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Abstract

We discuss the development of dynamic factor models for multivariate �nancial time

series, and the incorporation of stochastic volatility components for latent factor pro-

cesses. Bayesian inference and computation is developed and explored in a study of the

dynamic factor structure of daily spot exchange rates for a selection of international cur-

rencies. The models are direct generalisations of univariate stochastic volatility models,

and represent speci�c varieties of models recently discussed in the growing multivariate

stochastic volatility literature. We also discuss connections and comparisons with the

much simpler method of dynamic variance discounting that, for over a decade, has been

a standard approach in applied �nancial econometrics in the Bayesian forecasting world.

We review empirical �ndings in applying these models to the exchange rate series, in-

cluding aspects of model performance in dynamic portfolio allocation. We conclude

with comments on the potential practical utility of structured factor models and future

potential developments and model extensions.
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1 Introduction

Since the mid-1980s the method of variance/covariance discounting (Quintana and West
1987, 88) has been used as a component of applied Bayesian forecasting models in �nancial
econometric settings (Quintana 1992; Putnam and Quintana 1994, 1995; Quintana and Put-
nam 1996; Quintana, Chopra and Putnam 1995). In more recent years major developments
in structured stochastic volatility (SV) modelling have led to the introduction of various
approaches to modelling dependencies in volatility processes that, in principle, may lead to
improvements in short-term forecasting of multiple �nancial and econometric time series.
The potential is there for real improvements in practical short-term forecasting relative to
the purely \reactive" variance discounting methods that simply allow for volatility changes
but do not anticipate the forms of change. Our interest here is to explore dynamic factor
models as a context for multivariate stochastic volatility modelling, motivated by:

� questions about the potential for dynamic factor models to provide practical im-
provements in short-term forecasting, and resulting dynamic portfolio allocations, of
international exchange rates and other �nancial time series;

� issues of model structuring, implementation, Bayesian analysis and computation; and

� questions of comparison with the simpler methods of \tracking" volatility changes
based on variance/covariance discounting.

We study these issues in connection with data analysis and portfolio construction using
multiple series of international exchange rates.

Variants of the basic method of variance matrix discounting (see above references to
Quintana and coauthors) have formal theoretical bases in matrix-variate \random walks"
(Uhlig 1994, 97). Further discussion is given below, and more background can be found
in West and Harrison (1997, section 16.4.5). The basic discounting methods follow foun-
dational developments for univariate series in Ameen and Harrison (1995) and Harrison
and West (1987), and the formal multivariate models are direct generalisations of univari-
ate models of Shephard (1994a). Related discussion appears in West and Harrison (1997,
section 10.8.2). In the general multivariate context, the approach leads to the embed-
ding of exponentially smoothed estimates of \local" variance/covariance structure within
a Bayesian modelling framework, and so provides for adaptation to stochastic changes as
time series data are processed. Modi�cations to allow for changes in discount rates in order
to adapt to varying degrees of change, including marked/abrupt changes in volatility pat-
terns, extend the basic approach. The resulting update equations for sequences of estimated
volatility matrices have univariate components that relate closely to variants of ARCH and
SV models, and so it is not surprising that they have proven useful in many applications.
However, unlike these more formal models, discounting methods do not have real predic-
tive capabilities, simply allowing for and estimating changes rather than anticipating them.
Hence the interest in factor models that set out to explicitly describe changes through pat-
terns of time-variation in parameters driving underlying latent processes. This is the key
motivating concept underlying interest in SV models generally, and led has to various au-
thors mentioning or developing multivariate SV models with dynamic factor structure. Key
references include the initiating work of Harvey, Ruiz and Shephard (1994), and the later
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developments in the papers of Jacquier, Polson and Rossi (1994, 95), and Kim, Shephard
and Chib (1998).

In the following section we detail the basic framework and notation for stochastically
time-varying variance matrices, and this leads into the basic factor structure as discussed by
the above authors. This is followed by discussion of factor structure where we build on prior
work in Bayesian factor analysis per se, adopting the structuring used by Geweke and Zhou
(1996) in particular, and various extensions of basic factor models. We then discuss model
�tting and computation, followed by analyses of international exchange rate time series
with comparisons of the dynamic factor models with variance/covariance discounting. The
paper concludes with some summary and concluding comments.

2 Time Varying Variance Matrices and Factor Structure

2.1 Bayesian Discount Estimation

To introduce notation, consider a q�variate time series yt; (t = 1; 2; : : : ; ) as conditionally
independent, Gaussian random vectors with variance matrices �t; denoted by N(ytj0;�t)
for each t: The variance matrix is stochastically time-varying. Bayesian discounting methods
arise from a matrix-variate random walk for the �t process, resulting in simple sequential
updating of inverse Wishart posteriors for inference on �t as time evolves. Using the
notation of West and Harrison (1997, chapter 16), the time t posterior is of the form
p(�tjDt) = W�1

nt
(�tjSt) where Dt = fD0;y1; : : : ;ytg = fDt�1;ytg is the sequentially

updated information set at time t: Here nt is the degrees of freedom and St a posterior
estimate of �t; the posterior harmonic mean. The notation W

�1
r (�jS) indicates the inverse

Wishart distribution with r degrees of freedom and scale matrix S (see West and Harrison,
as referenced). The sequence of estimates St is trivially updated sequentially in time by the
forward exponential moving average formula

