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Abstract

We construct outlier robust confidence sets for autoregressive roots near
unity. There are a few difficulties in doing this - the asymptotics for robust
methods generally involve several poorly estimated nuisance parameters, and
robust procedures are more difficult to compute than least squares based meth-
ods. We propose a family of “aligned” robust procedures that eliminate the
need to estimate some of the nuisance parameters. The procedures are com-
putationally no more burdensome than least squares. In thick-tailed data the
robust sets outperform those based on normality.

1 Introduction

A recurring problem in financial econometrics is how to conduct valid inference on
a linear mean function estimated from monthly, weekly or daily data. For example,
most interest rate models specify the conditional mean to be linear in the previous
value of the process. The data typically exhibit outliers and substantial serial de-
pendence, and in most cases standard methods do not reject the presence of a unit
root in the autoregressive representation of the series. For empirical problems such
as quantifying the effect of parameter uncertainty on short term forecasts and asset
pricing formulas, reporting only the unit root test and the parameter estimates are
an unsatisfying way to describe the data. For these applications it can be useful to
construct confidence sets for the largest autoregressive root of the series.
Both directly and through his students, Thomas Rothenberg has made many

contributions to our understanding of inference for integrated and nearly integrated
processes. One way to construct a confidence set is to invert a sequence of tests, where
each test in the sequence evaluates a particular point null hypothesis. The confidence
set contains all the point nulls that are not rejected by the sequence of tests. Elliott
and Stock (2000) argued that, since a more powerful test leads to a more accurate
∗I thank Thomas Rothenberg.
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interval, inverting the asymptotically point optimal tests in Elliott, Rothenberg and
Stock (1996) should lead to more accurate confidence sets than had been previously
proposed (see Stock (1991), Andrews (1993) and Hansen (1999)). While it is not
possible to do better than the tests in Elliott et al. (1996) when the innovations are
normal, the outliers present in financial data suggest that other methods may lead to
improvements.
This paper proposes “robust” confidence sets which have good accuracy for a

variety of error distributions. We create the confidence sets by inverting a sequence
of robust t tests. Unlike the tests in Elliott et al. (1996), t tests do not efficiently model
the deterministic trend and are not point optimal for any particular distribution. We
use t tests because they are robust: Thompson (2001a) showed that point optimal
tests based on non normal likelihoods can behave very badly when the true error
density is unknown and asymmetric. Thus there is a trade-off between Elliott and
Stock’s (2000) confidence sets, which efficiently handle deterministic trends, and the
confidence sets described here, which are robust to outliers.
Since the robust test statistics generally have null distributions that depend on

unknown nuisance parameters, finding appropriate critical values is a nontrivial prob-
lem. Furthermore, all the robust tests require estimation of more nuisance parameters
than do the least squares tests, and the cumulative effect of estimation error can be
large. In some cases nonparametric estimators must be used, resulting in slow rates of
convergence. An additional problem is that robust tests are somewhat more difficult
to compute than least squares-based tests.
We construct a sequence of robust tests which eliminate the need to estimate

several of the unknown nuisance parameters. To compute critical values we extend a
simple procedure suggested by Rothenberg and Stock (1997). Following Rothenberg
and Thompson (2001) we compute “aligned” robust tests, which in some forms are
no more difficult to compute than least squares-based tests.
The resulting confidence sets perform well so long as the errors are known to follow

an iid process. In this case both asymptotic analysis and a Monte Carlo study show
that the robust sets are useful alternatives to the sets proposed by Elliott and Stock
(2000). We compare the areas of the various sets and conclude that with normal errors
the robust sets do slightly worse than the procedures in Elliott and Stock (2000), and
with non normal errors the robust sets do much better. However, when the errors
follow an unknown serially correlated process neither the robust sets nor the Elliott
and Stock (2000) sets have satisfactory small sample properties.

