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This report describes statistical research and development work on hospital quality
monitor data sets from the nationwide VA hospital system. The project covers sta-
tistical analysis, exploration and modelling of data from several quality monitors,
with the primary goals of: (a) understanding patterns of variability over time in
hospital-level and monitor area specific quality monitor measures, and (b) under-
standing patterns of dependencies between sets of monitors. We present discussion
of basic perspectives on data structure and preliminary data exploration for three
monitors, followed by developments of several classes of formal models. We identify
classes of hierarchical random effects time series models to be of relevance in mod-
elling single or multiple monitor time series. We summarise basic model features
and results of analyses of the three monitor data sets, in both single and multiple
monitor frameworks, and present a variety of summary inferences in graphical dis-
plays. Our discussion includes summary conclusions related to the two key goals,
discussions of questions of comparisons across hospitals, and some recommendations

about further potential substantive and statistical investigations.

This work was performed in consultation and collaboration with the
VA Management Science Group, Bedford MA. The models presented

build on foundational contributions in prior and continuing work by

Jim Burgess, Cindy Christiansen, Carl Morris and Ted Stefos.
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1 INTRODUCTION 1

1 Introduction

This report describes and summarises statistical modelling developments and analyses of
subsets of hospital-level data from the medical center performance monitoring system of the
US Department of Veterans Affairs (VA). As discussed in Burgess et al (1996, sections 3
and 4), the performance monitoring system collects, reports and analyses data from across
the system of over 170 hospitals, and has as one key focus the general issue of assessing
and comparing clinical and health care process performance between facilities. The specific
quality monitors of interest here are based on a uniform process of data collection and
consolidation across national databases, and encompass a range of inpatient, outpatient
and long term care activities at each of the VA medical centers. For each hospital providing
care in the area covered by a specific monitor, recorded data include the total numbers
of individuals who were exposed to a specific and well-defined outcome in that area, and
for how many such individuals that defined outcome occurred. These data are recorded
annually. The record also carries an expected, or predicted, number of such outcomes out
of the total, based on an assumedly exogenous prediction of the outcome proportion referred
to as the DRG predictor. This quantity is designed to provide some degree of correction
for hospital/monitor specific case-mix and characteristics of the patient population profile.

The work presented here was commissioned by, and performed in consultation with,
the Management Science Group of the VA at Bedford MA. The primary statistical objec-
tives are those of adequately defining and accurately estimating underlying measures of
hospital-level performance in the monitor-specific areas. Given definitions and estimates,
inferences about relative performance over time and across hospitals are in principle ad-
dressable. Our involvement in this study follows some long-term work by CN Morris and
CL Christiansen (hereafter M&C) who have provided a firm basis for addressing these key
questions of definition and appropriate modelling frameworks for estimation of performance
measures (Burgess et al 1996). Some brief discussion of this past work is given below, before
developing in new statistical directions driven by the motivating and guiding goals of our

project. These goals are to explore, model and summarise the

e patterns of variability over time, in periods of single years, in hospital-monitor and

area-specific performance measures across a selection of quality monitors, and the

e patterns of dependencies between sets of monitors, in addition to and in combination

with assessment of time-variations.

These goals are motivated by policy interests in accurately estimating measures of hospital-
level performance in key areas of health care provision, in assessing changes over time in such

measures to monitor impact of internal policy changes (or the lack thereof), and ultimately
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in connection with the development of management and economic incentives designed to
encourage and promote care provision at sustained and acceptable levels.

Our data analytic work focuses exclusively on three quality monitors, coded M20, M21
and M22. The outcomes/responses in these monitor areas represent annual numbers of
individuals under a binary classification in an area of basic medical or psychiatric health
care. Monitor M20 is concerned with General Psychiatric Discharge from the hospital; out of
the total number of annual discharges, the response recorded is the number of individuals
who failed to return for an out-patient visit (appropriately well-defined) within 30 days
of discharge. Monitor M21 measures similar outcomes for Substance Absuse Psychiatric
Discharges, and M22 measures those for Basic Medical Discharges. Low return rates are
indicative of low “quality” in these specific care areas. The VA data provides information
on years 1988 to 1995 inclusive, summaries of which are displayed in the group of figures
displayed Section 8.1. Figure 1 displays the raw data in three rows of three frames; in each
row, three graphs display aspects of data on the three monitors separately, but combined
over all eight years (1988-1995). The graphs plot the observed proportions of successes
in each monitor against the total numbers of patients in each case, and then against the
DRG-based predicted proportions. Figures 2 and 3 provide related graphs for each year
of data separately. There are between 152 and 159 observations in each monitor:year pair,
corresponding to the (almost complete) subset of hospitals in the system reporting on each
monitor in each year.

We present a chronological discussion of the data exploration and modelling develop-
ments, beginning in Section 2 with discussion of the data and our initial perspectives.
Section 3 introduces basic random effects hierarchical models and explores summary in-
ferences on the three monitors separately for each year of data; these models are close in
spirit and form to those explored by M&C previously. Section 4 then introduces time se-
ries concepts to address the notion of systematic patterns of variation over the years in
hospital-specific effects on a given monitor. We discuss a class of time series random ef-
fects models that necessarily include additional components of unpredictable variability in
outcome probabilities as well as time series components. This is developed in the single
monitor context, and summary inferences from our analyses of the three monitors sepa-
rately are discussed and compared to the initial studies in Section 3. Section 5 ties three
single monitor models together in a general multiple monitor model: this is a binomial /logit
model in which hospital-specific random effects are related through time via a multivariate
time series model representing the relationships across monitors. The univariate submodels
are precisely those already developed in Section 4; these multivariate models explore and
assess aspects of the dependencies among the three monitor series. Section 6 describes

some summary inferences for all hospitals on one monitor in one year to illustrate addi-
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tional possible uses of the models and further aspects of model fit. Section 7 provides some
overall summary comments and ideas and recommendations for further work. Section 8 is a
catalogue of all graphical summaries of various analyses discussed in the text, and Section

9 provides both a technical appendix and comments on methodology and computation.

2 Data Structure and Initial Perspectives

Our study began with initial examination of the data sets on the monitors separately,
guided by the previous work of M&C. These authors have developed a variety of Bayesian
hierarchical models for the observed outcomes, including regressions on the DRG predictor
and hospital-specific parameters drawn from a hospital population prior (Burgess et al 1996,
Christiansen and Morris 1997). These are customised versions of standard random effects
generalised linear models with Bayesian interpretations and motivations. We explore some
such models for the three Monitors M20, M21 and M22 of interest here, currently restricting
attention to 152 of the hospitals that have complete records of outcomes on each of the
monitors in each of the eight years.

First, some basic notation and definitions.

Consider data on a single monitor collected in one year across hospitals ¢ = 1,...,1.
The canonical model for the observed number of responses z; out of the total n; in hospital
1 is that of binomial counts,

(2i|ni, pi) ~ Bin(zi|ni, pi) (1)
conditionally independently across hospitals. The “success probabilities” p; are hospital-
specific and to be estimated, and the totals n; are assumed uninformative about p;. The
proportions z; /n; are graphed in Figure 1; in each frame we have 8 x 152 = 1216 observations
for the 8 years of data on each of I = 152 hospitals. Super-imposed on the first row of graphs
are approximate 99% intervals under the binomial distribution (as n; varies along the x-axis)
assuming p; = p is fixed at the overall average proportion. Many observations lie outside
these bands indicating the very high degree of over-dispersion relative to a single binomial
model. This variation is to be explained by models that describe how the individual p;
vary across hospitals (and, later, across years), using a combination of regression on the
DRG predictor and random effects. For hospital ¢, the DRG-based predicted proportion
of “successes” d; is supposed to predict p; on the basis of system-wide studies of patient
case-mix profiles and historical data. Adopting the standard logistic regression framework
involves modelling p; = log(p;/(1 — p;)) as a linear regression on some function of d;. A
natural choice is the mean-corrected logit predictor x; = I; — [ where I; = log(d;/(1 — d;))

for ¢+ =1,...,1; this is assumed here. Write

pi = o + Bz (2)
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for ¢ = 1,...,1. This gives a basic linear regression of slope 3; on the DRG-based pre-
dictor and allows for hospital-specific departures through the parameters «;. As it stands,
this is a general model in which the «; terms stand proxy for all sources of extra-binomial
variation not adequately captured in the DRG predictor on the scale assumed. Across hos-
pitals, differences and variations in success rates due to differences in patient profiles not
adequately mirrored in the DRG predictor are represented in the «;, and these are neces-
sarily confounded with differences due to policies and practices in the area of care. Without
additional covariate information, there is simply no way of “unconfounding” these issues.
Assuming the «; to be exchangeable (random effects) parameters drawn from a hospital-
population prior delivers a class of Bayesian hierarchical models. This is the basic modelling
framework; all models discussed below are developed as either exact or approximate special

cases or generalisations. Some of these include models of M&C, as follows:

e Normal approximations. In cases where the n; are reasonably large and the p; are not
close to zero or one, the binomial likelihood function p(z;|n;, ;) can be adequately
approximated as a function of y; by a function proportional to exp(—(y; — pi)?/(2si))
where y; = log(zi/(n — z;)) and s; = pi(1 — p;)/n; with p; = z;/n;. This leads to
the normal hierarchical model in Burgess et al (1996). Our study has also used this
normal approximation in initial data exploration and, more formally, in connection
with technical methods of posterior simulation in binomial models. Our models and all

analyses are, however, based on the exact conditional binomial sampling distributions.