St = (1� at)St�1 + atyty
0

t (1)

with weight at = 1=(1 + �nt�1) based on a discount factor �: This discount factor lies in
(0; 1); is typically between 0.9 and 1 and will be very close to unity for data at high sampling
rates. Having analysed a �xed stretch of data t = 1; : : : ; n; the sequence of estimates St

is revised by the related backward smoothing formula to incorporate the data at times
t+ 1; : : : ; n in inference on �t: Denoting the revised estimate of �t by St;n; the formula is
given in terms of inverse variance matrices by the backward recursion

S�1
t;n = (1� �)S�1

t + �S�1
t+1;n (2)

for each t = n� 1; n� 2; : : : ; 1; and starting with Sn;n = Sn: See West and Harrison (1997,
pp608-609) for further details, and the various references by Quintana and coauthors listed
above for development and application in econometric �nance.

In connection with our analyses of exchange rate time series below, extensions to models
in which the time series has a non-zero mean, possibly modelled via a dynamic regression
model, is straightforward. Then the forward updating formula (1) is modi�ed by replac-
ing the observation yt by the appropriate standardised forecast error, following West and
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Harrison (as referenced above). The details are standard and a side issue here, though
the modi�cation is important in developing portfolio allocations below. Though there are
ranges of possible models for a non-zero, stochastic mean function that may be of interest,
our analysis is restricted to an assumedly constant mean � here. In modelling exchange
rate returns, this will be a vector of very small elements and the impact of admitting a
non-zero mean is small in resulting inferences on the �t sequence. The impact on portfolio
allocations that are mean-dependent are not necessarily small, however, so we maintain the
more general model. That is, we assume the model

yt � N(�;�t) (3)

and that the resulting �ltering and smoothing equations from Bayesian discounting analyses
are modi�ed following West and Harrison (1997, pp608-609). Future reports will discuss
models with mean functions involving stochastic regressions, such as underpin the applied
models of Quintana and Putnam (1996), Quintana, Chopra and Putnam (1995).

2.2 Component and Factor Structure

From very early examples and applications of variance matrix discounting, the principal
component or factor structure of the variance matrices �t has been the subject of analysis
in aiding understanding of the nature of changes in covariance patterns, and the underlying
latent mechanisms driving such changes. See, for example, the studies of monthly exchange
rate time series in Quintana and West (1987), also reported in West and Harrison (1997,
section 16.4.6), where the patterns of change over time in the principal component structure
of the estimates St;n are explored. A standard principal component decomposition of St;n

provides insight into the related decomposition of �t: Often, as in the above examples, this
will yield a small number of dominant components representing latent factors contributing
measurably to both total variability in the series and the covariance structure, together
with additional residual components. This underlies the interest in dynamic factor models
to more explicitly represent the latent structure and put the spot-light on inference on
factor processes and their parameters directly. In line with Jacquier, Polson and Rossi
(1994), Kim, Shephard and Chib (1998), and (extrapolating to the stochastic volatility
context here) Geweke and Zhou (1996), a basic k�factor dynamic model (with k < q;) for
�t is

�t = XtHtX
0

t +	t =
kX

j=1

xtjx
0

tjhtj +	t (4)

where

� Xt is the q � k factor loadings matrix at time t; with columns xtj ;

� Ht = diag(ht1; : : : ; htk) is the diagonal matrix of instantaneous factor variances, and

� 	t = diag( t1; : : : ;  tk) is the diagonal matrix of instantaneous, series-speci�c or
\idiosyncratic" variances.

In terms of the time series yt in (3), this is equivalent to the representation

yt = �+Xtft + �t (5)
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where

� ft � N(ftj0;Ht) are conditionally independent realisations of the k�vector latent
factor process,

� �t � N(�tj0;	t) are conditionally independent and series-speci�c quantities, and

� �t and fs are mutually independent for all t; s:

Principal component decompositions of estimated variance matrix sequences provide
insight into the relevant numbers of \important" factors k; the factor loadings and variance
components, and their changes through time. Note that the general factor model above
does not, however, necessarily involve the notation of orthogonal factor structure key to
principal component methods.

2.3 Factor Model Constraints

From here on we restrict attention to models with constant factor loadings and idiosyncratic
variances, so that Xt = X and 	t = 	 for all t: This provides a framework very similar to
those mooted by the earlier authors, as referenced above, in which we aim to investigate the
issues and di�culties in model implementation. We have, however, implemented models
that do allow for changes in time, particularly in the factor loadings, and this will be
necessary in some application; more on that in a future article.

Well-known questions of model identi�cation and parametrisation arise immediately.
First, concerning the number of parameters in the factor model, and second concerning the
invariance under invertible linear transformations of the factor vectors. There are many
approaches to constraining the model for identi�cation, each raising its own questions of
interpretation of the resulting factor structure (Press 1985, chapter 10; Press and Shigemasu
1989). Our preference here is to adopt a variant of the \hierarchical" constraints used, for
example, in Geweke and Zhou (1996). Speci�cally, the loadings matrix is given in the form

X =

0
BBBBBBBBBBB@

1 0 0 � � � 0
x2;1 1 0 � � � 0
...