2 Inverting a sequence of tests

The observations {yt}Tt=1 come from the data generating process

yt = µ1 + µ2t+ ut

ut = (1 + γ) ut−1 + vt
Γ (L) vt = εt
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where {εt}Tt=1 is an iid sequence with mean 0 and variance σ2ε . Γ (L) is the lag
polynomial 1 − Γ1L − · · · − ΓpL

p, and we assume that the roots of Γ (z) = 0 all lie
outside the unit circle. For convenience we assume that u0 = 0. We wish to put a
confidence region around γ.
Since I am interested in inference when γ is close to zero, I adopt the local-to-zero

reparameterization γ = c/T so that the parameter space is a shrinking neighborhood
of zero as the sample size grows. Following Chan and Wei (1987) and Phillips (1987),
I take c fixed when making limiting arguments, obtaining asymptotic representations
as a function of the local alternative c. With this reparameterization, the augmented
Dickey and Fuller (1979) representation of the model is

∆Y = Xα+ Zβ + ² (1)

where ∆Y = (yp+2−yp+1, ..., yT −yT−1)0, X = (yp+1, ..., yT−1)0/T , and Z is the design
matrix with row t−p−1 equal to (1, t,∆yt−1, ...,∆yt−p). The parameter α is cΓ(1), β
is a (p+2)× 1 parameter vector and ² = (εp+2, ..., εT )0. For the intercept only model
(e.g., µ2 = 0) the design matrix Z has rows (1,∆yt−1, ...,∆yt−p).
A 100 (1− a)% confidence set C (y) where y is the data has the property that

Prc [c ∈ C (y)] ≥ 1− a for all c. Here Prc indicates that the probability is computed
assuming c is the true autoregressive parameter. We construct C (y) from a sequence
of tests. Suppose, for each point c in the parameter space Θ, we construct a test of
asymptotic size a for the hypothesis c = c versus c 6= c. We define C (y) as the set
of all c that we fail to reject. In large samples, C (y) has the desired property that
Prc [c ∈ C (y)] ≥ 1− a for all c.
Tests with high power lead to confidence sets with certain optimality properties.

Prc∗ [c ∈ C (y)] is the probability we incorrectly include c when c∗ is the true value.
To make this probability as small as possible, we construct the confidence set using
the most powerful test of the null c = c against the alternative c = c∗.
Stock (1991) constructed confidence sets by inverting a sequence of t-tests based on

the ordinary least squares (OLS) estimator for α in equation 1. Each null hypothesis
α = α versus α 6= α is rejected when the statistic [X 0MX]1/2 (bαls − α) is too large
or too small, where bαls is the OLS estimator and M is the projection matrix I −
Z (Z 0Z)−1 Z 0. This procedure gives us a confidence region for α which, combined
with a consistent estimate of Γ(1), leads to a confidence region for c. Andrews (1993)
and Hansen (1999) also proposed confidence intervals based on t-tests.
In a stationary autoregressive model with Gaussian errors, the least squares t-test

is asymptotically uniformly most powerful against all one-sided alternatives c < c or
c > c. Elliott et al. (1996) have shown that when γ is local to zero this result does
not hold, and that there does not exist a uniformly most powerful test, even in large
samples. Instead, for each null c = c we have a family of point optimal tests, each
one most powerful only against the point alternative c = c. While none of the point
optimal tests dominate the others, they are generally more powerful than the t-test
because the point optimal tests efficiently model the intercept and trend coefficients.
Elliott et al.’s (1996) tests are not point optimal when the error distribution

contains outliers. Thompson (2001a) investigated whether power improvements could
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Table 1: Robust tests

Test ψ (x) function ω

Least Squares M-test x 1
LAD M-test sign (x) 2f (η)
Huber’s M-test x1 (|x| ≤ k) + k sign (x) 1 (|x| > k) Pr [|ε1 − η| ≤ k]
Student’s t M-test (x/n)/(1 + x2/n) Eψ0 (ε1 − η)

Wilcoxon rank test bF (x)− 1/2 E f (ε1)

Normal rank test Φ−1
³ bF (x)´ E f (ε1) /Φ

0 ¡Φ−1 (F (ε1))¢
Sign/Median rank test .5 sign

³ bF (x)− 1/2´ 2f (m)

