nonlinear" models. Still another possibility is

that apparent departures from linearity are due to unpredictable large shocks which have

only temporary e�ects. We refer to models which have this property as \outlier" models.

Nonlinear models provide very di�erent understanding of the e�ects of shocks over

the business cycle and lead to forecasts depending on the state of economic activity. For

example, as shown by Beaudry and Koop (1993), a simple nonlinear model implies that

positive shocks to U.S. output growth are more persistent than negative ones. In contrast,

structural break models have no predictable changes in regime over the business cycle.
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Hence, a consequence of adopting them is that the current forecasting model is estimated

only using data observed since the most recent break. Outlier models are useful for removing

the inuence of rare events from the estimates used for forecasting and analyzing dynamics.

Since they have very di�erent consequences for forecasting and understanding busi-

ness cycles, it is important to test whether nonlinearities, structural breaks or outliers are

present in economic time series, and if they are, to estimate models which incorporate

them. A signi�cant literature now exists which tests for structural breaks or nonlinearity

in macroeconomic time series. However, this literature, with a few exceptions, takes a

classical econometric approach and concentrates on only one of the three possible classes of

model considered in this paper. For example, an important recent paper, Stock and Watson

(1996), uses a battery of classical tests on 76 US postwar quarterly time series and �nds

signi�cant evidence of structural instability in many cases. However, it is possible that

this apparent structural instability is, in reality, a reection of some form of nonlinearity.

Hence, it is important not only to compare linear to structural break models, but also to

compare structural break to nonlinear models and outlier models.

Such a comparison of many possibly non-nested models is theoretically challenging using

classical techniques but theoretically straightforward using Bayesian approaches. Bayesian

methods for choosing between models are based on the marginal likelihood associated

with each model. The marginal likelihood is the average of the likelihood function across

parameters values with respect to the prior distribution of the parameters. The comparison

of multiple, possibly non-nested models, can be accomplished by constructing posterior

model probabilities directly from these marginal likelihoods.4 The number or nature of

the models under consideration does not a�ect the logic of the calculation. The two main

drawbacks to such a Bayesian approach are the need to specify informative priors and the

4That is, under the assumption of equal prior probabilities for each model, one adds the marginal

likelihood across all models under consideration and then divides the individual marginal likelihoods by

the value of this sum.
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di�culty in calculating the marginal likelihood. Before discussing these drawbacks it is

useful to outline other advantages of the Bayesian approach for nonlinear, structural break

and outlier models.

1.1 Advantages of a Bayesian Approach

In previous work (Koop and Potter, 1996) we note that, with many nonlinear models,

likelihood functions are non-smooth and multimodal. Similar observations apply to struc-

tural break and outlier models. Bayesian methods, by using information from the entire

parameter space capture this �nite sample uncertainty about the true parameter values. In

contrast, standard classical maximum likelihood methods choose one point (i.e, the MLE

in sample) in the parameter space and use a normal asymptotic approximation to capture

the local uncertainty around this point. Uncertainty produced by multiple peaks in the

likelihood function is ignored.

In addition, posterior model probabilities can be used to combine dynamic features of

di�erent models. For example, instead of `accepting' or `rejecting' the linear model one can

include its dynamics weighted by the posterior probability for linearity. This means that

forecasts and impulse response functions will be more reective of the underlying model

and parameter uncertainty when based on Bayesian methods of analysis.

Another issue is the choice of lag length. It is standard to choose a particular lag length

at which to conduct the analysis by using information criteria or by testing the signi�cance

of additional lags. This leads to issues of data-mining and reduces the credibility of the

results. Rather than picking a particular lag length to work with Bayesian methods allow

one to combine information from a range of lag lengths for each model.