...
... � � � 0

xk;1 xk;2 xk;3 � � � 1
xk+1;1 xk+1;2 xk+1;3 � � � xk+1;k

...
...

... � � �
...

xq;1 xq;2 xq;3 � � � xq;k

1
CCCCCCCCCCCA

: (6)

One immediate implication is that the chosen order of the univariate time series in the yt
vector is viewed as de�ning the factors: the �rst series is the �rst factor plus a \noise" term,
and so forth. This focuses attention on the choice of ordering in model speci�cation, and
provides interpretation. A second implication relates to the constraint on the number of
factors allowed. If all the idiosyncratic variances  j are non-zero, then, simply by counting
the number of free parameters in the implied variance matrix �t; we deduce an upper bound
on k implied by solutions to the quadratic inequality q(q + 1) � 2(qk + q) � k(k + 1) � 0.

4



For example, with q = 6 or 7 we have k � 3; with q = 15 or 16 we have k � 10; while with
q = 30 we have k � 22: For realistic values of q this bound is unlikely to be problematic, as
practical interest will be in models with smaller numbers of factors.

2.4 Stochastic Volatility for Dynamic Factors

Multivariate generalisations of univariate SV models through dynamic factor models are
mentioned by various authors, including Harvey, Ruiz and Shephard (1994), Shephard
(1996), Kim, Shephard and Chib (1998), and have been investigated by Jacquier, Polson
and Rossi (1995). The basic model of the latter authors assumes that the univariate factor
series fti follow standard univariate SV models, but discuss possible extensions also men-
tioned in Kim, Shephard and Chib (1998). We adopt such an extension here, one in which
the log volatilities of the factors follows a vector autoregression with possibly correlated
innovations.

Before proceeding, we note that related developments of multivariate models appear in
the multivariate ARCH and related areas, in studies of both SV issues and common com-
ponents models. Key contributions include Engle (1982), Bollerslev, Engle and Wooldridge
(1988), Harvey and Stock (1988), Diebold and Nerlove (1989), Engle, Ng, and Rothschild
(1990), Bollerslev and Engle (1993), M�uller and Pole (1994), King, Sentana and Wadhwani
(1994). Much of what is developed below, in terms of model analysis and inference, would
easily transfer to alternative and related models in the areas represented in these various
references.

For each i = 1; : : : ; k de�ne �ti = log(hti); and write �t = (�t1; : : : ; �tk): We assume
a stationary vector autoregression of order one, VAR(1), centered around a mean � =
(�1; : : : ; �k)

0

and with individual AR parameters �i in the matrix � = diag(�1; : : : ; �k):
That is, for t = 1; 2 : : : ; we have

�t = �+�(�t�1 � �) + !t (7)

with independent innovations
!t � N(!tj0;U) (8)

for some innovations variance matrix U: The implied marginal distribution for each �t is
then

�t � N(�tj�;W) (9)

where W satis�es W = �W�+U: Note that this marginal variance matrix has elements
Wij = Uij=((1��i)(1��j)): The model allows dependencies across volatility series through
non-zero o�-diagonal entries inU andW: Also, this marginal distribution de�nes the initial
distribution for �1:

3 Bayesian Inference and Computation

The model as speci�ed so far comprises the basic factor structure (5) with supporting
assumptions of conditional normality and independence, combined with the SV model (7)
and its supporting assumptions. Model completion for Bayesian analysis requires prior
distributions for the full set of parameters f�;X;	;�;�;Wg: Bayesian inference for any
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speci�ed prior requires the computation and summarisation of the implied posteriors for
these model parameters, together with inferences on the factor processes fft; t = 1; 2; : : : ; ng
and the log-volatility sequence f�t; t = 1; 2; : : : ; ng over the time window of n consecutive
observations comprising the information set Dn: Computation via MCMC simulation builds
on both the work of previous authors in the SV and factor modelling literature, and previous
work in quite di�erent models with related technical structure (Aguilar andWest 1998; West
and Aguilar 1997).

To complete the model speci�cation, we assume a prior speci�ed in terms of conditionally
independent components

p(�)p(X)p(	)p(�)p(�)p(U) (10)

where the chosen marginal priors are either standard reference priors or proper priors that
are chosen to be conditionally conjugate, as discussed below. The outlook here is to explore
the use of reference priors to the extent possible to provide an initial analysis framework.
Our prior speci�cations reect this view, though these models do require the use of in-
formative, proper priors for some model components due to identi�cation issues, as we
will discuss. Further, speci�c applications may use alternative prior speci�cations, both
in terms of informative priors on model components and in terms of prior dependencies
between parameters, though we do not discuss other prior speci�cations here. First, we
assume standard reference priors for the univariate entries in the conditional mean, the
factor loading matrix and the idiosyncratic variance matrix, so that

p(�)p(X)p(	) /
qY

j=1

 �1
j :