Notes: Φ is the distribution function for a standard normal. m is the median of ε1.
The parameter k which appears in Huber’s M function is chosen by the researcher. The
parameter n which appears in Student’s t function is the number of degrees of freedom. η
is defined in section 3.1.

be attained when using robust testing methods that are designed to improve power
when the error distribution has thick tails. The improvement occurs when the true
error distribution is known or at least is known to be symmetric. If the true error
distribution is unknown and asymmetric, the robust point optimal tests can behave
very badly. Since in practice we typically cannot exclude asymmetric errors, the viable
unit root tests are the traditional robust tests (which inefficiently handle intercepts
and trends) and the point-optimal Gaussian tests proposed in Elliott et al. (1996)
(which are inefficient in the presence of thick-tailed errors).
Elliott and Stock (2000) constructed confidence sets based on the point optimal

Gaussian tests. The present paper proposes a method for creating confidence sets
from a sequence of traditional robust t tests which inefficiently handle the determin-
istic trend. One way to “robustify” the least squares-based t-test is to replace the
OLS estimate for α with a robust M-estimate. M-estimators may be characterized as
solutions to maximization problems or, equivalently, as solutions to first order condi-
tions. It will be convenient to adopt the notation that, for any function h(·) mapping
< into < and any n-dimensional column vector x with components xi, h(x) is the
n-dimensional column vector with components h(xi). The M-estimators (bα, bβ) solve
the equations

Z 0ψ
³
∆Y −Xbα− Z bβ´ = 0

X 0ψ
³
∆Y −Xbα− Z bβ´ = 0 (2)

where ψ(·) is a scalar “score”-type function chosen by the researcher. The choice of
ψ determines the sensitivity of bα to outliers; when ψ (x) = x, bα is the OLS estimator,
and when ψ (x) = sign (x), bα is the least absolute deviations (LAD) estimator. Some
common choices for ψ are given in Table 1. Robust t-tests of the unit root hypothesis
α = 0 have been proposed by Lucas (1995) and Herce (1996).
We propose an alternative sequence of tests based on a locally asymptotic repre-

sentation of the t-statistic. Under both the null α = αand fixed alternatives α 6= α,
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the t-statistic satisfies the approximation

[X 0MX]1/2 (bα− α) =
1

ω

X 0Mψ
³
∆Y −Xα− Z bβR (α)´
[X 0MX]1/2

+ op(1)

where bβR (α) is the restricted estimator that solves the first order conditions with the
null hypothesis α = α imposed:

Z 0ψ
³
∆Y −Xα− Z bβR (α)´ = 0.

ω is a nuisance parameter defined in section 3. Some robust tests and the correspond-
ing ω parameters are given in Table 1. When ψ (x) = x, bα is the OLS estimator and
ω = 1, and it is straightforward to show that the approximation holds exactly, with
the op(1) term equal to zero.
The parameter ω appears in the asymptotic null distribution of the t-statistic, and

it must be estimated in order to obtain critical values. In large samples the estimates
will converge to their true values and the estimation error will have an asymptotically
negligible effect on inference. In small samples estimation error may affect the size
and power of the tests. This is especially true if ω is poorly estimated. For example,
ω = 2f(m) for LAD estimation, where f(·) is the density of the errors ² and m is
their median. The standard kernel estimate of a density at a point does not converge
to the true value at root-n speed and is quite variable in small samples.
Since eliminating the (1/ω) term does not affect asymptotic power, a natural

alternative is to reject the null when the ratio

Q (α) =
X 0Mψ

³
∆Y −Xα− Z bβR´
[X 0MX]1/2

is too large or too small. The asymptotic null distribution of this statistic does not
depend on ω.
Computing the sequence of tests requires solving for bβR (α) at each α. Depending

on the choice of ψ, this can be a computationally burdensome procedure. We suggest
a slight generalization to the Q (α) statistic. Instead of computing bβR (α) using ψ,
compute it using an alternative set of first order conditions:

Z 0φ
³
∆Y −Xα− Z bβR (α)´ = 0. (3)