e Poisson approximations. In cases where n; is large and p; is small, appeal to Poisson
approximations to the binomial sampling model leads M&C to the class of PRIMM
regression models in which z; is conditionally Poisson with mean n)\; (Christiansen
and Morris 1997). In such cases the logistic regression is approximated by a log-
linear regression with \; = xf 'n; where n; = exp(«;). The PRIMM models of M&C
adopt gamma distributions for the hospital population priors of the random effects
n;. We note that the low p;/large n; condition is clearly valid for some monitors.
For Monitors M20, M21 and M22, however, it is evidently not. These monitors have
outcome proportions across the full range though concentrated in 0.15-0.85, and widely
varying total sample sizes, hence the Poisson approximation is not applicable in these

cases.

Our starting models adopt the binomial structure in (1) and are based on normal priors
for the population distribution of the random effects, developed in various stages. We begin
with the basic normal model

a; ~ N(ai|6, w?), (3)
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for some mean (p and standard deviation w. In terms of the zero-mean random effects
e =ai — (4)
we have the equivalent model
pi=Po+ iz +e and e ~ N(el0,w?). (5)

The €; terms represent hospital-specific departures from the system-wide underlying level 5.
We prefer the “hierarchically centred” version (3) with 3 at the center of the random effects
prior for «; for mainly technical reasons, and posterior inferences for both the absolute
random effects a; and the relative effects ¢; are of interest. The level Gy represents the
hospital system-wide average in corrected responses on this logit scale. Management policies
that operate across all hospitals, and general improvements (or otherwise) in care provision
that impact all hospitals in similar ways are represented by changes in 3y from year to year.
Hospital-specific changes over and above this system-wide measure are then reflected in the
€¢;. Note that the values 31 = 1 and [y = 0 represent a sub-model in which E(u;) = zj;
if, in addition, w is small, then the DRG predictions are accurate, p; o« d; in such cases.
The key issue of unexplained variability in success probabilities relates to the prior variance
w?, large values of which represent high levels of heterogeneity in outcomes that are not
captured via the DRG predictor.

Some summary of key issues mentioned above and some additional comments on the

data are pertinent and to be borne in mind throughout all analyses.

e As noted above there is a very marked degree of extra-binomial variation evident in
the data on all three monitors. This is true for each of the eight years under study;

see Figures 2 and 3 as well as the combined graphs in Figure 1.

e There is an overall suggestion of decreasing levels of observed responses across the
eight years and in all three monitors, most marked in Monitor M20 and, to a lesser
extent Monitor M21. We see this most clearly in Figure 4 which graphs the simple
average responses across years. The average DRG values (not shown) do not show
similar decreasing patterns indicating that this is very likely a hospital system-wide
feature, perhaps due to VA policy and/or general improvements in care provision over
the years. Thus there is an apparent need to consider models in which the overall
levels 3y of outcome responses across all hospitals vary year to year, and in which the
regression effects of the DRG variable (however weakly identified they may be) may

also vary.

e Across all three monitors and all eight years the values of the DRG predictor variable

lie in a very narrow range on the probability scale. This is evident in the third row
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of graphs in Figure 1. Though there is an apparent positive association between the
DRG variable and the observed outcomes, evident in the second row of graphs, it is
clear that the lack of variation will lead to a high degree of uncertainty about the
regression on DRG in any model. The predictor simply does not vary substantially
across the “design” space. For Monitor M21, for example, the DRG variable is very
close to 0.4 across all hospitals in all years. We include DRG in all models, but bear in
mind that resulting likelihood functions for corresponding regression coefficients will

tend to be flat due to this low variability issue.

3 MODEL-1: Exploratory Data Analysis and Modelling

Our analyses began with studies of data from each of the monitors separately, also regarding
each year of data on each monitor as a separate data set to be analysed individually. These
analyses represent initial studies to investigate the validity of the basic binomial regression
model structure.

We explored analyses of the model comprised of equations (1) and (5) under standard
diffuse reference priors for the additional parameters (5y, 51, w). Reanalyses under ranges
of diffuse but proper priors for these three parameters were performed to assess sensitiv-
ity. Across several choices of seemingly uninformative though proper priors, the posterior
results confirm those from the reference prior based analyses. Hence we are satisfied with
reporting the reference analysis. Model adequacy has been explored and verified through
post-hoc residual analyses, examining plots and features of posterior samples of well-defined
residuals. This is not illustrated here, but is in the more elaborate final models below. Ad-
ditional ranges of analyses were performed using the normal approximation to the binomial
likelihood functions. In general, very similar posterior results for (5y, 51, w) were delivered,
indicating that the normal approximations are indeed very good for inferring these param-
eters and with these data sets. However, a small number of hospital/monitor pairs have
very low sample sizes n; in some years, and there are some in which the observed outcome
proportions are close to zero or one. In such cases, the posteriors for the corresponding
«; parameters cannot be expected to be necessarily reliable approximations, and any er-
rors in approximation must be expected to impact on inferences about other parameters.
Hence we prefer to remain in the theoretically sound binomial framework rather than to
adopt the (technically and computationally more manageable) normal approximations di-
rectly. However, we note that for much of the data the normal model represents a sound
approximation.

We refer to this basic single-year, single-monitor model as MODEL-1. Figures displayed
in a group in Section 8.2 display a selection of posterior summaries from these individual

analyses. We comment on these graphs and make summary initial conclusions for each of
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the three monitors over the eight years. Most of the graphs display box-plots of posterior
distributions for selected model parameters. The boxes are centred at posterior medians,
have boxes drawn out to posterior upper and lower quartiles, and lines from the quartiles
to notches at points no further than 1.5 times the interquartile range from the quartiles.
Points are plotted outside these final notches to represent the very extreme tails of the
posteriors—most of these can be simply ignored, as almost all the posterior probability lies

between the notches (well over 99% under a normal posterior).

Hospital population levels

Our main comments relate to inferences on the () parameters. At a mean DRG variate
xz; = 0, parameter 3y represents the average response probability, on the logit scale, across
the hospital system. Differences across years for a single monitor require explanations,
possibly in terms of changes in system-wide policies and practices, or in terms of otherwise
uncontrolled “drifts” in levels of quality. We refer to the upper graph in each of Figures 5,
8 and 11.

There are meaningful differences in the Gy parameters across the eight years in each of
the three monitors. The main feature is a general decreasing trend in 3y over the years for all
three monitors, more markedly so for Monitors M20 and M21. This corresponds to generally
decreased probabilities of return for out-patient visits within 30 days of discharge, and the
apparent similarities between Monitors M20 and M21 are consistent with the two being
related areas of care, each related to psychiatric discharges. Monitor M22, General Medical
Discharges, exhibits a quite abrupt increase in Gy in 1995, after decreasing and levelling off

in 1993-4; this requires further consideration and interpretation from VA personnel.

DRG regression effect

Now counsider the 3; regression parameters, referring to the second graph in each of Figures
5, 8 and 11. Again there are apparent differences over the years within each monitor,
although the values are relatively stable compared with 5y and have a lesser impact on

overall conclusions.

Dispersion in hospital population of random effects

Now consider the standard deviation w that determines the dispersion in the random effects
distribution on the population of hospitals. We refer to the lower graph in each of Figures 5,
8 and 11. Within each monitor, w appears essentially constant over the years and the range
of values indicated supports appreciable variation consistent with the high degree of extra

binomial variation apparent in the data. This variability is highest for Monitor M20, at s.d.