Note that the prior for X is, of course, subject to the speci�ed 0/1 constraints on values
in the the upper triangle and diagonal in (6), so the constant prior density applies only
to the remaining, uncertain elements. Second, we use independent normal priors for the
univariate elements of � and the diagonal elements of �: This allows for both reference
priors, by setting the prior precisions to zero, and restriction of the values of each �j
by adapting the prior to be truncated to (0; 1): Finally, we use an informative inverse
Wishart prior for the VAR(1) innovations variance matrix U: This will often be speci�ed
with hyperparameters based on prior data analysis, as we illustrate below. Notice that an
improper reference prior onU; together with that so speci�ed for	; is simply inappropriate,
as the two determine separate sources of variability in the data that are confounded in the
model. This point, rather critical to model implementation and resulting data analysis, is
almost implicit in the prior work of Kim, Shephard and Chib (1998). These authors use
informative proper priors for innovations variances that parallel our assumptions in their
univariate SV models; though they present these priors without further discussion, the
propriety is critical in overcoming otherwise potentially problematic confounding issues.
Hence initial analysis of previous data, or some other prior elicitation activity, is needed. In
our applied development below we explore the use of Bayesian variance discounting analyses
in providing easy preliminary analysis of a reserved initial section of data as input to this.
For now, the key point is that the prior for U is both proper and has the conditionally
conjugate inverse Wishart form.

Iterative posterior simulation uses an MCMC strategy that extends those in existing SV
models (Jacquier, Polson and Rossi 1995; Kim, Shephard and Chib 1998) to the multivariate
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case, introduces elements of MCMC algorithms for Bayesian factor analysis as in Geweke and
Zhou (1996), and adds novel components derived from models with latent VAR components
developed in a quite di�erent context (Aguilar and West 1998; West and Aguilar 1997). We
iteratively simulate values of all model parameters together with the full set of values of
the latent processes ft and �t by sequencing through the a set of conditional distributions
detailed in the Appendix. At some stages we have direct conditional simulations, at others
we require the introduction of novel Metropolis-Hastings accept/reject steps. We note
in passing that, from an algorithmic viewpoint, there are various possible extensions and
alternative methods for components of the MCMC analysis, such as in utilising some of
the ideas from Shephard and Pitt (1997) for example, though we have not explored such
variants yet. Beyond the appendix material here, further technical details are available on
request from the authors, as is Fortran software for this implementation.

4 Studies of International Exchange Rates

4.1 Data and Initial Discounting Analyses

Figure 1 displays time series graphs of the weekday closing spot exchange rates of sev-
eral currencies relative to the US dollar during the period 10/09/86 to 08/09/96, a total
of 2567 data points in each series. The currencies are, in order, the Deutschmark/Mark
(DEM), Japanese Yen (JPY), Canadian Dollar (CAD), French Franc (FRF), British Pound
(GBP) and Spanish Peseta (ESP). We analyse one-day-ahead returns yti = sti=st�1;i � 1
for currency i = 1; : : : ; q = 6; as graphed in Figure 2. Initial analyses using variance matrix
discounting are summarised in Figures 3 and 4. Three separate analyses were run, di�ering
only through the value of the discount factor, speci�ed as � = 0:9; 0:95; 0:99 for the three
cases. The initial prior distribution in each case is very vague, namelyW�1

1 (�jI): In each of
the three analyses, principal components decompositions were made of each of the posterior
estimates St;n over t = 1; : : : ; n = 2567: In each analysis and essentially uniformly over
the time period, this yields three dominant components with fairly stable time trajectories
for the corresponding eigenvectors representing the dynamic factor loadings. Figure 3 dis-
plays the time trajectories of the diagonal elements of St;n; i.e., the sequence of posterior
point estimates of the conditional variances of the six currencies. Figure 4 displays the
corresponding related trajectories of the estimates of the variances of the underlying latent
factors, namely the eigenvalues of the St;n matrices over time.

The greater adaptivity induced by lower discount factors is apparent in these graphs.
The very low � = 0:9 is over-adaptive, responding very markedly to small changes in re-
alised volatilities. In contrast, the higher discount factor � = 0:99 induces a much greater
degree of smoothing of the volatility trajectories, and is likely under-adaptive in time of
really marked change, such as towards the end of 1992 when Britain withdrew from the
EU exchange rate agreement, resulting in marked swings and increased volatility in the
European currencies across the board. The impact of this event is evident in the estimated
trajectories of both the marginal variances of currencies and in the corresponding vari-
ances of the factors arising from the direct principal components decompositions in Figure
4. Notice that the end-1992 volatility changes impact across all factors, highlighting the
apparent dependencies in factor trajectories across the entire time period. This indicates
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the need for dependence structure in modelling latent volatility processes in dynamic factor
analyses, as is allowed in the theoretical framework described above and investigated in
factor model data analyses below. We view such dynamic principal component analyses as
providing informal, exploratory views of possible latent factor structure, albeit conditioned
on the mathematically convenient but practically questionable orthogonality constraints.
It appears that at most three factors are necessary, which is anticipated as the currencies
represent three distinct trading blocs: Canada, Japan and the EU. The trajectories of the
three minor eigenvalues remain at consistently negligible levels across the time frame here,
so that a model with three factors plus currency-speci�c random e�ects is indicated. We
now adopt such a model.

4.2 Dynamic Factor Analysis

Taking q = 6 and k = 3 in the dynamic factor model (5) provides a maximal speci�cation:
under the assumed structure of the factor loadings matrix (6), and assuming each of the  j

to be non-zero, the number of factors must necessarily be no greater than three. Hence, in
addition to being suggested by the discounting analyses, this serves here as an encompassing
model; if fewer than three factors are supported by the data, that fact will be reected in
posterior inferences about factor loadings and variances.