φ is a function chosen by the researcher. We could take φ = ψ, or we could take φ
to be a function that leads to computationally convenient solutions for bβR (α). For
example, φ (x) = x leads to OLS estimates of bβR (α), and φ (x) = sign (x) leads
to LAD estimates. If φ, ψ and the error density are all symmetric around zero,
the asymptotic distribution of Q (α) does not depend on φ. While symmetry of the
errors may not hold, in many cases the tests will retain their robustness to outliers.
Following Adichie (1986) and Akritas (1991), we call the test based on Q (α) an
“aligned” M-test.
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Stock (1991) and Elliott and Stock (2000) proposed confidence sets based on
inverting a single test statistic. It is also possible to construct robust confidence sets
based on a single statistic, like Q (0). We choose instead to compute a sequence of test
statistics, because under each null hypothesis α = α the parameter ω does not appear
in the null distribution of Q (α). Inverting a single statistic requires us to calculate its
distribution under both the null and under various alternatives. The results in section
3 show that ω appears in the distribution of Q (α) when α 6= α. Thus computing
a sequence of test statistics allows us to avoid computing the additional nuisance
parameter.
We can also construct Q (α) statistics which are asymptotically equivalent to the

rank-based unit root tests described in Hasan and Koenker (1997). Consider a test
of the null hypothesis α = α using the test statistic [X 0MX]−1/2X 0Mb, where b is
the vector of regression rankscores:

b =

Z 1

0

1
³
∆Y −Xα− Z eβ (τ) > 0´ dϕ (τ) .

1 (·) is the indicator function, eβ (τ) are the coefficients of the regression quantiles
estimated under the null1, and ϕ is a function chosen by the researcher. ?α = 0.
Under the null, MX is independent of any function of ∆Y − Xα − Zβ, including
their ranks. When Z is a vector of ones and ϕ (τ) = τ , each element of b is the rank
of the corresponding element of ∆Y −Xα. The ϕ function allows the researcher to
consider general functions of ranks.
Confidence regions for α may be constructed using a sequence of tests based on

[X 0MX]−1/2X 0Mb. We instead use the computationally simpler family of aligned
rank tests. Given a pair of functions ϕ and φ, for each null hypothesis α = α
use the φ function to compute the residuals ∆Y − Xα − Z bβR (α) from equation
3. Letting et denote the tth residual, compute the empirical distribution functionbF (x) = ({#es ≤ x, s = 1, ..., T} − .5)/ (T − p). Form the Q (α) statistic, taking

ψ (x) = ϕ
³ bF (x)´. This test is based on the idea that under the null, functions

of the ranked residuals should be approximately independent of MX. To see where
the ranked residuals show up in this test, construct the vector R (α) with each element
equal to the rank of the corresponding residual, and notice that

ϕ
³ bF ³∆Y −Xα− Z bβR (α)´´ = ϕ

µ
R (α)− .5
T − p

¶
.

Subject to regularity conditions, every choice for φ leads to a Q (α) test with the same
asymptotic null distribution and power function as the test based on [X 0MX]−1/2X 0Mb.
Table 1 lists common rank tests and the corresponding choices for ψ.

1 eB (τ) solves the minimization problem minβ
PT

t=p+1Ψτ (∆Y − Zβ) with Ψτ (u) =
u (τ − 1 (u < 0)). See Hasan and Koenker (1997), Koenker and Bassett (1978) and Gutenbrunner
and Jureckova (1992) for details.
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3 Asymptotic analysis

The limiting distribution of Q (α) can be expressed as a functional of Brownian
motion. Define W (·) to be standard Brownian motion and define Wc(·) to be the
Ornstein-Uhlenbeck process Wc(t) =

R t
0
exp{c(t − s)} dW (s). Under the null that

α = α, the limiting form of the OLS-based statistic [X 0MX]1/2 (bαls − α) is σεDF (c),
where

