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ABSTRACT

The VA management services department invests considerably in the col-
lection and assessment of data to inform on hospital and care-area specific
levels of quality of care. Resulting time series of quality monitors provide
information relevant to evaluating patterns of variability in hospital-specific
quality of care over time and across care areas, and to compare and assess
differences across hospitals. In collaboration with the VA management ser-
vices group we have developed various models for evaluating such patterns
of dependencies and combining data across the VA hospital system. This
paper provides a brief overview of resulting models, some summary exam-
ples on three monitor time series, and discussion of data, modelling and
inference issues. This work introduces new models for multivariate non-
Gaussian time series. The framework combines cross-sectional, hierarchical
models of the population of hospitals with time series structure to allow and
measure time-variations in the associated hierarchical model parameters.
In the VA study, the within-year components of the models describe pat-
terns of heterogeneity across the population of hospitals and relationships
among several such monitors, while the time series components describe
patterns of variability through time in hospital-specific effects and their re-
lationships across quality monitors. Additional model components isolate
unpredictable aspects of variability in quality monitor outcomes, by hos-
pital and care areas. We discuss model assessment, residual analysis and
MCMC algorithms developed to fit these models, which will be of interest
in related applications in other socio-economic areas.

1 Introduction

The performance monitoring system of the US Department of Veterans Af-
fairs (VA) collects, reports and analyses data from over 170 hospitals. Policy
interests lie in accurately estimating measures of hospital-level performance
in key areas of health care provision, and in assessing changes over time
in such measures to monitor impact of internal policy changes. Ultimately,
these issues are related to the development of management and economic
incentives designed to encourage and promote care provision at sustained
and acceptable levels. As described in Burgess et al (1996), the quality
monitor data are compiled annually and encompass a range of inpatient,
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outpatient and long term care activities at each of the VA medical centers.
Each hospital records data on the total numbers of individuals who were ex-
posed to a specific and well-defined outcome in each monitor area, and the
number for whom that outcome occurred. There is a related covariate, re-
ferred to as the DRG predictor, based on exogenous information providing
some correction for hospital/monitor specific case-mix and characteristics
of patient population profiles. Further details appear in Burgess, Chris-
tiansen, Michalak and Morris (1996 and in related unpublished work), who
discuss aspects of data analysis and hierarchical modelling (Christiansen
and Morris 1997) in this context. Our study is concerned with evaluating

e patterns of variability over time, in hospital-monitor and area-specific
performance measures across a selection of quality monitors, and

e patterns of dependencies between sets of monitors, in addition to and
in combination with assessment of time-variations.

Christiansen and Morris have developed a variety of Bayesian hierarchical
models for the observed outcomes, including regressions on the DRG pre-
dictor and hospital-specific parameters drawn from a hospital population
prior (see references above). From this basis, we explore multiple-monitor
time series models to address the above key questions. We focus on three
specific monitors introduced in Section 2 where we provide some basic data
description and perspective. Section 3 reviews our new models; these are
multiple monitor, binomial/logit models in which hospital-specific random
effects are related through time via a multivariate time series model. In
addition to systematic patterns of variation over time, the models include
components of unpredictable variability in outcome probabilities. In Section
4 we describe summary inferences for all hospitals and monitors, investi-
gation of aspects of model fit, and examples of additional possible uses of
the models. We conclude with summary comments about the study, and
an appendix briefly summaries model theory and computation.

Our work relates closely to what are now essentially standard approaches
in health care outcomes research and institutional comparisons — hierarchi-
cal Bayesian models that allow for various components of heterogeneity
involving nested random effects. A recent contribution and overview ap-
pears in Normand et al (1997), for example. Our work is novel in several
methodological respects, and draws on developments in Cargnoni, Miiller
and West (1997) related to both latent time series structure and computa-
tional algorithms. The methods will prove useful to workers dealing with
longitudinal data structures in various socio-economic fields. Finally, more
extensive details on the data analysis and modelling summarised here ap-
pears in an on-line report by West and Aguilar (1997).
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FIGURE 1. Outcome proportions on all three monitors and eight years graphed
versus number of patients (upper row) and DRG-based predicted proportions
(lower row). The lines in the upper row indicate approximate 99% intervals based
on a common binomial distribution for each monitor.