4 MODEL-2: MODELS FOR SINGLE MONITOR TIME SERIES 8

levels of 0.6 — 0.7 on this logit scale, then Monitor M21, at levels around 0.4 — 0.5, and with
levels around 0.3 — 0.4 for Monitor M22. As a benchmark for interpretation, consider a
case in which the DRG predicted proportion is 50% (so zero on the logit scale) and assume
Bo = 0 so that baseline population probabilities are around 0.5. A standard deviation of
w = 0.5 leads to an 95% interval for the outcome probability of roughly 0.27 — 0.73. Thus,
even ignoring the additional binomial variation about the outcome probability, the random

effects distribution covers much of the observed range of the data.

Random effects for three example hospitals

The remaining graphs display inferences on hospital-specific random effects for three ar-
bitrarily selected hospitals, those with station numbers 515, 552 and 592. In each year
we graph the posterior boxplots for the corresponding hospital-specific levels «; and, sep-
arately, those for the zero-mean relative levels ¢;. These graphs are given in Figures 6 and
7 for Monitor M20, Figures 9 and 10 for Monitor M20, and Figures 12 and 13 for Moni-
tor M22. These provide examples of the kinds of patterns of variations exhibited by the
random effects within individual hospitals. One notable feature is that of evident depen-
dence over the years in the ¢; within specific hospitals, especially in terms of sustained signs.
Though the series of length eight are very short, this is supportive of systematic dependence
structure over time that is naturally expected: a hospital that has tended to be below the
population norm in terms of its proportions of outcomes in recent years will be expected
to maintain its below average position this year, so that the ¢ parameters of this hospital
will tend to be of the same sign. We are therefore clearly interested in some form of time
series structure to describe and incorporate such dependencies, and in order to explore and
assess their effects on estimation of all model parameters.

The general conclusions made above hold up in further analyses with more structured
models for exploration of dependencies in quality monitors across monitor areas and across
years, as we shall see. There are obviously differences in the summary inferences as we

change the models, but the differences in important characteristics remain very small.

4 MODEL-2: Models for Single Monitor Time Series

The next stage of investigation concerns the structure of single monitor series over time.
The initial modelling efforts just described indicate apparent variability over time in the
hospital/monitor population parameters 3y and (3, as well as the random effects «; that
explain much of the observed extra-binomial variability. Nevertheless there are indications of
relative stability of the €; across years in some hospitals. This is consistent with expectation.

Unless policies and protocols in the monitor care areas are radically changed from one year
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to the next, there should be stability in these quantities as representing true quality levels;
any changes beyond this reflect random variations due to the characteristics of the patient
sample presenting at the hospital. We move to simple time series models to incorporate the
view that the ¢; are expected to remain stable within each hospital over such a short number
of years, but that unexplained sources of variability at the hospital level are expected to
induce random changes year to year.

We stress that our developments do not currently constrain the hospital/monitor pop-
ulation parameters Gy and (3;. We introduce one pair of these parameters for each year
separately, and explore analyses that do not impose any further structure, simply allowing
for the estimation of these parameters. For example, the apparent decrease over time in the
overall levels of response on Monitor M20 will then be largely accounted for by estimating
separate 3y parameters for each of the eight years, but it is not anticipated in the model.
This model does not therefore provide us with a structure to explore or model dependence
over time in the § parameters, and so is not useful for prediction to future years without
modification or intervention. This is not a criticism; our goals are to evaluate patterns over
time in the eight years of data, and to explore inferences about changes in hospital-specific
effects over the years. We have no current interest in, nor remit for, the development of
predictive models for the 8 parameters; such would require the evaluation of expert opin-
ion about the reasons behind any inferred time evolution and the use of this in phrasing
appropriate predictive models. Such developments are technically feasible and could be
incorporated into the study at a further stage, as necessary.

Maintaining the focus on a single monitor, we now write «;; for the logistic random
effects parameter of hospital ¢ in year ¢, with £ = 1,...,8 representing our years 1988
to 1995 inclusive. The corresponding relative effects are now €;; = ay; — By where [y
and fi; are the population parameters of the logistic regression in each year t = 1,...,8.
Our studies use autoregressions, specifically AR(1) models for the series «y; over time ¢,
considered conditionally independently over hospitals. This simple time series model is the
first logical linear departure from the random sampling models of the initial study. With
such a short time span (8 years) more complex models are largely untenable. In any case,
the AR(1) model is a natural, interpretable model that describes this year’s o and “close to”
last year’s but with a degree of “noise” added. It also turns out to be adequate as a model of
dependence through time for the three monitors under study, and, as mentioned below, has
a desirable consequence in that the annual marginal distributions of the hospital-specific
effects are the same across the short span of eight years.

Modelling any form of time series dependence over the years in the «;; quantities in-
troduces partial stochastic constraints so that the «;; are no longer as free to vary as in

the single year models of Section 3 where they are essentially unconstrained, viewed simply
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as independent across years. Hence it is necessary to consider that some of the evident
variation in the logit parameters p;; will be unexplained once we extend to this time series
structure. We need to account for this, and do so by including in the linear model for the
logit parameters additional terms representing residual, unexplained variation.
Specifically, our extension of the single monitor model in equations (1) to (5) is as
follows. Independently across hospitals i = 1,...,1, and over all years t = 1,...,8, the data

are assumed to arise from the set of 8/ binomial models
(zit|nit, pir) ~ Bin(zi|nit, pit) (6)
with logistic regression on the DRG predictors and random effects,

it = log(pie/ (1 — pit)) = cur + Buzis + Vit (7)

This regression is similar to equation (2) but now the subscripting makes explicit the year

and hospital-specific parameters. In addition, we have introduced residuals
vit ~ N (vi|0,v?) (8)

to model residual variation not explained by the regression and hospital-specific random
effects a;;. The time series components assume that, again independently across hospitals
1, the «ay; follow first-order autoregressions centred around the current population level Gy,
in year t. For t > 1,

ait = Bor + Plavi—1 — Bo,i—1) + wit, (9)

where wi; ~ N(w;i|0,u?) independently over hospitals i and years t. At t = 1,
a1 ~ N(ai1|Bor, w?) (10)

Here ¢ is the autoregressive parameter and will generally be close to one, lying in part of
stationary region 0 < ¢ < 1, and we have the relationship w? = u?/(1 — ¢?). Equivalently,
we could work in terms of the annual deviations of the hospital-specific effects from the

annual levels, €;; = a;; — Bot, related over time by
€it = P€ip—1 + wit- (11)

Notice that we assume constant values of ¢ and u in the time series components. This is
supported on the basis of exploratory and confirmatory analyses, though could be relaxed
to allow for differing variances across hospitals and/or years as may be desirable for other

applications. This model class has some important characteristics, as follows.
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e The hospital-specific relative effects €;; are now related over time within each hospital
according to the AR model. With an appropriately large value of ¢, this implies
high positive correlations between the €;; in a given hospital over the years. This is
consistent with the view that, for example, a hospital that is been generally “good” in
a specific monitor/care in one year will have a high probability of remaining “good”
the next year, and vice versa. This is true irrespective of the system-wide changes in
quality levels; they are captured in changes in the (y; sequence, and the €; represent

departures above or below the system levels (Gy;.

e The constancy of ¢ and u over years is sufficient (though not necessary) to induce
(desirable) stationarity into the model for the relative effects €;;. Thus, for example,

considering any one chosen year ¢t we have the implied marginal distribution
eit ~ N(ei|0,w?) (12)

with w? = u?/(1 — ¢?), independently over i. Equivalently, cj; ~ N (cvit|Bor, w?) for
each year t. So, in each year, the relative random effects are a random sample from
a zero-mean normal distribution. This is consistent with a view of no global changes
in the hospital population makeup, variability in expected levels being essentially
constant over the short period of years once the DRG predictor and any system-
wide changes are accounted for through (; and [y, respectively. Changes in relative

performance of hospitals can therefore be assessed across years.

e Residual variation in the logit probabilities not explained by either the DRG-based
regression or the correlated random effects is contributed by the v;; in equation (8).
Estimation of the residual variance parameter v? together with all other parameters
will provide indications of the extent of this “unexplained” variability. With respect
to the exploratory, single year model with no time series structure in Section 3, we are
basically “splitting” the original o parameters of equation (2) into two components:
the new «j, still hospital-specific random effects but now structurally related over
time, and the purely residual and unpredictable components v;;. The model degener-
ates to the earlier non-time series model if ¢ = 0, in which case the a;; and v terms
are not distinguished. Our analyses to follow indicate relatively high time series de-
pendencies with appropriate values of ¢ that are positive and significantly large. As
a result, the “systematic” (though random) variation explained by the ay; is isolated

and identified separately from the unexplained variation in the v;.