In constructing classical statistical tests of the null hypothesis of a linear model versus

the three alternatives one runs into Davies' problem: nuisance parameters which are not

identi�ed under the null. This leads to the di�cult classical statistical issues addressed in

Andrews (1993) and Andrews and Ploberger (1994). Optimal classical solutions to Davies'
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problem involve integrating out nuisance parameters with respect to an a priori weighting

function and calculation of critical values for classical test statistics can be computationally

demanding { involving complicated simulation methods (see Hansen, 1996). Koop and

Potter (1996) shows how the presence of nuisance parameters that are unidenti�ed under

the null poses no problems for a Bayesian analysis and the unidenti�ed nuisance parameters

can be integrated out using an a posteriori weighting function.

In the case of structural break and/or outlier models Bayesian methods, unlike the

classical approach, extend directly to making inferences regarding the possibility of multiple

breaks or outliers.

1.2 Drawbacks of the Bayesian Approach

A major drawback of using Bayesian methods is that they can be very computationally

demanding. For instance, in the case of structural break models, they require speci�cation

of a parametric likelihood function before and after the breakpoints (see, eg., Barry and

Hartigan, 1993, Carlin, Gelfand and Smith, 1992 and Stephens, 1994). For many com-

mon speci�cations (e.g. ARMA models, regression models with AR errors, models with

non-Normal errors, etc.), analytic posterior properties do not exist and Bayesian analysis

requires the use of simulation-based methods such as the Gibbs sampler. This implies, if

the breakpoint is unknown, that likelihood evaluations at every possible breakpoint are

often required at every pass through the Gibbs sampler. If the breakpoint can occur at any

time, the sample size is T , and the Gibbs sampler is run for S passes, then approximately

ST likelihood evaluations must be made. For typical values of S and T (eg. 10,000 and

200), the computational burden becomes quite large. If two breakpoints are allowed for,

the number of likelihood function evaluations becomes approximately ST 2. In addition,

researchers are often interested in investigating many di�erent models, further increasing

the computational burden.

In the present paper, for one of our data sets, we work with 6 di�erent lag lengths and
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allow for 0, 1 and 2 breakpoints. Furthermore, we consider nonlinear and outlier models

with homoscedastic and heteroscedastic versions of most models. In total we estimate

66 models. In cases of this sort, any Bayesian procedure requiring extensive simulation is

virtually impossible given the present level of computer technology. Similar arguments hold

for many common nonlinear speci�cations (eg. the Markov switching model, see Albert and

Chib, 1993). In practice, then, applied economists interested in a thorough data analysis

involving a wide variety of nonlinear and structural break models will be interested in

Bayesian methods which can be done analytically or at most require numerical integration

over a low dimensional subset of the parameter space. This, of course, places restrictions

on the types of models analyzed and the priors used.

This leads us to the second possible drawback of the Bayesian approach: the use of

proper informative priors. It is well-known in the context of nested hypothesis testing that

improper `noninformative' priors over the parameters of interest lead to Bayes factors which

always prefer the restricted model (see Poirier, 1995, section 9.10). Since the Bayes factor

is the ratio of the marginal likelihood of the linear model to the marginal likelihood of the

alternative model in our examples, the use of the standard uninformative priors will lead to

all the posterior probability being in favor of the linear model. By continuity, relatively at

priors over the parameter space will thus tend to favour the restricted (i.e. linear) model.

Koop and Potter (1996) argue that this is an attractive feature of the Bayesian analysis

in this context since it incorporates a strong reward for the relative parsimony of linear

models. Although it is probably unrealistic to expect researchers to universally embrace

the use of informative priors, we are con�dent that those used in this paper will be thought

reasonable by a wide variety of readers. Furthermore, optimal classical tests also use a

subjective weighting function (see Andrews and Ploberger, 1994).
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1.3 Two Examples

We apply our methods to two commonly-analyzed data sets. The �rst is a post-war quar-

terly US real GDP growth series. We use CITIBASE series GDP from 1954:1 to 1995:1

in 1987 prices. A number of papers have found evidence of nonlinearity in this data set

(see Pesaran and Potter, 1997 for a review) and there is considerable debate about the

possibility of a structural break in the time series in the early 1970s (see Perron 1989).