2 Exploratory Data Analysis

The outcomes in the monitor areas represent annual numbers of individuals
under a binary classification in an area of basic medical or psychiatric
health care. The response recorded is the number of individuals who failed
to return for an outpatient visit within 30 days of discharge out of the
total number of annual discharges. Monitor M20 measures outcomes for
General Psychiatric, M21 for Substance Abuse Psychiatric, and M22 for
Basic Medical and Surgical care. Low return rates are indicative of low
“quality” in these specific care areas. The data here covers years 1988 to
1995 for 152 hospitals having complete records.

Figure 1 displays the raw data on the three monitors separately, but com-
bined over all eight years. There are 8 x 152 = 1216 observations per frame
for the 8 years of data on I = 152 hospitals. The graphs plot the observed
proportions of successes in each monitor against the total numbers of pa-
tients in each case, and then against the DRG-based predicted proportions.
Super-imposed on each graph in the first row are approximate 99% inter-
vals under marginal binomial distributions that assume “success” proba-
bilities fixed at the overall average proportions for each monitor. Many
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observations lie outside these bands indicating considerable levels of over-
dispersion relative to binomial models. This extra-binomial variation is to
be explained by models that describe how the individual probabilities vary
across hospitals and across years, using a combination of regression on the
DRG predictor and random effects.

There is an overall suggestion of decreasing levels of observed responses
across the eight years (not displayed here; see Figure 4 of West and Aguilar
1997). This is most marked in M20 and, to a lesser extent M21. The average
DRG values do not show decreasing patterns indicating that this is very
likely a hospital system-wide feature, perhaps due to VA policy and/or
general improvements in care provision over the years. Thus, we need to
consider models where the overall levels of outcome responses across all
hospitals and the DRG variable vary year to year.

3 Multivariate Random Effects Time Series Model

Consider monitors j = 1,2,3 in each year ¢ = 1,...,8 and for hospitals
i = 1,...,1 = 152. On the three monitors, we have observed outcomes
Zit = (Zi1t, Zi2t, 2i3t)', representing three conditionally independent bino-
mial responses out of totals n;; = (ni¢, N2, Nige)' and with “success”
probabilities p;;: = (pi1t, Pizt, Pist)’, respectively. The joint density is

3

p(zit |0, Pit) = HBm(Zijt|nijt,Pijt)- (3.1)
j=1

The p;;; are hospital-specific parameters to be estimated, and the totals
n;; are assumed uninformative about p;j;. Our models for the p;;; combine
within-year random effects/hierarchical components with multivariate time
series structure, now detailed.

3.1 Regression and hierarchical/random effects structure

For hospital ¢, the DRG-based predicted proportion of “successes” d;;;
is supposed to predict p;;; on the basis of system-wide studies of pa-
tient case-mix profiles and historical data. Following Burgess et al (1996)
we adopt a logistic regression as follows. Let p;;: = log(piji/(1 — piji))
and z7; = log(diji/(niji — dijt)), and define x5, = z7;;, — 27, where
z¥;, is the arithmetic mean of the z7;, across all hospitals 1 = 1,..., 1.
The logistic regression is p;j: = Bojt + Bi1jt%ij¢ Where the regression pa-
rameters [y;; and (3;;; are unrestricted. In terms of the vectors p; =
(ives pize, pize)'s Bor = (Bowe, Bozt, Bozt)'s Biy = (Bries Biae, Pi3t)', and ma-
trices X;; = diag(x;1¢, Tior, Tist), we have

My = @it + XitByy + Vit (3.2)
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where QG = (ailt,amt,aigt)' and Vit = (Vilt,’/i2t;’/i3t)l- For each moni-
tor j and year t, the quantity a;j; is an absolute hospital-specific random
effect representing systematic variability that is related over time within
each hospital. The v;;; represent residual, unpredictable variability, inde-
pendent over time and across hospitals and monitors. The model assumes
viy ~ N(v|0,V) with monitor-specific variances v7,v3 and v3 on the di-
agonal of the matrix V, admitting cross-monitor dependencies through the
covariances in V.