To summarise, this MODEL-2 framework with logit probabilities

pit = 10g(pit/(1 — pir)) = Bot + Brexis + €t + Vit (13)
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is a class of single monitor, hierarchical random effects time series models and has the

following components of variation underlying the observed quality monitor outcomes:

1. Sampling variability from the data-level binomial distributions (1);
2. Unconstrained year-to-year variation in the population level of logit-probabilities, Bo¢;

3. Unconstrained year-to-year variation in the regression coefficient on the DRG-based

predictor, Giy;

4. Structurally related hospital-specific random effects parameters €;; that represent hos-
pital/year departures from the DRG-corrected population level of probability of re-

sponse in the monitor care area;

5. Residual, unexplained components v; in the same index.

One final feature to note, not primary though of some interest, concerns the time series
structure of the combined hospital-specific random effects €;; + v;+ above. This combined
term represents a time series whose structure is autoregressive, moving-average of order
one, ARMA(1,1). The addition of the residual /noise terms v;; to the AR(1) process €;; acts
to modify the correlation structure. Of course if v is small compared to w the modification
is small.

Summaries of analysis of each of the three monitors separately appear in the figures in
Section 8.3, in formats similar to those from the preliminary analysis under MODEL-1. The

following comments summarise the key and relevant features of these graphs.

Hospital population parameters

Summaries of the graphs in Figures 14, 17 and 20 are as follows for the hospital population
parameters [y; and (14 in each year t, and for the constant hyperparameters w,v and ¢,

one set for each monitor analysis.

e Across years, inferences for the Gy; and 31; quantities are essentially the same as under
MODEL-1, as is to be expected as we are not constraining these quantities; the displays
of yearly boxplots for these quantities in each of the three single monitor analysis

appear in the upper two rows of Figures 14, 17 and 20.

e For each of the monitor analyses, boxplots of posteriors for the monitor-specific w
appear in the lower row of Figures 14, 17 and 20. The supported ranges are lower
that those of the MODEL-1 analyses in each case. This is to be expected if, as we
shall confirm is the case below, the variances v? of the “unpredictable” components

of variation in the random effects model are non-negligible.
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e For the monitor-specific autoregressive parameters ¢, posterior boxplots appear in
the lower row of Figures 14, 17 and 20. These indicate highly significant dependence
structures in each case, with inferred values of ¢ in the ranges 0.7 — 0.8 for M20,
0.6 — 0.75 for M21 and 0.8 — 0.9 for M22. The posteriors have some overlap though
do suggest that the ¢ parameters may be different across monitors. The dependence
in the random effects time series is high in each case, but perhaps higher for M22
than M20 or M21, the latter two being more comparable. There are thus apparent
differences here between M22 and the other two monitors, perhaps associated with
the fact that latter two are more closely related health care areas, both involving
psychiatric discharges. These ¢ values lead to smoothing in the estimation of the

individual random effects series for each hospital within each analysis, noted below.

e For the monitor-specific standard deviation v of the unpredictable/residual compo-
nents of variation, posterior boxplots appear in the lower row of Figures 14, 17 and 20.
These indicate non-negligible values, in the ranges of 0.3 —0.37 for M20, 0.27—0.33 for
M21 and 0.12—0.16 for M22. By comparison with the posteriors for the w parameters
this indicates that the unpredictable/residual components of the model contribute sig-
nificantly to the variability in outcome probabilities. In terms of the variance ratio
v?/(v? + w?), the €; residuals contribute, very roughly, about 20 — 25% variation for
M20, about 30-35% for M21, but only about 15% for M22. Again we see quanti-
tative differences between M22 and the other two monitors, perhaps related to the

underlying nature of the differences in health care area.

Random effects for three example hospitals

Summary inferences for the random effects a;; and €;; for the three selected hospitals are
again given in terms of posterior boxplots for each year in each of the single monitor analyses.
These appear in Figures 15 and 16 for M20, Figures 18 and 19 for M21, and Figures 21 and
22 for M22.

The most immediate features relate to the apparent smoothing over the years in the
patterns of the relative random effects ¢;; within each monitor. Relative to the corresponding
figures from the exploratory analyses under MODEL-1, consecutive values of the ¢;; within
each hospital are linked by the autoregressive model and, as fairly high positive values of
the autoregressive parameters are inferred, this leads to a reasonable degree of shrinkage
as each €;; is now estimated partly by the data in neighbouring years as well as by that in

year t. The resulting smoothing is also evident in the patterns of the absolute levels «;.
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Residual structure analysis

Additional graphs in Figures 23 to 26 inclusive are illustrative of graphical assessments
of model adequacy via more-or-less standard Bayesian “residual analysis”. Our primary
concern is with identifying and investigating any apparent residual structure in the data
following model fitting. Referring to the approximate logistic normal version of the binomial
model in Section 2, note that the model implies approximate (standard) normality and
conditional independence of the standardised data residuals e;; = (yir — pit)/sit where,
extending the subscripts to the current model, y;; is the logit transform of the observed
outcome proportion z;/n; and s;; the corresponding approximate standard deviation, for
each i, t. In our simulation-based analysis of the exact binomial model here, we repeatedly
simulate the full joint posterior distribution for all model parameters and random effects.
This means that we also obtain a sequence of samples of the set of u;, which represent
draws from their posterior distribution. These lead to trivially computed values of the
e;+ which similarly represent samples from the posterior distribution of the standardised
data residuals. Using any one of these samples of residuals we can compute numerical
and graphical measures of concordance with, or departures from, the theoretical normal
distribution, and so assess model fit. The graphs in Figures 23 and 23 display some such
graphs using just two sets of sampled residuals on monitor M21 in year ¢ = 1995, the
final year of the data. These are representative of all monitor/year residuals and repeated
sampling from the posteriors produces very similar graphs. For these samples, the plots
include a simple graph against hospital number, a graph against the corresponding sample
sizes nj;, a normal quantile plot and a simple histogram. None of these graphs indicate
any kind of meaningful departures from normality, and as this is maintained across residual
samples, it provides support for model adequacy.

More formally, Figures 25 and 26 summarise the posterior distributions of the actual
data residuals e;; for monitor M21 in year ¢ = 1995. Figure 25 displays graphical summaries
of this posterior distribution in terms of marginal posterior 95% intervals for each hospital,
with posterior means marked. The hospitals are ordered here according to the posterior
medians of the underlying outcome probabilities p;; on this monitor in this year. There are
no outlying hospitals or other worrisome features evident in this display. This comforting
conclusion is supported by additional displays of aspects of the posterior distribution of the
ordered observation residuals. Figure 26 displays a normal quantile plot and a histogram
of the posterior means of the ordered observation residuals for all hospitals . The curve
superimposed on the histogram is the standard normal density function. The quantile plot
includes vertical lines representing approximate posterior 95% intervals showing the uncer-
tainty in the marginal posteriors for the ordered residuals. The conformity with normality

here is excellent.
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5 MODEL-3: Models for Multiple Monitor Time Series

The MODEL-2 class appears to provide satisfactory description of the dependence structure
over time in hospital-specific quality measures. The second key goal of this study is to
explore possible dependencies in quality monitor outcomes across monitor areas. Hence we
are interested in possible dependencies among the hospital-specific random — both the € and
v terms — across the three monitors. We know that M20 and M21 relate to two areas of
psychiatric care, so might anticipate that the quality levels are positively correlated between
these two. M22 relates to general medical care and so also might be expected to be positively
related as representing some form of “overall” quality at the specific hospital. The next step
therefore is to tie the three sets of monitor data together into a model that allows for the
investigation of the structure of the joint distribution of sets of relative effects across the
three monitors, and of the nature of dependencies in changes over time in these effects. To
begin we need to extend the notation to make explicit the consideration of several monitors
simultaneously.

This new class of models, referred to as MODEL-3, considers monitors j = 1,2, 3 in each
year t = 1,...,8 and for each hospital ¢ = 1,...,I. This development is obviously general
and can be applied to any numbers of monitors and years. On the three monitors, we
have observed outcomes z; = (214, Zi2t, Zi3t)', representing three conditionally independent
binomial responses out of totals n;; = (n;1z, ni2e, ni3e) and with “success” probabilities

pPit = (pi1e, Piot, pist)’, respectively. The joint density of these data is

3

p(zit|nie, pir) = [ Bin(zijelnije, pije) (14)
j=1

conditionally independently over hospitals ¢ and years t.
The general multiple-monitor hierarchical/random effects model structure of MODEL-3
is as follows.