The second is a long annual UK industrial production growth series. This latter series runs

from 1700-1992 and has been extensively investigated by economic historians (see Greasley

and Oxley, 1994, and Mills and Crafts, 1996) who examine whether or not the industrial

revolution was a distinct epoch (i.e. whether a structural break occurred in this series).

We work with a similar, relatively noninformative, prior for both data sets. We give

examples of how the priors could be altered in our discussion of the models and techniques

required to calculate the marginal likelihood.

2 Tools for Analyzing Switching Regime Models

2.1 A Simple Class of Regime Switching Models

Most of the nonlinear models commonly used by macroeconomists are based on autoregres-

sive speci�cations (i.e., there are no moving average components) which vary across regimes

or states. Prominent examples include Markov switching (Hamilton, 1989) and Threshold

autoregressive (or TAR, see Potter, 1995) models. In this paper we use the latter class of

models since computationally they are much simpler to deal with. Structural break models

can also be interpreted as switching regime models where the regimes are de�ned by an

�xed but unknown breakpoint in time. Similarly in our speci�cation outlier models have

temporary regimes that occur for one period only.
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These considerations give the following simple regime switching speci�cation:

Yt =

8><
>:

�10 + �1p(L)Yt�1 + �1Vt if It = 1
�00 + �0p(L)Yt�1 + �0Vt if It = 0
�20 + �2p(L)Yt�1 + �2Vt if It = 2

where It is an indicator variable for the regimes and �ip(L) is a polynomial of order p in

the lag operator.5 Vt is assumed to be standard normal and independent over time. The

Gaussianity assumption is strong but it will allow us to obtain analytical results.

We consider four ways of de�ning It.

1. The linear Gaussian AR model is obtained if we set It = 0 for all t.

2. A three regime TAR model is obtained if we set It = 1 if Yt�d > r1; It = 2 if Yt�d < r2

and It = 0 if r2 � Yt�d � r1. If �20 = �00; �0p(L) = �2p(L); �0 = �2 then a two

regime model is obtained

3. The structural break model is obtained if we set It = 0 if t < �1 and It = 1 if

�1 � t < �2 and It = 2 if t � �2. Again under suitable parameter restrictions it

reduces to a single break model.

4. The outlier model is obtained if It 6= 0 for only two values of t and �1p(L) = �2p(L) =

�0p(L); �1 = �2 = �0 but �10 6= �20 6= �00.

Of course, there are many other ways of de�ning It and, hence, the tools developed in this

paper can be used in a much wider class of models. Note that these models are potentially

heteroscedastic since the error variance may di�er across regimes. In the empirical section

of the paper, we also consider homoscedastic versions of the TAR and structural break

models. That is, our homoscedastic models assume �1 = �2 = �0. For future reference, let

�i = (�10; �
0
1p)

0; (i = 0; 1; 2), � = [�1; �2]
0 and  = [r1; r2; d]

0.

5For the sake of simplicity we assume the lag length is the same in each regime { an assumption that

be easily relaxed.
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In constructing a classical test for the presence of a structural break or outlier, the null

hypothesis is the AR model and the parameter vector � is unidenti�ed. In the TAR, the

parameter vector  is unidenti�ed under the AR null. These are the sources of the classical

statistical problems discussed previously. Similarly in testing the two regime models versus

three regime models or single break versus two breaks or single outliers versus two outliers,

r2 or �2 are unidenti�ed under the null hypothesis.

2.2 Analytical Expressions for Marginal Likelihoods

The major advantage of these simple classes of regime switching models is that analytical

expressions for the posterior distribution are available conditional on the parameter vectors

 or �; if we use independent (across i) natural conjugate priors for �i; �i. Hence, it is

feasible to carry out a thorough analysis of model choice (i.e. choice of It or even choice of

heteroscedasticity vs. homoscedasticity), lag length and prior sensitivity within the natural

conjugate class. It is worth stressing that, with typical sample sizes and lag lengths, our

approach allows for such an analysis to be done in minutes of computer time on a Pentium

PC, whereas other approaches (e.g. classical approaches using the optimal tests of Andrews

and Ploberger, 1994 and the simulation approach of Hansen, 1996 or Bayesian analysis

of Markov switching models as in Albert and Chib, 1993) would take days or weeks of

computer time.