Key to assessing quality levels are the relative random effects €;;; =
aijt — Bojt, 1.e., hospital-specific deviations from the population level B ;¢.
In terms of these quantities,

Bir = Bor + XitByy + €ir + Vi (3.3)

where €;; = (€i1t, €iat, €:3¢)'. This class of models accounts for variability
over time in the hospital/monitor parameters 3, and (3;, as well as the
random effects a;; that together will account for the high levels of observed
extra-binomial variability.

The parameter (3, represents the hospital system-wide average in cor-
rected responses on the logit scale. Management policies across the VA
system, and improvements (or otherwise) in care provision impacting all
hospitals in similar ways contribute to changes in 3,, from year to year.
We do not currently impose structure on the hospital/monitor popula-
tion parameters 3, and B3;,. Predictive models, by contrast, would require
evaluation of expert opinion about the reasons behind any inferred time
evolution and the use of this in phrasing appropriate model extensions.

The €;; terms represent hospital-specific departures from the system-wide
underlying level B;,. In Section 3.2 we model time series dependence over
the years in the €;; quantities to explain the structured variability over time.
However, time series models introduce partial stochastic constraints so that
some of the evident variation in the logit parameters p,;, will be unexplained
by the regression and hospital-specific random effects €;;. Hence the need
for the residual random components v;;.

3.2 Time series structure of random effects

Time series structure in the hospital-specific €;; is modelled via a vector
autoregression of order one — or VAR(1) model. This is a natural, inter-
pretable model incorporating the view that there should be stability in the
€;x values within each hospital over such a short number of years. This
stability represents true quality levels and any changes beyond this reflect
unexplained random variations year to year due to the characteristics of
the patient sample in each hospital. With such a short time span, more
complex models are largely untenable. Moreover, the VAR(1) model has
the desirable consequence that the annual marginal distributions of the



1. Hospital quality monitor time series 6

hospital-specific effects are the same across years. The model structure is
€ir = Pe; 11+ wit (3.4)

over years t and independently across hospitals ¢ within each year. Here ® =
diag(é1, ¢2, ¢3) is the diagonal matrix of monitor-specific autoregressive
coefficients. The w;; terms are innovations vectors, with w;; ~ N(w;|0,U)
conditionally independent over time. In any year ¢, we have the implied
marginal distribution €; ~ N(€;|0, W); the within-year relative random
effects are a random sample from a zero-mean normal distribution. This
is consistent with a view of no global changes in the hospital population
makeup, i.e., with variability in expected levels being essentially constant
over the short period of years once the DRG predictor and any system-wide
changes are accounted for through 3,, and B,, respectively. Changes in
relative performance of hospitals can therefore be assessed across years.

It follows that W satisfies W = ®W® + U, so that correlation patterns
in U and W, depend on the autoregressive parameters. In particular, for
each monitor pair j, h we have covariance elements W, = Uj, /(1 —¢;¢n).
The matrix W represents the variability in the systematic components of
corrected quality levels across the entire hospital population, the related
variability in changes in relative quality levels year-to-year, and the de-
pendencies between such quality measures across the three monitors. The
autoregressive parameters ¢; will generally be close to one, lying in part
of stationary region 0 < ¢; < 1. Large values of ¢; imply high positive
correlations between the €;; in a given hospital over the years. This is con-
sistent with the view that a hospital that is generally “good” in a specific
monitor/care in one year will have a high probability of remaining “good”
the next year, and vice versa.