Regression and hierarchical/random effects structure

On the logit scale, p;; = (pi1e, fize, ftize)’ With
pije = log(pije/ (1 — pije)) = Bojt + BrjeTije + €ijt + Vije (15)

for each monitor j = 1,2,3. Here x;;; is the logit transform of the corresponding DRG
predicted proportion, with the mean for year ¢ across all hospitals ¢ within monitor j
subtracted. The 3 parameters are collected in vectors as B, = (Bo1t, Bo2ts Bose) and By, =
(B11t, Br2t, Br3e)’. With the 3 x 3 design matrices X;; = diag(z;1¢, iot, Tizt), we then have

kit = Bot + XitByy + €it + Vit (16)
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where €;; = (€14, €521, €53t) and vy = (V411, Viog, Vise)'. In each year, marginally, the hospital-

specific random effect vectors €;; are conditionally independent over hospitals ¢ and
eit ~ N(eit|0, W) (17)

for some constant 3 x 3 matrix W. This matrix represents the within-year variability in
the systematic components of corrected quality levels across the entire hospital population,
and the within-year dependencies between such quality measures across the three monitors.
Notice that essentially arbitrary correlations are admitted across monitors.

This model simply collects together the three single monitor models of the previous
section, then extends that framework to allow for possible correlation structure across mon-
itors via the multivariate normal distributions for the vectors of relative effects €;;. As we
now describe, W defines and measures the joint variability and dependence structure not

only in each year, but also a modified form of the year to year changes in the effects.

Time series structure of random effects

The random effects vectors e;; are correlated over years ¢. We maintain the same basic
AR(1) models for monitor-specific quantities, also indexing the autoregressive parameters
by monitor label j. The three univariate AR(1) models are therefore combined in the vector
autoregression

€ir = Peip 1 +wi (18)
where ® = diag(¢1, @2, ¢3) is the diagonal matrix of monitor-specific autoregressive coeffi-
cients. The vector innovations w;; are conditionally independent over time, and normally
distributed with

wit ~ N(w;]|0,U) (19)
for some variance matrix U to be estimated. Now the normal distribution €;; ~ N (e;|0, W)
is the yearly margin under this vector AR(1) model. This implies that W satisfies W =
®Wo + U, so that correlation patterns in U and W, while similar, also depend on the
autoregressive parameters. In particular, for each monitor pair j, h we have variances and
covariances W, = Uj, /(1 — ¢;¢p).

The DRG-corrected hospital-specific level parameters are now given by
ot = By, + €t (20)
for each i, and t. These follow the centred VAR(1) model
ait = By + P(aii—1 — Bo—1) + wit (21)

for ¢ > 1, and have yearly margins N(ay|By;, W). Note again that the single monitor
MODEL-2 structures are embedded here; all we have added is the cross-monitor structure
through W' (equivalently U).
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Residual components

Residual, unpredictable variations in the binomial probabilities across hospitals and years

is described by the residual terms
vit ~ N(v|0, V) (22)

with monitor-specific variances v?,v3 and v2 on the diagonal of the matrix V, and now
admitting cross-monitor dependencies through the covariance elements of V. Again, we
simply collect the monitor-specific residual parameters together in a vector for the multiple
monitor model here, and add covariance structure that permits the estimation of cross-
monitor dependencies. It might be expected that correlation patterns in V are similar to
those in the time series random effects modelled through W (and/or U). Our current model
does not anticipate this, leaving V and W unrelated a priori, but the framework obviously
permits the assessment of potential similarities in posterior inferences.

It is important to note that the overall levels of random effects variability, and the
associated overall measures of cross-monitor dependencies, are represented through the
yearly marginal variance matrix W + V| i.e., the variance of the combined random effects
€;++vj in year t. In summaries of analyses below we explore posterior inferences on elements

of W 4+ V, as well as the component matrices separately.

Prior distributions

Inference is based on posterior distributions for all model parameters and random effects
under essentially standard reference/uninformative priors for: (a) the annual population
parameters By; and 3y, (b) the population residual variance matrix V, and (c) the variance-
covariance matrix U; the prior is completed with independent uniform priors for the au-

toregressive parameters ¢; on (0,1).

Summaries of analysis of the three monitor series combined in this multivariate, multi-
year model appear in the figures in Section 8.4. The formats of figures follow those of the
earlier models, with additional inferences about the correlation patterns in W displayed as
boxplots of posteriors as usual. We note the following features relative to the inferences
deduced from the MODEL-2 analysis.

e There are only very minor changes evident in the posterior distributions for population

parameters [y and (1 across years t. See the upper rows of Figures 27, 30 and 33.

e There are similarly almost no changes evident in the posterior distributions for the
variances UJZ of the residual noise terms v;j;. See the third row in each of Figures 27,

30 and 33; these posteriors are redisplayed in the second frame of Figure 36.
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e There are similarly only very minor changes evident in the posterior distributions for
random effects ;j; and €;;; over the years for the three selected hospitals. See Figures
28 and 29 for M20, Figures 31 and 32 for M21, and Figures 34 and 35 for M22.

e Figure 36 provide summaries of the marginal posteriors for the three autoregressive
parameters in ®. These are essentially similar to those delivered in the individual

MODEL-2 analyses, as might be expected.

e Figure 36 also provide summaries of the marginal posteriors for elements and functions
of the variance matrices W and V. First, note that the posteriors displayed for the
standard deviations under both W and V are essentially as in the separate MODEL-2
analyses. The new parameters here are the correlations between the monitor effects,
both in the systematic component W and in the residual component V. Posterior
boxplots are displayed here for the correlations in both W and V, and, most impor-
tantly, in the combined variance W + V. As mentioned above, it is this latter matrix
that most fully described cross-monitor structure within each year. The lower left
frame of Figure 36 summarises inferences on the standard deviation and correlation
elements of W + V. This indicates fairly low overall correlations, consistent with the
generally low correlations exhibited by each of W and V separately. The posterior
mean of W + 'V is approximately

0.417 0.044 0.009
W4+V=]004 0271 0.014
0.009 0.014 0.136

which corresponds to estimated correlations as follows: between M20 and M21, 0.132;
between M20 and M22, 0.036; and between M21 and M22, 0.073. These are quite
low correlations, though they do support the earlier suggestion that the correlation
between M20 and M21 might be higher than that between either M20 and M22, or
between M21 and M22, in view of the similar care areas of M20 and M21. The posterior
mean of W 4+ V decomposes into eigenvalues 0.43,0.26 and 0.13, and corresponding

column eigenvector matrix

0.961 —-0.275 —0.015
0.273 0.957 —0.097
0.041 0.089  0.995

In order, the principal components explain roughly 52%, 32% and 16% of variation
described by this estimated variance matrix, indicating that all three vary apprecia-
bly and that reduction to two or fewer seems inappropriate. The eigenvector matrix

is dominated by the diagonal terms, and all three are close to unity; note that the
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eigenvector matrix would be the identity were the monitors uncorrelated. The first
column represents an average monitor effect, dominated by M20 and M21 and essen-
tially excluding M22; this can be viewed as a psychiatric care component alone. The
second column represents a contrast between M20 and M21, again essentially exclud-
ing M22; the final column almost wholly represents M22 alone, and to the extent that
the coefficients for M20 and M21 are non-ignorable, contrasts these two psychiatric

care monitors with the general medical monitor M22.

Investigating conditional distributions provides additional insights into the levels and
nature of dependencies. For example, we might consider the relevance of dependencies
by looking at questions like “how much might the M21 effect change if the M20 effects
changes by e?”. Various such exercises have been undertaken, and simply confirm
that the levels of correlations inferred in our analyses are so low as to really limit
their impact on predictive questions, especially in the context of the realistic levels
of posterior uncertainties about the population parameters, the [y, €;5; 1 and so
forth. Hence, this level of correlation structure between monitors, though certainly
non-negligible, is relatively minor. We remark that the story may, however, be quite

different with other collections of monitors.