Intuitively, the existence of analytical results is due to the fact that, conditional on

knowing It, the regime switching model breaks down into three AR speci�cations. If we

treat initial conditions as �xed, it is well known that the AR model can be analyzed in a

similar manner to the standard linear regression model. Hence, analytical posterior results

exist for parameters of each regime, �i; �i; if we work with natural conjugate priors for each

regime. To obtain posterior results which are not conditional on It, we need to know the

marginal posterior for the parameters which de�ne It (i.e. � for the structural break model

and  for the TAR). For example, in the case of the single break model �1 the possible values
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are de�ned by the integers from 1 to T . Since these parameters are discrete, it is simple to

calculate their marginal probability for each possible value. In the case of the TAR, r1and

r2 are continuous parameters but their e�ect on the likelihood function is the same as if

they were discrete. This is because one can set the possible values of r1; r2 to the observed

data points. For example, suppose r2 is chosen to be the 25th smallest observation. Then

as we vary r2 up to the value of the 26th smallest observation, the regime split between

regime 0 and 2 remains the same. Thus the likelihood function is at between these values

and the posterior for (�2; �2) is the same across all these values for r2.

Included in the class of priors for which analytical results are available are the improper

priors: p(�i) / ci, p(�i) / 1=�i, where ci > 0 is an arbitrary constant. As discussed above

these priors will lead to all the posterior probability being in favor of the linear model.

Thus, we assume an informative prior of the form

p(�0; �1; �2; �0; �1; �2j) = p(�0; �1; �2; �0; �1; �2j�) =
3Y
i=1

p(�ij�i)p(�i);

with a normal-inverted gamma form for p(�ij�i)p(�i) (see, eg., Judge, Gri�ths, Hill, Lutke-

pohl and Lee, 1985, pp. 106-107 for further details about the normal-inverted gamma prior).

Thus, conditional on �2i it is assumed that �i is multivariate normal with mean vector �

and variance covariance matrix �2iD: The degrees of freedom of the inverted gamma distri-

bution for the precision is � and the mean is s�2. It is assumed that the hyperparameters

of the prior do not depend on  or � . This is a restriction that could be relaxed with little

di�culty. The priors for  and � are discussed below.

Let us begin by considering the linear AR model. If we condition on p initial values

of Yt, then this model is identical to the standard Normal regression model with a natural

conjugate prior. The analytical expression for the marginal likelihood is well-known (eg.

Judge, Gri�ths, Hill, Lutkepohl and Lee, 1985, page 129). The following sample information

is required to calculate the marginal likelihood:

1. The sample size T
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2. The ordinary least squares estimates of the parameter vector �:

�̂ = [X 0X]�1X 0Y;

where Y = [Yp+1; � � � ; YT+p]
0 and

X =

2
66664

1 Yp � � � Y1
1 Yp+1 � � � Y2
...

...
...

...
1 YT+p�1 � � � YT

3
77775
:

3. The moment matrix X 0X.

4. The sum of squared errors:

e2 = (Y �X�̂)0(Y �X�̂):

Combining the sample information with the prior information, the marginal likelihood

is:

`LAR(Y ) =
�(��=2)(�s2)�=2

�(�=2)�T=2
j�Dj1=2

jDj1=2
(���s2)���=2;

where:

1.

�� = � + T

2.