We base an appropriate, informative prior for the key matrix U in the volatility model
on a pre-analysis of the initial 200 observations on the time series, reserving these few obser-
vations for this alone and then analysing the remaining data with the factor model. From
the Bayesian discount model with a discount factor of 0.9, we extracted the point estimates
of the three dominant eigenvalues of each St;n and used these as ad-hoc estimates of the
factor volatilities htj ; for each j; t: Three separate AR(1) models where then �tted to the
log-volatilities so computed, using standard reference Bayesian analyses. This provided pos-
teriors for the AR parameters and innovations variances, in each volatility series marginally,
that we take as \ball-park" initial estimates to be used to specify an informative prior for U
prior to analysis of the remaining data. This preliminary analysis gave approximate prior
means of the three innovations variances around 0.001{0.002. With this in mind, we chose
the prior forU in the factor model analysis to be inverse WishartW�1

r0 (UjR0) with r0 = 100
degrees of freedom (half the prior sample size in the ad-hoc analysis) and R0 = 0:0015I; ap-
propriately \centering" the prior for U: Note that the prior does not anticipate correlations
across volatility processes, though this could easily be done.

The MCMC analysis of this factor model involved a range of experiments with Monte
Carlo sample sizes and starting values, and MCMC diagnostics. Our summary numeri-
cal and graphical inferences are based on over 20,000 simulations of posteriors, generated
following a 5,000 burn-in period. We subsample a set of 1,000 spaced 20 apart so as to
break correlations and record resulting samples for graphical display purposes. Summary
graphs appear in Figures 5 to 9 inclusive. First, Figure 5 graphs estimated trajectories
of conditional variances of the currencies { the posterior means of the diagonal elements
of �t = XHtX +	: Note the similarity with the trajectories from the more adaptive of
the discount analyses in Figure 3, as is to be expected. Next, Figure 7 provides histogram
approximations to marginal posteriors for the elements of X: Note that the �rst column
gives positive weight to all but CAD, representing the relative strength of the US dollar to
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the currencies of the EU and Japan. The CAD has almost no weight here, as to be expected
as its value in international markets is most strongly determined by the US dollar alone,
and the relative values of the weights on the EU countries naturally reect their relative
strengths. The loadings on the second factor are very small and, if non-negligible, negative,
apart from Japan with the �xed unit weight. This is therefore largely the Japan:US factor,
with some residual contrast between Japan and the rest of the currencies. Similar comments
applies to the third factor which essentially represents the Canadian:US rates, and in which
the main residual contrast is that reecting the di�erential status of Britain to the rest
of the EU, presumably driven in part by the departure of Britain from the exchange rate
control system. The graphs in Figure 6 display the trajectories of approximate posterior
means for the three factor processes ftj and their conditional standard deviations

p
htj : The

main points to note here are the appearance of peaks in the volatility processes consistent
with positive correlations in volatility across the three factors, and the relative scales of
volatility: all three factors are evidently contributing measurably to overall variability in
the multiple series, though the factors appear to be roughly ordered in terms of decreasing
overall levels. Again, this is consistent with expectations from a substantive viewpoint.

Figures 8 and 9 summarise marginal posterior inferences for key �xed model parameters,
all in boxplot form. Figures 8 displays boxplots of posterior margins as follows. the upper
left frame displays margins for the elements of the conditional mean �: The upper right
frame displays margins for the diagonal elements

p
 j of the residual variance matrix 	:

The lower frame displays margins for 100 j=�
2
tj where �

2
tj is the j

th diagonal element of �t:
These ratios measure percent total variation in each of the currency series that is contributed
by the idiosyncratic terms { generally non-negligible, and appreciable for both GBP and
ESP.

Similar displays appear in Figure 9 for elements of the parameters �;� and U in the
VAR(1) volatility model. Speci�cally, the upper left frame displays margins for the three
parameters exp(�j=2) where the �j are the entries of the stationary mean � of the VAR(1)
model. Converting from the log-volatility to volatility scales, these scale factors exp(�j=2)
represent the standard deviations of the implied stationary distribution, i.e., base levels of
conditional variation in the three factor processes. The rough ordering of factors according
to marginal variability is clear here. The upper right frame displays margins for the AR
parameters �j in �; indicating that all three are obviously very close to, but less than, unity,
and so representing high persistence in the volatility processes. The approximate posterior
means for the three �j are 0.97, 0.98 and 0.98, respectively. The lower frame displays
margins for the standard deviations and correlations of matrix W; the marginal variance
matrix in the VAR(1) volatility model. The earlier noted positive correlations between factor
processes are indicated here. Related numerical summaries provide approximate posterior
means of the variances in W as 0.50, 0.86 and 0.82, respectively, while the corresponding
posterior means for the variances in the innovations matrix U are 0.027, 0.034 and 0.025,
respectively.
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4.3 Comparison of Models with Constrained Portfolio Allocations

Model comparisons are made with explicit focus on one-step forecast accuracy in the context
of dynamic portfolio allocations, essentially following the perspective of Quintana (1992),
Putnam and Quintana (1994), and Quintana and Putnam (1996). A similar perspective
is adopted in Polson and Tew (1997) though with very di�erent models. Our comparisons
are based on posterior distributions from the models �tted to the entire time series, so
that they do not represent real-time, sequential forecasts, but nevertheless do provide a
coherent basis for model comparisons with a utility function directly measuring real-world
performance in terms of cumulative �nancial return. In this section, we adopt traditional
portfolios in which the total sum invested at each time point is �xed, focusing mainly on
questions about how the discount and factor models di�er in terms of resulting cumulative
returns.