6 Summary Inferences for Monitor M21 in 1995

To illustrate the possible additional uses of these models in exploring the variability in
outcomes across the hospital system, we focus on outcomes on only Monitor M21 in the last
year of the data, 1995. We do this based on the single monitor models in Section 4, noting
that the results from the multiple monitor analysis are essentially similar. The analysis
produces simulation-based descriptions of the joint posterior distribution for all M21/1995

parameters, namely the full set of quantities

Bo, B, {€i, vi}

for i = 1,...,I and where we have dropped the subscripts for monitor (j = 2) and year
(t = 1995) for clarity here. So (y and [; are the hospital population level and DRG-
regression coefficient in 1995, and the ¢; and v; are the systematic and residual random
effects for hospital i on M21 in this year. Refer to equation (13) and suppress the ¢ subscript.
The particular analysis summarised is based on a posterior sample with Monte Carlo sample
size 5,000 for all these quantities. The figures in Section 8.5 display some summaries of this

posterior distribution, as follows.
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Absolute outcome levels and comparisons across hospitals

For each hospital ¢ we can easily compute the corresponding posterior sample for the actual
quality outcome probability p; = 1/(1 + exp(—60;)) where 0, = [y + [1z; + €; + v;. This
was done, followed by calculation of posterior medians and approximate 95% (equal tails)
intervals for each p;. These intervals, with medians marked, appear in Figure 37. The
hospitals are ordered by the posterior medians so computed, and labelled by actual station
numbers. The small number of hospitals with low sample sizes in M21 are identifiable here
as they have wider intervals than the majority; the width of the interval reflects the spread
of the marginal posterior which is a decreasing function of sample size.

If interest lies in questions about thresholds for the p;, they can be directly addressed
using these posterior distributions. The probability that any p; exceeds or lies below any
specified threshold can be immediately deduced from the posterior for p;. A crude version of
this across hospitals would involve simply drawing a vertical line at the specified thresholds
on the graphs in Figure 37. Superimposed on the intervals are the values of the observed
outcome proportions z;/n;, for comparison. Note that most of the observed outcomes
are well within the interval and often very close to the median of the corresponding p;.
This partly reflects the large sample sizes n; in most cases that lead to very influential
observations and so fitted values that will be close to observed outcomes. The model is
not, however, over-fitting, as is confirmed by the earlier discussions of residual structure
analyses. Note, however, that the picture needs modification to more adequately represent
the fit; these intervals are summary estimates of the true outcome levels p;, and so the
variability expressed by the width of the intervals does not incorporate the natural binomial
variability in the outcomes around the levels. To do this we compute additional samples of
binomial outcomes by drawing conditionally binomial counts z ~ Bin(z]|n;,p}) for each
t, and where p} represent the set of posterior draws for p;. This produces the posterior
predictive distribution for actual outcomes at each hospital. These can be summarised as
we have summarised the p;, in terms of interval estimates for the actual outcomes; the
resulting 95% intervals with medians marked appear in Figure 38. Again, the actual data
are superimposed, and it is now clear that the additional binomial variability broadens the
intervals so as to very adequately cover the observed data.

This latter graph helps to immediately identify outcomes that are rather extreme com-
pared to their posterior predictive distributions. These tend to be at hospitals with low
sample sizes, and some further investigation of specific hospitals flagged in this graph, and
also noted in the following graphs, may be of interest. For example, stations numbered 574,
533 and 608 are the three hospitals with observed outcome proportions most over-predicted,
and cases 442, 585 and 617 are those most under-predicted. These are all cases for which the

sample sizes n; are relatively small, as is seen from Figure 42. Of the three over-predicted,
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the DRG-predicted proportions are very large relative to the majority of the hospitals, as
is seen in Figures 43 and 44. The model naturally adapts to these lower observed outcomes
for such cases, as is evident in the graph in Figure 39. This displays approximate 95%
posterior intervals for the combined random effects €; 4+ v; for each hospital . These are
plotted on this logit scale in a format is similar to Figure 37 and with hospitals plotted
in the same order for comparison. Here we see that these “low” hospitals have random
effects lower than average, indicating that the model has indeed adapted to the extreme
observations. The intervals are relatively wider for these cases, indicative of the smaller
sample sizes. This adaptation is, however, constrained by the model form and also by the
the high, and hence influential, values of the corresponding DRG predictor. The basic issue
is that the DRG predictor for these cases seems too high, a suggestion that might be the
subject for further investigation and study. Nevertheless, the fit of the model to even these
very extreme cases is very good, consistent with our earlier subjective assessment of graphs

of sampled data residuals.

Relative outcome levels and comparisons across hospitals

To further investigate the relative performance of hospitals we need to examine the hospital-
specific departures from population levels, i.e., the combined random effects ¢; + v; for
each i. As noted above, Figure 39 displays approximate 95% posterior intervals for each of
these quantities for all hospitals, with the hospitals in the order chosen for Figure 37 for
comparison. There is a general increasing trend in the random effects as we go through
the hospitals in this order, consistent with the ordering by outcome probabilities. The
pattern is not monotonic, however; the probabilities include the effects of the DRG-based
predictor, and the current graph focuses exclusively on the relative performance levels free
from the regression effects. The following Figure 40 displays related posterior intervals, in
the same hospital order. Here we have evaluated 95% posterior intervals for the ranks of
the hospitals in terms of increasing levels of ¢; + v;. Evidently, the four or five hospitals with
the highest estimated outcome probabilities have very high ranks, indicating that their
true outcome probabilities are indeed very likely to be among the largest few across the
system. Similar comments apply to those with the lowest estimated probabilities. Among
the majority of the hospitals, however, there are much higher uncertainties about rankings,
with posterior intervals spanning fairly wide ranges. This way of investigating relative
performance should be contrasted with that based on the outcome probabilities themselves;
Figure 41 displays the plot of posterior intervals for rankings of the p; displayed in Figure 37,
which gives a very different picture and resulting inferences than that based on the rankings
of effects €; + v;. The differences are important as the two ranking graphs address very

different questions: Figure 41 summarises absolute performance, impacted by patient-mix
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and other confounding factors; Figure 40 represents relative quality levels once these factors
are accounted for through the model, and a firmer basis for assessing relative performance
due to hospital-specific policies and practices.

The posterior distributions summarised here can be explored in various other ways.
Subsets of hospitals can be selected for further such summary and deeper investigation, for
example. Similarly, questions about changes in hospital-specific effects can be addressed by
looking at interval estimates of the parameters measuring changes year to year. Much can

be extracted from posterior analysis that has not been illustrated here.

7 Summary Comments and Conclusions
The key summary conclusions are as follows.

e The inferred patterns of change over time in the key population levels 3y;; and DRG
regression coefficients (3; are essentially the same in all models explored. There are
evident changes in (y;; that require consideration and interpretation by VA personnel.
There are differences over the years in the regression coefficient 3;;; too, though these

changes are less marked.

e Our multiple monitor time series models isolate changes over time and dependencies
among such changes in the hospital-specific random effects across the three monitors.
Though dependencies across monitors exist, they are apparently quite small. There
are negligible differences in inferences about the key population quantities/parameters
in extending from from the single monitor MODEL-2 framework to the linked multi-
ple monitor MODEL-3 framework, at least for these three monitors. With other sets
of monitors or other contexts, dependence patterns may be stronger and then the
MODEL-3 framework of more interest. There will be bigger and possible meaningful
differences in inferences about hospital-specific random effects in cases of very high
correlations between monitors, and in cases when the sample sizes n; are much smaller
than is typical with these three monitors. On the other hand, little is lost by analysing
the data in the multiple monitor framework anyhow, though the software development
and computational costs are meaningful. Developing the multiple monitor framework

has been the major activity on the project to date.

e A critical feature of our work has been the identification of several components of vari-
ability underlying within-year variation and across-year changes in observed quality
levels. The important part of this is the partitioning the hospital-specific variation in
outcome probabilities into two components: one, a partially systematic and positively

dependent AR component, represented by the €;;;; and two, the purely unpredictable
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component represented by the v;5;. In each monitor separately, and with confirmation
from the multi-monitor studies, the latter are very significant, and contribute between
15-30% of the total random effects variance on the logit scale. The extent of the con-
tribution is monitor-specific, with that for the general medical discharge monitor M22
being significantly lower than either of the (more comparable) psychiatric monitors
M20 and M21. Thus hospital-specific levels of M22 are more stable over time and

hence more predictable.

e Summary graphs of posterior inferences for specific monitor:year choices can provide
useful insight into the distribution of outcome probabilities across the hospital system,
about relative levels of performance, and about changes over time in such levels. Issues
of how to most effectively summarise and use such information require consideration.
Specific hospital/monitor/year outcomes that show up as evident extremes in these

analyses may require further investigation.

There are various modelling assumptions that could be explored and tested by further
development of the existing framework. These include extensions to allow for non-normal
error distributions for the components of random effects €;;; and v;;. It is relatively straight-
forward to replace the normality assumptions with alternative, heavy-tailed error distribu-
tions, such as Student-T, in order to explore questions of robustness and sensitivity. On the
basis of our residual analysis and exploration to date, we are somewhat skeptical that such
extensions would materially impact on the analysis or substantially change our summary
inferences, although this may not be the case in studies of other monitor series.