���s2 = �s2 + e2 + (��� �̂)0X 0X(��� �̂) + (��� �)0D�1(��� �);

where �� is the posterior mean of � and is given by:

�D[D�1�+X 0y]:
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3. �D combines the prior and sample information on the variance covariance matrix of

the lagged variables and is given by:

�D = [D�1 +X 0X]�1:

Conditional on � , the homoscedastic structural break and conditional on , the ho-

moscedastic TAR models can be written (using appropriate dummy variables) in the form

of a linear regression model. Furthermore, conditional on � the heteroscedastic structural

break and conditional on  the heteroscedastic TAR models divide into three simple linear

regression models, each of which has a known marginal likelihood. Hence, conditional on 

or � the marginal likelihood for these models can easily be calculated. The following sample

information is required to calculate the marginal likelihood for the two regime model:

1. The sample size Ti for each of the regimes in the case of the heteroscedastic model.

2. The ordinary least squares estimates of the parameter vector �i:

�̂i = [X 0
iXi]

�1X 0
iYi;

where Yi = 1(It = i)Y and Xi = 1(It = i)X.

3. The moment matrices X 0
iXi.

4. The sum of squared errors within each regime:

e2i = (Yi �Xi�̂)
0(Yi �Xi�̂):

5. In the case of the heteroscedastic model the 3 pieces of sample information are used

to construct separate ��i�s
2
i , �(��i=2) and j�Dij values. In the case of the homoscedastic

model the information is combined in constructing the values of ���s2 and �(��=2) and

j�Dj.
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6. E�cient algorithms can be constructed to calculate this sample information across

all the possible splits of the data.

In the case of two regime heteroscedastic model the marginal likelihood conditional on

 or � is:

`2REGIME(Y j) =
1Y
i=0

�(��i=2)(�s
2)�=2

�(�=2)�Ti=2

j�Dij
1=2

jDj1=2
(��i�s

2
i )

���i=2:

A comparison of the marginal likelihoods for the linear AR and the two regime heteroscedas-

tic model shows that:

1.
Q1
i=0(��i�s

2
i )

���i=2 is likely to be larger than (���s2)���=2 even if

���s2 � ��0�s
2

0 + ��1�s
2

1

but this is balanced by the fact that

�(��=2) >
1Y
i=0

�(��i=2);

when T > 1 and Ti > 0; i = 0; 1.

2. Parsimony in terms of the number of conditional mean parameters used in the model

comes from the fact that it is very likely that j�Dj > j�D0jj�D1j: For example, in the

case of p = 0 and assuming that D was 1 we would have j�Dj = 1=(T + 1) and

j�D0jj�D1j =
1

(T0 + 1)(T1 + 1)
;

with T0 + T1 = T .

Similar considerations apply to the comparison of two regime models with three regime

models and three regime models with linear models.

For the comparison across two regime models some insight can be gained into the

threshold versus structural break case. Suppose that the sample size of each regime is the
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same then the ratio of the marginal likelihoods would have two components: the relative

size of
Q1
i=0(��i�s

2
i ) and the relative size of j�D0jj�D1j between the two models. If we assume

that the latter is approximately equal across models, then the comparison will mainly be

determined by the relative �t of the two models. Recall though, that this is still only a

conditional comparison and its e�ect on the overall Bayes factor for the two models will

depend on the weight the relevant value of  and � receives.

For the structural break model, a discrete uniform prior over all possible sample breaks

which imply at least 15% of the data lies in each regime is used for � . Thus, we do not use

any a priori information about the location of the break point. The 15% rule is intended

to ensure that an adequate amount of data is available in each regime and is consistent

with the notion that structural breaks are spaced out over time. The marginal posterior

p(� jY ) is easy to derive from these conditional marginal likelihoods by normalizing them to

a probability measure. The marginal likelihood for the model is found by simply averaging

the conditional marginal likelihoods across all the values of � .

For the TAR we use a continuous uniform prior over r1; r2 again with the restriction

that at least 15% of the data must be in each regime. This leads to the following prior:

r1 has a uniform distribution from the 30th percentile of the data to the 85th percentile;

conditional on r1, r2 is uniformly distribution with lower support at the 15th percentile

and upper support at the sample value with 15% of the data below r1. The prior for d

is discrete uniform over the integers 1; 2; : : : ; p: This means that the possible values of d

depend the autoregressive lag used. This is an assumption that could also be relaxed.