DF (c) ≡
R 1
0
Dc(r) dW (r)qR 1
0
D2
c(r) dr

and c = Γ−1 (1)α. The process Dc(r) is defined to be Wc(r) −
R 1
0
Wc(s) ds in the

intercept only model (e.g., µ2 = 0 and there is no time trend in the design matrix Z),
and Dc(r) equals Wc(r)− 2

R 1
0
(2− 3s− r(3− 6s))Wc(s) ds in the model with a linear

time trend. We have the following result.2

Proposition 1 bσ−1ψ Q
³bΓ (1) c´ converges weakly to Q (c, ρ) + λ (c− c)

qR
D2
c(r) dr,

where
Q (c, ρ) ≡ ρDF (c) +

p
1− ρ2N (0, 1) .

N (0, 1) denotes a standard normal variable, independent of DF (c). ρ and λ are
nuisance parameters. bσψ and bΓ (1) are consistent estimates of the nuisance parameters
σψ and Γ (1).

The nuisance parameters ρ, λ and σψ are defined in sections 3.1 and 3.2. In large
samples the nuisance parameters ρ and λ determine the null distribution and power
function of each test. Under the null c = c and λ disappears from the asymptotic
representation. Thus ρ controls the null distribution of the test, while ρ and λ together
affect power.

3.1 Obtaining critical values

Obtaining a rejection region for Q (α) requires us to calculate the quantiles of Q (c, ρ)
and to consistently estimate the nuisance parameters. Let kl (c, ρ) and ku (c, ρ) denote
the quantiles of Q (c, ρ) that solve Pr[kl (c, ρ) ≤ Q (c, ρ) ≤ ku (c, ρ)] = a. Let bρ, bσψ
and bΓ (1) denote consistent estimates of the nuisance parameters. The null hypothesis
c = c is rejected in favor of the two sided alternative c 6= c when bσ−1ψ Q

³bΓ−1 (1) c´ is
either below kl (c, bρ) or above ku (c, bρ). In large samples this test has size equal to a.
For the aligned M tests ρ and σ2ψ are Corr [ε1,ψ (ε1 − η)] and Var [ψ (ε1 − η)],

where η solves Eφ (ε1 − η) = 0. For the aligned rank tests ρ = Corr [ε1,ϕ (F (ε1))]
and σ2ψ = Var [ϕ (U)], where F (x) is the distribution function Pr [ε1 ≤ x] and U is a
random variable distributed uniformly on the unit interval.

ρ generally depends on ψ, ϕ and φ, and the error density. An exception to this
is Stock’s (1991) OLS-based test, where ψ (x) = x and ρ = 1 no matter what the

2All proofs are collected in the Appendix.
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Table 2: Values of ρ and λ

ρ λ
N(0, 1) DE Log Norm Mix N(0, 1) DE Log Norm Mix

Least Squares 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LAD .80 .71 .63 .47 .80 1.42 .99 1.86
Huber’s M .97 .94 .82 .78 .97 1.13 1.59 1.98
Student’s t3 .95 .89 .72 .61 .95 1.21 1.70 2.19
Wilcoxon .98 .92 .68 .64 .98 1.22 2.72 2.17
Normal ranks 1.00 .98 .76 .77 1.00 1.28 3.55 2.06
Sign ranks .80 .71 .52 .47 .80 1.42 1.73 1.86
Notes: Expectations were computed as empirical averages of 1,000,000 simulated draws

from the error distribution. N(0, 1) indicates standard normal draws, DE indicates double
exponential, Log Norm is Log Normal, and Mixture is mixture normal. The random draws
are normalized to have zero mean and unit variance. For each test φ (x) = x.