One further useful extension will be to incorporate arbitrary patterns of missing data.
The current report is restricted to analyses of 152 hospitals on which we have observed
outcomes on each of the three monitors in each of the eight years of study. Seven more
hospitals in the data base have outcomes reported only on subsets of monitor/year pairings,
so were omitted from the study. Rather routine model extensions will incorporate this and
other patterns of missing data,

A related potential development involves within-year predictions for model validation.
Minor changes to the analysis will allow for reanalysis with selected hospital/monitor cases
removed from the data set, but with the model still including such cases in analysis. This
leads to posterior distributions for the parameters at these hospitals that are updated from
the priors based on information from the other hospitals, but which are not now based on
the actual outcomes at the omitted hospitals. Exploration of the concordance between these
true outcomes and the posterior predictions will provide out-of-sample, or cross-validatory,

assessment of model adequacy.
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8 Figures from all analyses

8.1 Data displays

24
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Figure 1: Observed proportions on all three monitors. All eight years of data (1988-95)
appear in each frame. The upper row displays outcome proportions against corresponding
total sample sizes. The superimposed lines denote pointwise 99% intervals based on assumed
common binomial distributions for the outcomes in each monitor (see text for discussion).
The second row of graphs displays the observed proportions versus the DRG-based predicted
proportions; this display is redrawn in the lower row, but now with the DRG predictor on

the probability scale.
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Figure 2: Observed proportions on all three monitors for the years 1988-1991 inclusive.
As in Figure 1 the outcome proportions are plotted against total sample sizes and the
superimposed lines denote pointwise 99% intervals based on assumed binomial distributions

for the outcomes in each monitor in each year (see text for discussion)
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Figure 4: Raw averages of observed response proportions over the eight years, with Mon-
itor 20 marked 0, Monitor 21 marked 1 and Monitor 22 marked 2, There is an apparent

decreasing trend, most marked for Monitors 20 and 21.
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Figure 5: MODEL-1: Single year analyses of single Monitor 20: Summary interval estimates
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Figure 6: MODEL-1: Single year analyses of single Monitor 20: Summary interval estimates

of hospital-specific parameters «;; for three hospitals.
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Figure 7: MODEL-1: Single year analyses of single Monitor 20: Summary interval estimates

of hospital-specific random effects €;; for three hospitals.
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Figure 8: MODEL-1: Single year analyses of single Monitor 21: Summary interval estimates

of Bot, Bz and wy.
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Figure 9: MODEL-1: Single year analyses of single Monitor 21: Summary interval estimates

of hospital-specific parameters «;; for three hospitals.
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Figure 10: MODEL-1: Single year analyses of single Monitor 21: Summary interval estimates

of hospital-specific random effects €;; for three hospitals.
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Figure 11: MODEL-1: Single year analyses of single Monitor 22: Summary interval estimates

of Bot, Bz and wy.
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Figure 12: MODEL-1: Single year analyses of single Monitor 22: Summary interval estimates

of hospital-specific parameters «;; for three hospitals.
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Figure 13: MODEL-1: Single year analyses of single Monitor 22: Summary interval estimates

of hospital-specific random effects €;; for three hospitals.
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8.3 MODEL-2: Random effects time series models for single monitor series
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Figure 14: MODEL-2: Multi-year analysis of single Monitor 20: Summary interval estimates

of By, B1t, standard deviations w,v and correlation parameter ¢.
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Figure 15: MODEL-2: Multi-year analysis of single Monitor 20: Summary interval estimates

of hospital-specific parameters «;; for three hospitals.
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Figure 16: MODEL-2: Multi-year analysis of single Monitor 20: Summary interval estimates

of hospital-specific random effects €;; for three hospitals.
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Figure 17: MODEL-2: Multi-year analysis of single Monitor 21: Summary interval estimates

of By, B1t, standard deviations w,v and correlation parameter ¢.
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Figure 18: MODEL-2: Multi-year analysis of single Monitor 21: Summary interval estimates

of hospital-specific parameters «;; for three hospitals.
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Figure 19: MODEL-2: Multi-year analysis of single Monitor 21: Summary interval estimates

of hospital-specific random effects €;; for three hospitals.
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Figure 20: MODEL-2: Multi-year analysis of single Monitor 22: Summary interval estimates

of By, B1t, standard deviations w,v and correlation parameter ¢.
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Figure 21: MODEL-2: Multi-year analysis of single Monitor 22: Summary interval estimates

of hospital-specific parameters «;; for three hospitals.
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Figure 22: MODEL-2: Multi-year analysis of single Monitor 22: Summary interval estimates

of hospital-specific random effects €;; for three hospitals.
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Figure 23: MODEL-2: Summaries of a randomly chosen draw from the posterior distribution

of the observation residuals e;; for all hospitals ¢ on M21 in year t = 1995.
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Figure 24: MODEL-2: Summaries of a second randomly chosen draw from the posterior

distribution of the observation residuals e;; for all hospitals 7 on M21 in year ¢ = 1995.
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Figure 25: MODEL-2: Posterior 95% intervals, with means marked, for the observation

residuals e;; for all hospitals ¢ on M21 in year t = 1995. The hospitals are ordered according

to the posterior medians of the underlying outcome probabilities p;;.
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Figure 26: MODEL-2: Normal quantile plot, with approximate 95% intervals shown, and
histogram of the posterior means of the ordered observation residuals across all hospitals ¢
on M21 in year ¢t = 1995.
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Figure 27: MODEL-3: Monitor 20: Summary interval estimates of (yp1;, B11¢ and standard

deviation vy.
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Figure 28: MODEL-3: Monitor 20: Summary interval estimates of hospital-specific parame-

ters «;1; for three hospitals.



EPS1

EPS2

EPS3

8 FIGURES FROM ALL ANALYSES

g
| EF B2 e
3 | t t

88 89

90

: I

0 = | |

° \ I A—
L

Monitor 20
P b
\
= B35 B3 =3
A
91 92 93 94
years
IR IR I B
= B3 =—/—4 i |
toob
91 92 93 9%
years

I
= T B
S B

—

i

9

o6

Figure 29: MODEL-3: Monitor 20: Summary interval estimates of hospital-specific random

effects €;1; for three hospitals.
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Figure 30: MODEL-3: Monitor 21: Summary interval estimates of (po;, B12¢ and standard

deviation vy.
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Figure 31: MODEL-3: Monitor 21: Summary interval estimates of hospital-specific parame-

ters «;o; for three hospitals.
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Figure 32: MODEL-3: Monitor 21: Summary interval estimates of hospital-specific random

effects €;9; for three hospitals.
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Figure 33: MODEL-3: Monitor 22: Summary interval estimates of (3, B13¢ and standard

deviation vs.
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Figure 34: MODEL-3: Summary interval estimates of hospital-specific parameters ;¢ for

three hospitals.
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Figure 35: MODEL-3: Summary interval estimates of hospital-specific random effects €;3; for

three hospitals.
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Figure 36: MODEL-3: Multi-monitor time series model for all three monitors: Summary
interval estimates of population parameters, including standard deviations and correlations
of the variance matrice W,V and the overall W 4V, and the three AR coefficients ¢;.
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Figure 37: Posterior 95% intervals for outcome probabilities p; on M21 in 1995 for all
hospitals, ordered by posterior medians. Station number identifies hospitals and observed

proportions are marked.
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Figure 38: Posterior 95% intervals for actual outcome proportions on M21 in 1995 for all

hospitals. Station number identifies hospitals and actually observed proportions are marked.
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Figure 39: Posterior 95% intervals for combined random effects €; + v; on M21 in 1995 over

all hospitals.
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Figure 40: Posterior 95% intervals for ranks of hospitals in terms of combined random

effects ¢; + v; on M21 in 1995.
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Figure 41: Posterior 95% intervals for ranks of hospitals in terms of outcome probabilities
p; on M21 in 1995.
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Figure 43: Observed value of DRG predicted proportion on M21 in 1995 over all hospitals.
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Figure 44: Observed value of DRG predicted proportions, after logit transformation, on
M21 in 1995 over all hospitals.
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9 Methodology and Computation

General comments on technology and software

The fitting of the binomial/logit random effects time series models, both single monitor
and multiple monitors, involves new statistical methodology and computational techniques.
It is beyond our scope here to develop complete details, but we expect that future work
will include developing these models further and with a view to applications in other areas.
The models presented share much of the structure and conceptual basis of models recently
published in Cargnoni, Miiller and West (1997). Components of the computational methods
that have been developed in this context are novel and will apply to other hierarchical
generalised linear models with time series structure, and be of relevance to researchers in
many socio-economic areas.