In terms of the absolute random effects a;; we have a centred VAR(1)
model

air = By + P(i—1 — Byy—1) + wit (3.5)

for ¢ > 1, with yearly margins N(at|By;, W). Another feature to note
concerns the time series structure of the combined hospital-specific random
effects €;; + v;; above. The addition of the residual/noise terms v;; to the
VAR(1) process €;; modifies the correlation structure giving a VARMA(1,1)
model with N(€; + v4|0, W 4+ V) yearly margins. Note that the overall
levels of random effects variability, and the associated overall measures of
cross-monitor dependencies, are represented through W + V. Our current
model leaves V and W unrelated a priori, but the framework obviously
permits the assessment of potential similarities in posterior inferences.
Finally, we assume constant values of ® and U in the time series com-
ponents. This assumption could be relaxed to allow for differing variances
across hospitals and/or years as may be desirable for other applications.
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3.8  Prior distributions

Inference is based on posterior distributions for all model parameters and
random effects under essentially standard reference/uninformative priors
for: (a) the annual population parameters 3,, and 3;;, (b) the population
residual variance matrix V, and (c) the variance-covariance matrix U; the
prior is completed with independent uniform priors for the autoregressive
parameters ¢; on (0,1).

4 Results for the VA Data

Various marginal posterior distributions from the multiple monitor analysis
are reported and discussed here. First, Figure 2 provides summaries of
the marginal posteriors for correlations and standard deviations in W, V
and W + V. Here, and below, boxplots are centred at posterior medians,
drawn out to posterior quartiles, and have notches at points 1.5 times the
interquartile range beyond the edges of each box. These graphs indicate low
overall correlations in each matrix. We focus on the key matrix W +V that
measures within-year, cross-monitor structure. Denoting posterior means
by “hats” and writing E for the column eigenvector matrix of W +V, we
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FIGURE 2. Posterior summaries for AR coefficients ¢ and standard deviations
and correlations of V, W and V + W.
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FIGURE 3. Posterior summaries for Bp2: and Bi12: (Monitor 22) over the years.

have
. . 0.417 0.044 0.009 0.961 -0.275 -0.015
W+V=]0.044 0271 0.014 |, E=| 0.273 0.957 —0.097
0.009 0.014 0.136 0.041 0.089 0.995

This indicates correlations between M20 and M21 of around 0.13, between
M20 and M22 of 0.04 and between M21 and M22 of 0.07, so supporting the
suggestion that the correlation between M20 and M21 might be higher than
any other combination, in view of the care areas of origination. The eigen-
values of W+V are roughly 0.43,0.26 and 0.13, so the principal components
explain roughly 52%, 32% and 16% of variation; each of the eigenvectors
is therefore relevant, and no data reduction seems appropriate. Posterior
uncertainty about the variance matrices, and the eigen-structure, does not
materially impact these qualitative conclusions. To exemplify this, the full
posterior sample produces the following approximate posterior means and
95% intervals for the three eigenvalues of W + V : 0.42 (0.38-0.48), 0.25
(0.22-0.29), 0.13 (0.11-0.16), closely comparable to the estimates quoted
above. Evidently, the eigenvector matrix E is dominated by the diagonal
terms, and all three are close to unity. Note that the eigenvector matrix
would be the identity were the monitors uncorrelated. The first column rep-
resents an average of M20 and M21 dominated by the M20 psychiatric care
component. The second column represents a contrast between M20 and
M21 and the final column almost wholly represents M22 alone, and to the
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FIGURE 4. Posterior summaries for hospital-specific random effects €;;: on Mon-
itor 22 over years t in hospitals ¢ = 2, 41 and 92.
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extent that the coefficients for M20 and M21 are non-ignorable, contrasts
the two psychiatric care monitors with the general medical. The levels of
correlation structure are clearly low for these specific monitors, perhaps
surprisingly so for the first two in closely related care areas.

The lower right frame of Figure 2 provide summaries of the marginal pos-
teriors for the three autoregressive parameters in ®. These indicate highly
significant dependence structures in each case, with inferred values of ¢ in
the ranges 0.7 — 0.8 for M20, 0.6 — 0.75 for M21 and 0.8 — 0.9 for M22. The
dependence in the random effects time series is high in each case, but there
are apparent differences between M22 and the other two monitors, perhaps
associated different health care areas.