At each time point t� 1; we suppose that an existing investment in the various curren-
cies under study may be reallocated according to a portfolio at for the next time point. The
elements of at are the $US amounts invested in the corresponding currency. For this com-
parative analysis, we assume no transaction costs and that we may freely reallocate dollars
instantaneously to long or short positions across the currencies, subject only a0t1 = 1: The
realised portfolio return at time t is the $US amount rt = a0tyt; and models may be com-
pared on the basis of cumulative returns over chosen time intervals. The portfolio allocation
decision problem involves the general Markowitz mean-variance optimisation, and we apply
this at each time point one-step ahead. In all models, the time t situation is summarised
through posterior one-step ahead means and variance matrices for yt; denoted here by gt
andGt: The decision context targets minimisation of the one-step ahead variance of returns
subject to speci�ed target means. For a speci�ed target mean return m; the one-step port-
folio at will be chosen to minimise the one-step ahead variance of returns a0tGtat subject to
constraints a0t1 = 1 and a0tgt = m: The well-known solution is

a
(m)
t = G�1

t (agt + b1)

where
a = 10G�1

t e and b = �g0tG
�1
t e

with
e = (1m� gt)=d and d = (10G�1

t 1)(g0tG
�1
t gt)� (10G�1

t gt)
2:

Compared to this are two other standard portfolio allocations: the target-independent
allocation derived at the boundary of the mean-variance e�cient frontier, namely

a
(me)
t = (10G�1

t gt)
�1G�1

t gt;

and the strictly risk-averse minimum variance portfolio

a
(mv)
t = (10G�1

t 1)�1G�1
t 1:

Figure 10 graphs the trajectories of cumulative returns over time based on these four
models in the frames in the �rst two rows. These four frames correspond to four di�erent

�xed investment strategies: the two risk-averse strategies a
(mv)
t and a

(me)
t and then two
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strategies a
(m)
t with daily target returns m = 0:00016 and m = 0:00028 respectively. These

appear in the order (top left) a
(mv)
t ; (top right) a

(me)
t ; (center left) a

(0:00016)
t and (center

right) a
(0:00028)
t : After a period in which the model behave very similarly in the determination

of portfolio allocations, the changes in volatility in 1992 are more appropriately captured
by the most adaptive discount model (� = 0:9) and the dynamic factor model. These
two models proceed to generally dominate the others in terms of cumulative returns under
the practically relevant strategies. The factor model clearly wins across all cases in this
time window. The trajectories of optimal portfolio weights for the target-independent case

appear in Figure 11. This displays the changing values of a
(me)
t from the three Bayesian

discount analyses and also from the dynamic factor model analysis. The weights are graphed
as percentages, i.e., simply 100 times their actual values, as they are constrained to sum
to unity. It is interesting to note that, though the very adaptive discount model produces
cumulative returns that closely shadow the factor model, the weights in the factor model are
relatively much more stable over time. The discount model adapts the weights quite widely
as it permits very marked patterns of change in the full variance matrix of returns, whereas
the factor model assigns changes in observed volatilities to appropriate model components
and so induces more stability in weight trajectories.

4.4 Investment Performance with Unconstrained Portfolios

We now move to a further portfolio allocation study that is focused on comparison of port-
folio strategies rather than on comparison of models. Here we consider allocations in which
the portfolios are completely unconstrained; that is, we remove the unit sum constraint on
the allocation vector at: This means that we may choose each allocation without regard to
resources, permitting arbitrary long or short positions across the currencies. This typi�es
the practical working context in global investments in large �nancial institutions, and is in
line with recent work with discount models (Quintana and Putnam 1996).

Under an unconstrained strategy, the optimum allocation at time t is given by

a
(�m)
t = aG�1

t gt

where
a = m=g0tG

�1
t gt:

The third row of graphs in Figure 10 displays the cumulative returns trajectories using the

optimal portfolio weights a
(�m)
t from this analysis, to be compared to the earlier �gures

using the constrained portfolios. The two graphs provide displays under portfolios (lower

left) a
(�0:00016)
t and (lower right) a

(�0:00028)
t : Now we see that the dynamic factor model

is very clearly dominant, achieving cumulative returns that are about twice as large as
those of the most competitive discount model, and, by the way, also exceeding those of
the constrained models. The response following the major structural changes in volatility
at the end of 1992 leads to a marked swing in portfolio structure that the unconstrained
allocations capitalise on in a major way in the factor model, with a persistent e�ect on
cumulative returns thereafter.