All posterior computations are performed using Markov chain Monte Carlo simula-
tion methods, the standard for implementation of Bayesian inference in other than very
simple models. Our analyses are implemented in Fortran programs developed specifically
for these models and this project and including both multiple and single monitor models.
Reported analyses in the exploratory MODEL-1 framework were independently performed
using the Bayesian software package BUGS (Spiegelhalter et al 1995) as well as our custom
programs. Repeating analyses using different software provides opportunity to assess the
relative accuracy of the numerical approximations to posterior distributions. Our reported
summaries of analyses of the single monitor series have been so validated. The Fortran
software constructed for the project is portable and does not rely on either public domain
or commercial libraries. Post-processing of the outputs of analyses to produce appropriate

graphical and numerical summaries are currently implemented in functions in S-Plus.

Technical development of posterior analyses: MODEL-3 framework

In each model class we perform analysis using customised Markov chain Monte Carlo
(MCMC) simulation methods to evaluate, explore and summarise posterior distributions.
We describe some technical details here for the most general MODEL-3 class. Details for the
other models are routine simplifications. MCMC involves iteratively re-simulating sets of
parameters and random effects from collections of conditional posterior distributions in a
Gibbs sampling format, and also using simulated values from so-called proposal distribu-
tions when, in some cases, Metropolis-Hastings methods are used. Our methods are similar
to those developed and proven in Cargnoni, Miiller and West (1997). All summarised results
are based on over 100,000 simulations of posteriors, which are generated following 10,000
“burn-in” simulations that are discarded. Of the total 100,000, we subsample a set of 5,000

spaced 20 apart so as to break correlations and lead to essentially independent samples for
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summary analysis.

For the MODEL-3 class, the relevant unknown parameters are {3y, 314, V, U, ®, aj ¢, prjs }-
For any subset £ of these quantities we will write £~ for the remaining variables together
with the full data set Z. The Gibbs/Metropolis-Hastings framework then involves itera-
tively resampling from exact conditional posterior distributions p(¢|¢ ™) for some subsets
of parameters, and from proposal distributions that approximate conditionals for other pa-
rameters, the latter then subject to accept/reject tests to ensure the accepted samples are

from the true posterior. In turn we sequence through

® By given By,

B¢ given By,

V given V—

U given U™
o ® given &~
o (it i) given (evit, pp) ™

The relevant conditional posteriors and simulation structures are now detailed for each of

these steps.

Sampling 3|3,

The By, are conditionally independent with full conditional posterior distributions, under

reference priors, given by
I

P(Bo11Bp1) o< H plei1|Bor)

=1

and, for ¢ > 1,
I

P(Bot|Bor) H pleit|aig 1, Bor Bor—1)-

=1

We have multivariate normal posteriors
Bo1lBo1 ~ N(Bo1|bor, W/I) and  By|By, ~ N(By|bot, U/T),
where
1
bor = Y aii/I
i=1
and, for ¢ > 1,

T
by = Z{a“ — @1 = Boy1)}/1-
i1
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Sampling 3, |ﬁﬂ

Under reference priors, the 3, vectors are conditionally independent over ¢, with full con-

ditional posterior distributions N (B;;|b1¢, B1¢) for each ¢, and where

1
B = B Z Xy V™ (my — i) and Bul = Z Xy V™ X
=1 =1

Sampling V|V~

Assuming a reference prior for the variance-covariance matrix V, conditional posterior is
the inverse Wishart distribution Wi(V 1|81, H) where

8

I
H= Z Z Vi,
=1t

=1
Sampling U|U~

Assuming a reference prior for the variance-covariance matrix U, the conditional posterior

is given, in terms of the inverse U™}, by

p(U{ea},®) o p(U )({ezt}l@ U)
8

x p(U™ Hp(6i1|q)a U) [] pleitleii—1, @, U)
i=1 =2

« a(U)Wi(UYTI, G)

with
I 8
G =) (et — Peiy—1)(€ir — Pey—1)’
i=1t=2
and
a(U) = |W| 1 2exp(—trace(W™A)/2)

where A = 31, €;1€}; and W = W + U. We use the inverse Wishart distribution as a
proposal distribution in the Metropolis-Hastings algorithm. That is, given a “current” value
of U and corresponding W, we sample a “candidate” value U* from the inverse Wishart

distribution, and accept it with probability

min{1l,a(U")/a(U)}

where W* = dW*® + U*.
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Sampling ®|®~
Conditional on @~ the posterior for ® depends only on the random effects €;; and U via

p(®[eir}, U) o< p(®)p({en}|®,U)
I 8

x p(®) [[plenl®) [] pleileii—1, )
' =2
8

=1
I
x p(®) [] N(eir|o, W) [ N (eit|®eii—1, U)
=1 t=2

where W = ®@Wd + U is easily evaluated as a function of ® and U. Write ¢ = (1, P2, ¢3)’
for the diagonal of @, and E = diag(e;;—1). Then the conditional posterior may be written
as proportional to

p(®)c(P)N(¢|f, F)

where
I 8

I 8
f=F) > EU'¢; and F'=) Y EU'E,
1=11=2 1=1t=2
and

o(®) = [W|~12exp(—trace(W™'A)/2)
where A = Y1 €;1€l; and W = ®W® + U. Under independent uniform priors for the

¢j, the full conditional posterior distribution for ® is the above multivariate normal form
truncated to the (0,1) regions in each dimension, and then multiplied by the factor c(®).
This may be sampled in several ways; we use a Metropolis Hastings algorithm that takes
the truncated multivariate normal component as a proposal distribution. That is, given
a “current” value of ¢, with corresponding matrices ® and W, we sample a “candidate”
vector ¢* from this truncated normal, compute the corresponding diagonal matrix ®* and
variance matrix W* such that W* = ®*W*®* + U, then accept this new ¢* vector with
probability

min{1, c¢(®*)/c(P)}.

Sampling a;|a;;

Simulations are based on proposal distributions derived from the normal-logit approxima-
tions to the data model. Write

Yit = Yit — Xty = i + nyy

where y;; is the vector of logit transforms of the observed outcome proportions. Under the

model structure and assumptions, n;; ~ N(n;|0,V + S;;) where

Sit = diag(sie, sizt, Sizt)
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is the diagonal matrix of approximate data variances in the normal-logit model. Combined

with the model equations
aip = Lo+ Plaig1— By 1)+ wi

and the initial version for the a;, this gives us a multivariate dynamic linear model with
known variance matrices and state vector sequence aj;. Standard results for DLMs now
apply, as in West and Harrison (1997). To sample from the full conditional posterior dis-
tribution we implement multivariate versions of the forward-filtering, backwards-sampling
algorithm detailed in West and Harrison (1997, chapter 15).

Sampling p;|p;,

Given the just-sampled values of all a;;, we again use the normal-logit data model to
generate candidate values of the p;; that are then tested for acceptance based on the exact
conditional posteriors. As above, the approximate normal-logit data model serves to provide
a very useful candidate generating model, as follows. For each ¢ and ¢ the exact conditional

posteriors are
Pl iy Zit) o P(Zit D, pig)p(ptie pegy)

where the likelihood function p(zi|n;, p;;) is the product of the three binomial-logit func-

tions, and the conditional prior p(p;|p;,) is the trivariate normal

witlpgy ~ N(pi|eir + XigByy, V).

Again using the normal-logit approximation to the binomial data models, we obtain the

approximate, and conditionally independent, normal posteriors

wirlyie = N (pig|mie, Qir)

where
Qir=(V'+8;1)™! and my = Qu(V ™' (e + XutByy) + Si'yir)

for each 7 and t.

We use these latter normal distributions as proposal distributions: generate candidate
w;; values from each of this set of approximate posteriors, and accept/reject them according
to a Metropolis-Hastings test. It is easily seen that this is a simple test, based on the ratio
of the exact binomial to the approximate normal-logit likelihood functions. Specifically, if
i, is the current, “old” value of p;; from the previous MCMC iteration, a new value puj,

from the probing distribution N (p;;|m;s, Qi) is accepted with probability

min{1,a(p};)/a(py)}
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where a(-) is the ratio
a(pir) = p(Zit |0ty i) /N (it pie, Sit)

i.e., the ratio of the product of the three exact binomial likelihood components to the
product of the three approximate normal-logit components. Note the very close similarities
of this method to that in multinomial time series modelling in Cargnoni, Miiller and West
(1997).
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