There are meaningful differences in the §y parameters across the eight
years in each of the three monitors. The main feature is a general decreas-
ing trend in By over the years for all three monitors, more markedly so for
Monitors M20 and M21. This corresponds to generally decreased probabil-
ities of return for out-patient visits within 30 days of discharge, and the
apparent similarities between Monitors M20 and M21 are consistent again
with the two being related areas of care. Posterior distributions for Bys;
and fi3; across years t are displayed in Figure 3. For this monitor, M22,
the level Bys; decreases over the years and levels off in 1993-4, but then
exhibits an abrupt increase in 1995 that requires interpretation from VA
personnel. The DRG regression coefficients (13, are apparently stable over
the years. They do exhibit real differences across monitors (not graphed),
although the limited ranges of the DRG predictor variable limit the impact
of this regression term on overall conclusions.

Posterior distributions for the variances v; of the residual components
v;j; indicate non-negligible values in comparison with the posteriors for the
w;. The v; parameters are in the ranges of 0.3 —0.37 for M20, 0.27—0.33 for
M21 and 0.12 — 0.16 for M22. In terms of the variance ratio v} /(v + w?),
the €;;; residuals contribute, very roughly, about 20 — 25% variation for
M20, about 30-35% for M21, but only about 15% for M22.

Figure 4 displays posterior distributions for the relative random effects
€;;¢ for three arbitrarily selected hospitals, those with station numbers 2,
41 and 92 for Monitor M22. Figure 5 displays five randomly chosen sets of
posterior sampled values for these effects to give some idea of joint posterior
variability. These summaries and examples highlight the kinds of patterns
of variation exhibited by the random effects within individual hospitals —
the plots indicate the smooth, systematic dependence structure over time
that is naturally expected. Hospitals that have tended to be below the
population norm in terms of its proportions of outcomes in recent years
will be expected to maintain its below average position this year, so that
the € parameters of this hospital will tend to be of the same sign. Hospitals
whose effects change sign at some point might be flagged as “interesting”
cases for follow-up study.
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4.1  Residual structure analysis

The model implies approximate normality of the standardised data residu-
als e;j+ = (Yijt — tije)/Sije where, y;j¢ is the logit of the observed proportion
zijt/Mije and s the corresponding approximate standard deviation. Pos-
terior samples of the p;j; lead to posterior samples of the e;;; that can be
graphed to explore aspects of model fit, and misfit. Figure 6 illustrates this
for M21 in 1995. The first four frames display one such sample of residuals—
plotted against hospital number, against the n;, in a normal quantile plot,

Std. Res

Std Res

b1 E 1 0 1
Index Quantiles of Standard Normal

0 200 400 600 800 1000 1200 1400 -4 2 0
Sample Size Std. Res

Posterior Order StgliSIiCS of Residuaés
L |
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Quantiles of Standard Normal Posterior Means of Residual Order Statistics

FIGURE 6. Draw from the posterior distribution of the observation residuals e;;¢
across hospitals in M21 1995 (the four upper graphs). Posterior means of the
ordered residuals e;;: (the lower two graphs).
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and finally a histogram with a normal density superimposed. The general
impression is that of good conformity to normality, and this is repeated
across many other samples of residuals, providing a measure of assurance
of adequacy of this modelling assumption. The final two frames provide
more global assessments. Here we explore the posterior means of the or-
dered observation residuals across all hospitals for M21 in 1995; in terms of
a normal quantile plot with approximate 95% posterior intervals marked,
and in terms of a histogram with the normal density superimposed. Again,
adequacy of the normality assumption is indicated.

4.2 Summary Inferences for Monitor M21 in 1995

To illustrate additional uses of the model, we focus on M21 in 1995. Some
summary posterior inferences appear in Figure 7, where a few specific hos-
pitals are highlighted (with intervals drawn as dashed lines). Figure 7(a)
displays approximate 95% intervals for the actual outcome probabilities
Dijt, ordering hospitals by posterior medians. Interval widths reflect pos-
terior uncertainty which is a decreasing function of sample size. Hospitals
with low n;;; have wider intervals— hospitals 66, 86 and 114, for example.
Figure 7(c) displays corresponding intervals for the €;;; + v;j:. The “low”
hospitals have random effects lower than average, indicating that the model
has adapted to the extreme observations. Adaptation is constrained by the
model form and also by the the high values of the DRG predictor. There is
a general increasing trend in the random effects consistent with the order-
ing by outcome probabilities, though the pattern is not monotonic as the
probabilities include the effects of the DRG predictor whereas the €;;; +v;;¢
measure purely relative performance levels.