The trajectories of optimal, unconstrained portfolio weights for the case m = 0:00016
are graphed in Figure 13. The values plotted are 100 times the actual weights divided
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by the total 10a
(�m)
t at each time point, indicating the relative weight of each currency

in the portfolio at each time. This provides a direct comparison with the corresponding
trajectories of weights from the unit-sum constrained allocation appearing in Figure 12,
where the actual and relative values coincide. The impact of the Britain's withdrawal
from the EU exchange rate agreement, in late 1992, and the resulting marked increases in
volatility and the portfolio's response, are very clear in Figures 13 and 10. The allocations
shift swiftly and quite radically in extent to short positions on Sterling and the strongly
associate Peseta, while simultaneously adopting radically long positions on the strong Mark
and Yen. At the same time, the total investment dropped markedly; the major changes

in volatility led to the anticipation of high levels of increased risk, and the total 10a
(�m)
t

invested in the market decreased radically as a result. Figure 14 graphs the time trajectory

of the total 10a
(�m)
t ; indicating relative stability in the uctuations around a level of unity,

but with marked swings up and down in periods of low and high volatility, respectively.

5 Concluding Comments

Our investigations indicate the feasibility of formal Bayesian analysis of structured dynamic
factor models. The analysis is accessible computationally with nowadays moderate compu-
tational resources, and our empirical studies suggest that the analysis will be manageable
with 20-30 dimensional time series and several factors. We are currently investigating more
extensive applications in short-term forecasting and on-line portfolio allocations with higher
dimensional models for longer-term exchange rate futures. The example here is suggestive of
potential bene�ts, and supportive of the view that exploiting systematic volatility patterns
via factor structuring may yield very substantial improvements in short-term forecasting
and decision making in dynamic portfolio allocation, especially in the unconstrained opti-
misation as illustrated in the �nal row of graphs in Figure 10. In the case of constrained
portfolio optimisations, the over-adaptive discounting method does reasonably well at times,
though is clearly eventually dominated in terms of cumulative return trajectories by the fac-
tor model. We conjecture that, in studies of forecasting and portfolio allocation with longer
term horizons, such as 30-day exchange rate futures, and in extended models that incorpo-
rate dynamic regression components, the dominance of the factor modelling approach will
be even clearer. This is the subject of current and near-future research.

The dynamic factor models illustrated are amenable to direct implementation using our
customised MCMC methods with the minimal/reference prior speci�cations we have used
here. Our use of the variance discounting method on a reserved initial section of the data to
provide input to informative priors is important in identifying \ball-park" scales for the U
matrix of the VAR(1) SV model. Though not pursued here, other aspects of such prelimi-
nary analyses may be used to determine informative priors for other elements of the factor
model. The established discounting methods are, relative to dynamic factor models, trivial
to implement in the current context, a fact that is important in using discount methods
to specify partial prior structure in the dynamic models. Our empirical �ndings indicate
that, not surprisingly with this kind of data, moderately adaptive discount methods fare
well in time of slow change in volatility levels and patterns, but are relatively uncompet-
itive in cases of more marked structural change. This is to be expected. Looking ahead,
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models and approaches that attempt to simplify the process of factor modelling, perhaps
somehow integrating elements and concepts of variance matrix discounting into a speci�ed
factor structure, may be attractive from a computational/implementation viewpoint. We
are currently investigating such a synthesis of approaches. In the factor model context per
se, there are several relevant technical and modelling issues to be explored. These include
questions of choices about the numbers of factors, and about the ordering of time series in
the context of the speci�c structure adopted for factor loadings. Model extensions under
investigation relax the assumptions of constancy of the factor loadings, and we anticipate
extensions to models in which the conditional mean is a dynamic regression, as is likely very
necessary for serious practical application. In the meantime, further study and empirical
assessments on time series with larger numbers of univariate components and larger num-
bers of factors are under investigation. Our experience to date leads us to believe that such
investigations will be every fruitful and support the preliminary conclusions reached in this
report about the potential utility of factor models.

Appendix

In each of the following subsections we detail the conditional posteriors for various param-
eters and latent variables in turn. At each step it is implicit that we are conditioning on
�xed values (previously simulated values) of all other variables. As noted in the text, fur-
ther technical details are available on request from the authors, as is Fortran software for
this implementation.

Sampling the conditional mean

The basic model (3) and the uniform prior for � immediately imply a multivariate normal
conditional posterior for � given the values of �t: This is easily sampled.

Sampling latent factors

The full conditional distribution of ft is given by

N(ftjAt(yt � �);Ht �AtQtA
0

t)

where Qt = XHtX
0 +	 and At = HtX

0Q�1
t : The ft are conditionally independent and

so sample values are drawn independently from this set of normal distributions for t =
1; 2 : : : ; n:

Sampling factor loadings

From the model, the conditional likelihood function for the factor loading matrix X isQn
t=1N(yt � �jXft;	): This is a standard form, log-quadratic in the uncertain elements

of X; and so combines with a normal or uniform reference prior to imply a multivariate
normal conditional posterior, which is easily sampled.
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Sampling idiosyncratic variances

The elements of 	 are conditionally independent with inverse gamma distributions. Let
gi =

Pn
t=1(yti � �i � z

0

ift)
2 where zi is the i

th row of X: Then  i has the inverse gamma
distribution with shape n=2 and scale gi=2; denoted by G( �1

i jn=2; gi=2):

Sampling the mean log-volatilities

Under a normal prior N(�jm0;M0); the conditional posterior is normal N(�jm;M) with