The calculation of the overall marginal likelihood in the nonlinear case is a little more

di�cult. Again for each di�erent value of  we have calculated `(Y j): First, for each �xed

pair of r1; r2 we can average out the discrete values of d. This gives us `(Y jr1; r2). Since

the likelihood is at for values of thresholds between the data points this is also true of

the marginal likelihood. Thus to integrate the conditional marginal likelihoods against the

uniform prior on the thresholds one needs to weight the conditional marginal likelihoods
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by the size of the interval and divide by the height of the integrating constant of the

prior. In the case of the three regime model this achieved by �rst averaging out over r2

conditional on r1 (note that this requires a di�erent integrating constant as r1 varies). If

the threshold e�ect is very obvious, that is, clear breaks can be observed in the path of the

time series, then the conditional marginal likelihoods around the observed thresholds will

receive additional weight over other points. This is because for the threshold e�ect to be

visually obvious the marginal distribution of the data will be multimodal with large gaps

between the modes.

2.3 Models and Hyperparameters

The results of the previous paragraphs can be extended in the obvious way to cases where

more than two regime, structural break or outlier occurs. This paper limits itself to the

following 11 classes of models (short form acronyms are given in bold):

1. Linear autoregressive LAR.

2. Homoscedastic TAR with one threshold and, hence, two regimes TAR2-hom.

3. Heteroscedastic TAR with one threshold and two regimes TAR2-het.

4. Homoscedastic TAR with two thresholds and, hence, three regimes TAR3-hom.

5. Heteroscedastic TAR with two thresholds TAR3-het.

6. Homoscedastic structural break model with one break Break1-hom.

7. Heteroscedastic structural break model with one break Break1-het.

8. Homoscedastic model with two structural breaks Break2-hom.

9. Heteroscedastic model with two structural breaks Break2-het.
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10. Outlier models with one outlier Out1.

11. Outlier models with two outliers Out2.

We also examine the models across various lag lengths. For example, in the case of the

industrial production data, we let p take on values between 1 and 6. Hence, we compare

66 models in that case.

It remains to discuss the choice of the hyperparameters for the Normal-inverted gamma

priors. We begin by eliciting a prior which is relatively noninformative but accords with our

subjective prior beliefs. To simplify matters, we assume the prior means and covariances

are zero for all the regression parameters in all models (i.e. the �i's are centered over

zero). The prior variances for the regression coe�cients are assumed to be the same for

all parameters except the intercept(s) for all models (in the case of outlier models the

prior variance is the same as the slope coe�cients). The prior variance for the intercept is

taken to be 10 times as large as that for the slope coe�cients. In particular, we assume the

marginal prior variance for �i is E(�
2
i )cAp+1 where Ap+1is a (p+1)�(p+1) diagonal matrix

with (1; 1)0th element 10 and all other diagonal elements 1. Hence in the notation above

D = cAp+1: Degrees of freedom (�) for the inverted gamma priors are 3 for all models,

which is very noninformative, but which allows for the �rst two marginal prior moments to

exist for all parameters. The other hyperparameter of the inverted gamma prior is s. This

hyperparameter is de�ned so that E(�2i ) =
�

��2
s2:

For real GDP growth we choose c = 2

3
and s2 = 1=4: This implies a very at prior

for �2i , but one that has mean 0:75. Since the data are measured as percentage changes

(e.g. 1:0 implies a 1:0 percent change in GDP), this choice of s2 is sensible. The prior

centers the AR coe�cients over zero for all series,6 but allows for great prior uncertainty.

In particular, prior variances of the AR coe�cients are 0:5 which implies very large prior

6Since we are working with di�erenced data, this implies a prior centered over a random walk for the

level of the series.
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standard deviations relative to the size of the stationary region for AR models.