error density. For other tests ρ differs from 1 and the limiting null representation
becomes a linear combination of the “Dickey-Fuller” term DF (c) and a standard
normal variable. For the M tests σ2ψ depends on both ψ and the error density, and
for the rank tests σψ is known and does not need to be estimated.
Table 2 lists values for ρ for various tests and error densities. It includes the

aligned M tests based on LAD, Huber’s function and the Student’s t density with
three degrees of freedom (denoted t3).3 It also includes the three rank tests considered
in Hasan and Koenker (1997): the tests based on Wilcoxon, Normal and Sign ranks.
The error distributions considered are the standard normal as well as the thicker-
tailed double exponential, log normal, and mixture normal distributions. For the
mixture distribution a standard normal variable is drawn with probability .95 and a
N(0, 36) variable is drawn with probability .05. For the M tests φ (x) equals x. For
the rank tests the choice of φ does not affect ρ.
The values of ρ fall as the errors become thicker-tailed. For normal errors the

parameter is close to 1, except for the LAD and Sign rank tests. Under normality the
null distributions of the other tests are similar to the null for the least squares-based
tests. When the errors have thick tails the null distributions are different from the
least squares distributions and from each other.
The quantiles of Q (c, ρ) are not known in closed form. A number of meth-

ods have been proposed for approximating quantiles of statistics similar to Q (c, ρ).
Stock (1991) calculated quantiles of Q (c, 1). Lucas (1995), Herce (1996), Hasan and
Koenker (1997), Seo (1999) and Thompson (2001b) all proposed methods to handle
null distributions of the form Q (0, ρ). All of these methods could be extended to the
general statistic Q (c, ρ).
We adopt a method proposed by Rothenberg and Stock (1997), who encountered

a statistic similar to Q (c, ρ). It turns out that, no matter what the trend specifica-
tion or the value for c, the “Dickey-Fuller” term DF (c) is approximately normally

3Following Lucas (1995), the scale parameter k in Huber’s function is set to 1.345σε.
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distributed. Thus Q (c, ρ) is approximately a linear combination of two normal vari-
ables, and is approximately normal. Rothenberg and Stock (1997) suggested the
Cornish-Fisher expansion as a way to calculate the critical value of a statistic simi-
lar to Q (c, ρ). The Cornish-Fisher expansion provides good approximations to the
quantiles of distributions with approximately Gaussian shapes.
The Cornish-Fisher expansion for the a quantile of a statistic u is

E(u) + [Var(u)]1/2[qa +K3(u)(q
2
a − 1)/6]

where K3(u) = E[u − Eu]3/(Var(u))3/2 and qa is the a-percentile of the standard
normal distribution. Correcting the mistake in Rothenberg and Stock (1997), one
can show that

E(Q (c, ρ)) = ρE (DF (c))

Var(Q (c, ρ)) = ρ2Var (DF (c)) +
¡
1− ρ2

¢
E (Q (c, ρ)− EQ (c, ρ))3 = ρ3 E (DF (c)− EDF (c))3

Figure 1 and table 3 contain Monte Carlo estimates of the first three moments of
DF (c) when the model includes an intercept and trend.4

3.2 Asymptotic power

Asymptotic power is the probability in large samples that the test rejects the null.
Asymptotic power obviously increases with λ, which shifts the distribution of the
test statistic to the left when c is negative. ρ also affects power by changing the
shape of the distribution. Results in Thompson (2001b) suggest that for the unit root
hypothesis c = 0, the asymptotic power function is much more sensitive to λ than to
ρ.

λ is defined equal to σεω/σψ, where ω is
R
R f (x) dψ (x− η) for the M tests andR 1

0
f (F−1 (u)) dϕ (u) for the rank tests, and f denotes the density function for ε1.

When ψ and ϕ are everywhere differentiable the formulas have the more familiar
form Eψ0 (ε1 − η) and Eϕ0 (F (ε1)). Formulas for ω for some robust tests appear in
Table 1. It is clear from these formulas that λ generally depends on ψ, φ and the
error density. For least-squares based tests, ψ0(x) = 1 and λ equals 1 no matter what
the error density.
Table 2 lists values of λ for various tests and error densities. λ increases as the

errors become thicker tailed, suggesting that thicker tailed errors lead to increased
power. Under normal errors the parameter for the LAD and Sign-median rank tests
are far below 1, so we expect these tests to have poor power relative to the least
squares-based tests when errors are normal. For the rest of the tests λ is close to
1 with normal errors, implying that these tests have power almost as good as least