M�1 =M�1
0 +W�1 + (n� 1)(I� �)U�1(I� �)

and

Mm =M�1
0 m0 +W

�1�1 + (I� �)U�1
nX

t=2

(�t � ��t�1):

The case of a uniform reference prior is recovered by setting M�1
0 = 0:

Sampling the VAR coe�cients

The structure of the conditional posterior for �; and the resulting Metropolis-Hastings
strategy for simulation, is precisely as developed for component VAR models in a quite
di�erent context in West and Aguilar (1998) and Aguilar and West (1997). Writing t =
�t � �; note that the full conditional posterior density for � is proportional to

p(�)N(1j0;W)
nY

t=2

N(tj�t�1;U)

whereW = �W�+U is easily evaluated as a function of � andU:Write � = (�1; : : : ; �k)
0

for the diagonal of �; and E = diag(t�1): Then the conditional posterior may be written
as proportional to

p(�)c(�)N(�jb;B)

where

B�1 =
nX

t=2

E0U�1E and Bb =
nX

t=2

E0U�1t

and
c(�) = jWj�I=2exp(�trace(W�11

0

1)=2):

Under independent normal or uniform priors for the �j ; the full conditional posterior dis-
tribution for � is the multivariate normal N(�jb;B) truncated to the (0; 1) regions in
each dimension, and then multiplied by the factor c(�): This may be sampled by several
methods. We use a Metropolis Hastings algorithm that takes the truncated multivariate
normal component as proposal distribution. That is, given a \current" value of �; with
corresponding matrices � and W; we sample a \candidate" vector �� from this truncated
normal, compute the corresponding diagonal matrix �� and variance matrixW� such that
W� = ��W��� +U; then accept this new � vector with probability

minf1; c(��)=c(�)g:
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Sampling the VAR innovations variance matrix

Again, the structure of the conditional posterior for the innovations variance matrix U of
the VAR(1) volatility model is closely related to developments in a quite di�erent context
in West and Aguilar (1998) and Aguilar and West (1997). Again using centred volatilities
t = �t � � for each t; we have a full conditional posterior for U proportional to

p(U)a(U)jUj�(n�1)=2exp(�trace(U�1G))

where

G =
nX

t=2

(t ��t�1)(t ��t�1)
0

and
a(U) = jWj�1=2exp(�trace(W�11

0

1)=2)

withW = �W�+U: Under a speci�ed inverse Wishart prior W�1
r0 (UjR0); this posterior

density is proportional to
a(U)W�1

r (UjR)

where r = r0 + n� 1 and rR = r0R0 + (n� 1)G: We use this inverse Wishart distribution
as a proposal distribution in the Metropolis-Hastings algorithm. That is, given a \current"
value of U and correspondingW; we sample a \candidate" value U� from W�1

r (UjR); and
accept it with probability

minf1; a(U�)=a(U)g

where W� = �W��+U�.

Sampling the actual latent log-volatilities

Given currently imputed values for the full factor process ft over time t; we follow Kim,
Shephard and Chib (1998) in transforming each of the univariate time series of factor
elements into a non-Gaussian linear model form. Speci�cally, for each factor i and time t
de�ne zti = log(f2ti) and note that

zti = �ti + �ti

where the �ti terms are independent and distributed as log��21: In vector form for all k
factor series, we then have

zt = �t + �t

where �t = (�t1; : : : ; �tk)
0: Based on the current values of the zt; for each t; this provides

the set observation equations for the dynamic linear model with state equations

�t = �+�(�t�1 � �) + !t

for each t: This is a direct multivariate extension of the univariate approach in Kim, Shep-
hard and Chib (1998), whose ensuing analysis uses the now established approximation to
the distribution of the error terms �it as a speci�ed �nite mixture of normals (Shephard
1994b). The multivariate extension is immediate:
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� Introduce a set of indicator variables sti such that that sti identi�es the normal mixture
component for �ti:

� Conditional on these indicators, we have a multivariate dynamic linear model for
the sequence of log-volatility vectors. The forward-�ltering, backward-sampling al-
gorithm for state space models (Carter and Kohn 1994; Fr�uhwirth-Schnatter 1994;
West and Harrison 1997, chapter 15) now applies to directly simulate the full set of
vectors f�t; t = 1; : : : ; ng from the implied conditional posterior. (Note that, in more
elaborate models for the volatility processes, the alternative sampling method using
the simulation smoother of de Jong and Shephard (1995) may have computational
advantages not realised in this, the simplest VAR model.)

� Given these sampled values of the �t; the complete conditional multinomial posterior
probabilities over values of the indicators sit are easily computed, the indicators being
conditionally independent and so easily sampled.
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Figure 1: Exchange rate time series.
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Figure 2: Exchange rate returns.
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Figure 3: Conditional variances from discount analyses.
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Figure 5: Conditional variances from dynamic factor model.
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Figure 7: Posterior summaries for factor loadings X:
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Figure 10: Cumulative returns under di�erent dynamic portfolios.
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t for the mean-e�cient portfolio: all models.
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Figure 12: Dynamic weights a
(�m)
t withm = 0:00016 in the unit-sum, constrained portfolios:

factor model.
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Figure 13: Dynamic weights a
(�m)
t with m = 0:00016 in the unconstrained portfolios: factor

model. The weights are graphed here as percentages of the totals 10a
(�m)
t at each time.
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