Figure 7(b) displays 95% posterior intervals for the ranks of the hospitals
according to the p;;;, and Figure 7(d) the intervals for ranks of the €; ;. +v;;:.
Evidently, the four or five hospitals with the highest (lowest) estimated out-
come probabilities have very high (low) ranks, indicating that their true
outcome probabilities are very likely to be among the largest (smallest)
few across the system. Note that ranks based on p;;; summarise absolute
performance, impacted by patient-mix and other confounding factors, and
ranks based on €;;; 4+ v;;; represent relative quality levels once these factors
are accounted for via the model; the latter provide a firmer basis for as-
sessing relative performance due to hospital-specific policies and practices.
This is evident in the cases of hospitals 66, 86 and 114 noted above, for
which appropriately lower rankings are indicated in Figure 7(d) than in the
“unadjusted” rankings in Figure 7(b). Even then, there is high uncertainty
about rankings for most hospitals, not only those with small sample sizes,
reflecting the inherent difficulties in ranking now well understood in this
and other areas (e.g., Normand et al 1997).
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5 Summary Comments

We have presented a new class of multiple monitor, hierarchical random
effects time series models to evaluate patterns of dependencies in series of
annual measures of health care quality in the VA hospital system. A crit-
ical feature of our work has been the identification of several components
of variability underlying within-year variation and across-year changes in
observed quality levels. We split the hospital-specific variation in into two
components: a partially systematic and positively dependent VAR, compo-
nent €;, and a purely unpredictable component ;. The latter component is
non-negligible and contributes between 15-30% of the total random effects
variance on the logit scale. Lower contributions in general medical discharge
monitor than either of the psychiatric monitors. Hence hospital-specific
levels of M22 are more stable over time and hence more predictable. Our
multiple monitor time series models isolate changes over time and depen-
dencies among such changes in the hospital-specific random effects across
the three monitors. Though dependencies across monitors exist, they are
apparently quite small. Summary graphs of posterior inferences for spe-
cific monitor:year choices provide useful insight into the distribution of
outcome probabilities across the hospital system, about relative levels of
performance, and about changes over time in such levels. There are evident
changes in system-wide levels 3,, that require consideration and interpre-
tation though such is beyond the data-analytic scope of our study. Display
and assessment of posterior samples of model components provide insight
in aspects of model fit and underpin the reported posterior inferences.

It should be clear that the models and computational methods (briefly
detailed in the appendix below) may be applied in other contexts, and that
the basic binomial sampling model may be replaced by other non-Gaussian
forms as context demands. We expect that the work will be developed in
such ways and that the models will find use in various other applications
in the socio-economic arena.
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Appendix: Model Theory and Computation

The full joint posteriors for all quantities {V, U, ®} and {By,, B1s, Ci,t, i }
for all ¢ was simulated via customised MCMC methods. The structure is re-
lated to that in Cargnoni, Miiller and West (1997), although the methods
involve substantial novelty as we are analysing new models. Results re-
ported are based on a correlation-breaking subsample of 5,000 draws from
a long chain of 100,000 iterates. The collection of conditional posteriors is
briefly summarised here. Some are simulated easily, and are detailed with-
out further comment; others require Metropolis-Hastings steps, which are
noted as needed. By way of notation, for any set of parameters £, write
¢~ for the remaining parameters combined with the full data set Z. The
conditionals are as follows.

e For the 3,, we have conditional posteriors N (8, |bo1, W/I) and, for
t > 1, N(By.|bot, U/I) where