4The simulations which appear in this paper were performed by computing stochastic integrals
as normalized sums of 500 successive draws from a discrete time Gaussian AR(1) process with
autoregressive parameter 1 + c/T . There are 25, 000 Monte Carlo replications.
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Figure 1: First, second and third moments of DF (c), intercept and trend case
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Table 3: Moments of DF (c), model includes a linear time trend

c EDF (c) Var (DF (c)) E (DF (c)− EDF (c))3
c < −60 −20 (62− c)−.8 1 0
−60 ≤ c ≤ 1 −2.013− 15.809

8.1−c 1.112 + .123
100 c− 3.635

6.7−c .0136 + .203
1000c

2 −2.253 .772 .288
3 −1.348 1.594 .188
4 −.602 1.658 −.621
5 −.176 1.411 −.737
6 .051 1.169 −.417
7 .154 1.056 −.231
8 .202 .991 −.106
9 .216 .968 −.056
10 .215 .961 −.042

11 ≤ c ≤ 30 .347− .0147c+ .209
1000c

2 .913 + .524
100 c− .870

1002 c
2 −.0213 + .591

1000c

c > 30 400/ (35 + c)2 1 0
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squares when errors are normal and better than least squares when errors are thick
tailed. In this sense they are robust to different error densities.
Thompson (2001b) showed that for a given error density, λ is maximized by choos-

ing −ψ or −ϕ (F (x)) equal to the log density of the errors. For the aligned rank tests
this result holds for any choice of φ and for the aligned M tests it is true if φ = ψ.
The result is not surprising, since it corresponds to testing under correct specification
of the error distribution. Thus, to maximize λ with Gaussian errors use the least
squares or Normal ranks tests, and with double exponential errors use the LAD or
Sign ranks tests.
In figure 2 we compare the large sample properties of the various confidence sets.

Six data generating processes are considered: c = 0 with iid innovations vt drawn
from standard normal, log normal and mixture normal distributions, and c = −30
with iid innovations drawn from the same three distributions. We ignore the pos-
sibility of serially correlated innovations because they do not affect the asymptotic
representations. The figure includes confidence sets based on seven t tests as well as
Elliott and Stock’s (2000) PT test5. The PT test efficiently handles trend coefficients
and is point optimal in a Gaussian model. For the robust tests φ (x) = x so that
preliminary estimation is by OLS. The model includes an intercept and time trend.
The figure displays measures of the area covered by the simulated confidence sets.

Area is a standard optimality criteria for confidence sets. Sets with smaller areas are
generally considered superior. For each test and data generating process, a confidence
set was constructed from the sequence of 91 hypothesis tests of the nulls c = −60,
−59, ..., 30. The area of each confidence set was approximated by the number of null
hypotheses which were not rejected. For example, if the confidence set contains only
the two values −10 and −11, the area is 2. The figure displays the 25%, 50% and
75% empirical quantiles of the areas of 25000 simulated intervals.
In large samples the robust confidence sets are useful alternatives to the PT -based

sets. Predictably, the PT sets perform slightly better for Gaussian errors. When c = 0
half of the simulated PT -based areas fall between 11 and 20, while half of the sets
based on the Wilcoxon and Normal ranks tests fall between 13 and 23. However,
with thick tailed error distributions the robust sets dominate PT -based sets. When
c = −30 and the errors are log normal, half of the PT -based areas range from 32 to
36, compared with areas from 11 to 13 for the Wilcoxon ranks test and 9 to 10 for
the Normal ranks test.
The performance of the robust sets is surprising. Thompson (2001a) showed that,

when testing the unit root hypothesis, the efficiency loss due to using a point op-
timal test (thus ignoring thick-tailed errors) is often less than that due to using a
robust t test (and inefficiently modelling the trend coefficients). For example, the
point-optimal Gaussian unit root test is more powerful than many traditional robust
unit root tests when the errors are drawn from a Student’s t distribution with five
or more degrees of freedom. The results in figure 2 suggest that the large power
improvements gained from efficiently handling trends translate into small improve-