For growth in real industrial production we expect the error variance to be much larger

since this data is observed annually and industrial production tends to be more volatile

than GDP. In particular, we choose s2 = 4=3 which implies we expect the error standard

deviation to be around 4. With this change, we set c = :25 which implies the prior variance

for the AR coe�cients is again 0:5.

3 Empirical Results

US real GDP and UK industrial production are plotted in Figures 1a and 1b respectively. It

can be seen that U.K. industrial production is much more volatile than U.S. real GDP. For

the former, annual increases/decreases of more than ten percent occur almost �ve percent

of the time, while for the latter increases/decreases of more than two percent are rare.

This, of course, is mostly due to the fact that industrial production is observed annually,

while GDP is observed quarterly. Further, we note that our prior reects this di�erence in

volatility. A visual inspection of Figure 1a indicates a possible decline in volatility since

the early 1980's and Figure 1b indicates a couple periods of high volatility in the early

1700's and the 1920's and 1930's. However, it is hard to ascertain which of the models is

supported by the data through visual inspection, and so we turn to our Bayesian methods.

For both of the series we consider, we selected a maximum value of p which we felt was

large enough to capture the dynamics of the data. For the real GDP growth series we chose

a maximum value of p = 4, while for the industrial productions series we chose a maximum

value of p = 6. Tables 1 and 2 present posterior model probabilities corresponding to each

value of p and each class of models using the prior described in the previous section for US

GDP and UK Industrial Production respectively.

Note �rst that the strong reward for parsimony reected in Bayes factors with relatively

at priors implies that short lag lengths tend to be preferred for both series. Despite this,
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Table 1: Posterior Model Probabilities for real US GDP Data

Model/AR Order 1 2 3 4
AR 0.0007 0.0001 0.0000 0.0000
TAR2-hom 0.0001 0.0000 0.0000 0.0000
TAR2-het 0.0001 0.0062 0.0001 0.0000
Break1-hom 0.0001 0.0000 0.0000 0.0000
Break1-het 0.8011 0.1306 0.0069 0.0003
TAR3-hom 0.0000 0.0000 0.0000 0.0000
TAR3-het 0.0000 0.0007 0.0000 0.0000
Break2-hom 0.0000 0.0000 0.0000 0.0000
Break2-het 0.0481 0.0026 0.0000 0.0000
Out1 0.0008 0.0002 0.0000 0.0000
Out2 0.0008 0.0003 0.0000 0.0000

there is little evidence for the linear model (which, for a given lag length, is the most

parsimonious model). This reinforces the common �nding that departures from linearity

are present in macroeconomic time series. However, just how this departure manifests itself

seems to di�er over series.

The real GDP growth series seems to be characterized by structural breaks in the

variance. The heteroscedastic model with one break gets most of the posterior model

probability, although substantial probability is allocated to the two-break model. Another

point worth stressing is that the heteroscedastic TAR's tend to be favoured over the linear

model (see, especially, TAR2-het with p = 2 which is roughly ten times as likely as the

linear AR with any choice of p). Hence, if a researcher was just looking for nonlinearity

he/she would likely conclude that it is present even though it is likely that this merely

reects a structural break in the volatility of GDP growth. Estimates of the breakpoint

indicate that volatility of the innovation to US GDP changed markedly in the early- to

mid-1980's. Note also that there is little evidence for any nonlinearities in the conditional

mean of the series (i.e., the homoscedastic models do not beat the linear AR model by
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Table 2: Posterior Model Probabilities for UK Industrial Production Data

Model/AR Order 1 2 3 4 5 6
AR 0.0055 0.0039 0.0005 0.0000 0.0000 0.0000
TAR2-hom 0.1215 0.0176 0.0085 0.0003 0.0000 0.0000
TAR2-het 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Break1-hom 0.0090 0.0070 0.0005 0.0001 0.0000 0.0000
Break1-het 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TAR3-hom 0.1363 0.2797 0.0486 0.1922 0.0036 0.0001
TAR3-het 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Break2-hom 0.0598 0.0839 0.0016 0.0000 0.0000 0.0000
Break2-het 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Out1 0.0054 0.0038 0.0005 0.0000 0.0000 0.0000
Out2 0.0057 0.0039 0.0005 0.0000 0.0000 0.0000

much when limiting the comparison to these two groups). An additional interesting point

is that, if we restrict attention to homoscedastic models, the outlier models are the most

preferred (although they only slightly beat the linear AR model).