I I
b01 = Z all/l and b()t = Z{alt — 'I>(ai7t_1 — IBO,t—l)}/['
=1 =1

e For the 3,, we have conditionals N(3,|b1:, B1;) where

I I
Bi: = B ZX;tV_l(uit — ;) and By, = ZX;tV_IXit-
=1 =1

e For V we have the conditional inverse Wishart Wi(V~"|81, H) where
I 8
H=3" 1> Vit

e For U™! we have conditional density
p(U™ {ei}, @) o a(U)Wi(U' |71, G)

with G = 320 3% (€ir— Peis_1)(€ir — Peiy_ 1) and W = W +
U. With the inverse Wishart component as a Metropolis-Hastings
proposal distribution, a candidate value U* has acceptance probabil-
ity min{1,a(U*)/a(U)} where a(U) = [W|1/2exp(—tr(W™1A)/2)
and A = Efil €1€ .

e For & we have conditional posterior

8
p(®|{€i},U) o< p(@)N (€ |0, W) [ N(eir|®ei -1, U)

t=2

where W = ®W® 4 U. Write ¢ = (¢1, ¢2, ¢3)" for the diagonal
of ®, and E = diag(e;+—1). Then the density is proportional to
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p(®)c(®)N(¢|f, F) where £ = FY_ S E'U 'e; and F~! =
25:1 Ztg:2 E'U'E. A Metropolis-Hastings step generates a candi-

date ®* from the truncated multivariate normal here, and accepts it
with probability min{1, ¢(®*)/c(®)} where

c(®) = [W| ! exp(—tr (W A)/2)
with A = 32 €€}, and W = 8Wa + U.

The conditional for the a;; is complicated but easily structured and
sampled with dynamic linear modelling ideas. Write y;; for the vector
of logit transforms of the observed outcome proportions. Then, for
each t,

yit = i +ny with n, ~ N(n;]0,V +S;),
oy = B+ Plor 1 — IBO,tfl) + wi

where ¥, = yit — X3y, and Sy = diag(sii¢, Size, Sizt) is the diagonal
matrix of approximate data variances in the normal-logit model. This
is a multivariate dynamic linear model with known variance matri-
ces and state vector sequence a;;. Standard results for simulation in
DLMs now apply, as in West and Harrison (1997, chapter 15).

For 1 we have p(p i, 7)o p(zilou, i )p(1ase ) where the
likelihood function p(z;;|n;, @) is the product of the three binomial-
logit functions, and p;,|p;; ~ N(pi i + XiBq4, V). A Metropolis-
Hastings step generates a candidate p}, from the posterior based
on the normal-logit approximation to the likelihood function. This
delivers the proposal density p;,|yit ~ N(p;|mit, Qir) where

Qi = (V' +8,)™" and my = Qi (V™' (i + XitB1,) + Si yae)-

The acceptance probability is min{1, a(u},)/a(p,,)} where a(-) is the
ratio of the exact binomial to the approximate normal-logit likelihood.



1. Hospital quality monitor time series 17
References

Burgess, J.F., Christiansen, C.L., Michalak, S.E., and Morris, C.N. (1996)
Risk adjustment and economic incentives in identifying extremes us-
ing hierarchical models: A profiling application using hospital mon-

itors, Manuscript, Management Science Group, U S Department of
Veterans Affairs, Bedford MA.

Cargnoni, C., Miiller, P., and West, M. (1997) Bayesian forecasting of multi-
nomial time series through conditionally Gaussian dynamic models,
Journal of the American Statistical Association, 92, 640-647.

Christiansen, C.L., and Morris, C.N. (1997) Hierarchical Poisson regression
modeling, Journal of the American Statistical Association, 92, 618-
632.

Normand, S.T., Glickman, M.E., and Gatsonis, C.A. (1997) Statistics meth-
ods for profiling providers of medical care: Issues and applications.
Journal of the American Statistical Association, 92, 803-814.

West, M., and Harrison, P.J. (1997) Bayesian Forecasting and Dynamic
Models, (2nd Edn.), New York: Springer Verlag.

West, M., and Aguilar, O. (1997) Studies of quality monitor time series: The
V.A. hospital system, Report for the VA Management Science Group,
Bedford, MA. ISDS Discussion Paper #97-22, Duke University. Avail-
ableas ftp://ftp.stat.duke.edu/pub/WorkingPapers/97-22a.ps