Results for the growth in UK industrial production series is markedly di�erent. For this

series there is absolutely no evidence for any type of heteroscedasticity, but there is strong

evidence for departures from linearity in the conditional mean of the series. The posterior

probability is spread out over a lot of di�erent models, but overall the homoscedastic TAR

models receive most support. If we sum across p to get the total probability for each class

of models, then TAR3-hom receives 67 per cent and TAR2-hom receives 15 per cent of the

posterior model probability. So there is surprisingly strong evidence that the departures

from linearity observed in this series are not due to structural breaks (despite the length of

the time series which includes the industrial revolution), but rather by some endogenous

process where changes in linear structure are predictable based on past information. How-

ever, we do not want push this story too hard, since there is some evidence for structural

change (i.e. the total probability allocated to the Break1-hom and Break2-hom classes
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of models is around 14 per cent). Furthermore, our results do not completely rule out

the possibility that the linear model adequately characterizes the data (i.e. this class gets

around 2 per cent of the posterior model probability).

These empirical results are meant to illustrate the practical usefulness of our techniques

and show how great care needs to be taken when modelling departures from linearity.

Even with these two series we can see that generalizations like: `structural breaks are

present in macroeconomic time series' or `macroeconomic time series are nonlinear' are

misleading. In a more extensive empirical exercise, a researcher would want to carry out

a prior sensitivity analysis7 and present other posterior features of interest. We have not

done so for reasons of brevity. Furthermore, in this paper we have emphasized model

choice. However, in practice, with Bayesian techniques the choice of one preferred model

is not necessary. Rather, features of interest (eg. impulse responses or forecasts) can

be presented which average over all possible models where the weights are given by the

posterior model probabilities.

4 Conclusions

This paper argues for the use of Bayesian `tests' as a complement to the myriad of classical

tests now extant for testing for nonlinearities or structural breaks. Further, given that

macroeconomists usually want to test a wide variety of speci�cations, it is important to

develop tests that can be applied jointly across the speci�cations. The main methodological

point of this paper has been to show how Bayesian methods for handling autoregressive

models with unknown changes in regime can be used to construct such a joint test across

speci�cations. Because these methods can be performed analytically, they are both com-

putationally inexpensive and easy to use in practice.

7We have informally experimented with changing the prior and, in practice, results seem to be robust

to reasonable changes in our present prior.

19



In the empirical section of the paper, our methods are implemented for two represen-

tative macroeconomic time series. For real GDP growth, our �ndings reinforce those of

Stock and Watson (1996): structural breaks do indeed appear to occur. If this �nding

were widespread in macroeconomics, then a good portion of empirical macroeconomics is

called into question. If changes in structure are widespread and unpredictable, then it is

di�cult to imagine an appropriate forecasting strategy for use with macro data and it may

be di�cult to develop economic theory to explain this. However, for our industrial pro-

duction series, departures from linearity seem to be characterized by endogenous changes

in structure of the sort captured by the TAR. If this behaviour is widespread in macroe-

conomics, then a very productive research strategy exists involving development of more

sophisticated nonlinear models and theories to explain the nonlinearities.

One obvious extension of our results would be to conduct a formal sensitivity analysis

for the hyperparameters c; s2. Another important extension would involve examining the

sensitivity of the results to the assumption of Gaussian innovations to the time series.

Indeed, allowing for Student-t errors might make the outlier models considered in this

paper redundant (see, eg., Hoek, Lucas and van Dijk, 1995). However, this would involve

some simulation. Thus, to reduce the computational burden it would make sense to focus

on a subset of models suggested by an initial analysis based on the computationally simpler

techniques described here.
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