5The asymptotic representation for PT is given in Elliott and Stock (2000). We use the repre-
sentation for the the “fixed inital case.”
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ments in confidence set area. Even the least squares-based t test, which is everywhere
dominated by the PT test, performs only slightly worse in terms of area.
The case for using robust sets is weaker in the intercept only model. In figure 3,

which depicts the intercept only case, the PT -based sets are so short at c = 0 that
there is little room for improvement. At normal error half of the simulated PT -based
areas fall between 6 and 11, while half of the sets based on the Wilcoxon and Normal
ranks tests fall between 8 and 16. At the alternative c = −30 the robust sets lead to
larger gains with thick tailed distributions. While half of the PT areas are from 29 to
34 at log normal errors, the numbers for the Wilcoxon and Normal ranks sets are 11
to 13 and 8 to 10.
Figures 2 and 3 provide a number of additional interesting results. All of the sets

are larger at c = −30 than at c = 0. The Wilcoxon ranks and Normal ranks tests
have good properties for all the error distributions. In contrast to the other robust
sets, the LAD-based sets perform poorly with the thick tailed log normal distribution.
The performance of the LAD-based set can be improved by choosing φ (x) equal to
sign (x) instead of x. The formulas for the nuisance parameters lead immediately
to the result that picking ψ (x) = φ (x) = sign (x) is asymptotically equivalent to
constructing intervals from the Sign ranks test. Thus the much improved large sample
results for the LAD-based set appear in the figures.

4 Monte Carlo evidence

We conducted a Monte Carlo study to investigate the small sample properties of the
various confidence sets. In all of the simulations that follow we chose φ (x) equal
to x so that estimation is by least squares. With this choice for φ the tests can be
computed in closed form. Our algorithm for constructing a confidence region for c
follows.

1. Choose a finite list of points {ci}ri=1. We pick ci = −60 + i for i = 0, ..., 90.
2. For each ci, compute the hypothesis test of the null c = ci against the two-sided
alternative c 6= ci:

(a) Compute the estimates bρ, bσψ and bΓ (1). Following Elliott and Stock (2000),
we use autoregressive estimates from least squares estimation of the equa-
tion

∆ydt = a0y
d
t−1 +

pX
i=1

ai∆y
d
t−i + et

where ydt is obtained by GLS detrending.
6 Let bet denote the residuals

from this regression. For the M tests, bσ2ψ is T−1P¡
ψ (bet)− ψ

¢2
, bσ2ε is

6ydt = yt − (1, t)βdt, where βdt is obtained by regressing
¡
y1, y2 − T−1ciy1, ..., yT − T−1ciyT−1

¢0
on the T × 2 matrix with first row equal to (1, 1) and tth row equal to ¡−cT−1, t− (t− 1) cT−1¢ for
t > 1 The number of lags p is chosen by Ng and Perron’s (2000) MAIC procedure with a maximum
of four lags.
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Figure 2: Asymptotic 25th, 50th, and 75th quantiles of the area covered by each
confidence set. The model includes an intercept and time trend, with (µ1, µ2) = (1, 1).
(Key to tests: 1 = PT , 2 =least squares, 3 =LAD, 4 =Huber, 5 =t3, 6 =Wilcoxon,
7 =Normal ranks, 8 =Sign ranks.)
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Figure 3: Asymptotic 25th, 50th, and 75th quantiles of the area covered by each
confidence set. The model includes an intercept only, with µ1 = 1. (Key to tests:
1 = PT , 2 =least squares, 3 =LAD, 4 =Huber, 5 =t3, 6 =Wilcoxon, 7 =Normal
ranks, 8 =Sign ranks.)
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T−1
P
(bet − e)2 and bρ equals T−1Pψ (bet) (bet − e) /bσεbσψ. ψ and e denote

the usual sample averages. For the rank tests the same formulas hold
with ψ (x) replaced by ϕ( eF (x)), where eF (x) is the empirical distribution
function for bet. bΓ (1) is estimated by 1−Pp

i=1 bai.
(b) Calculate bβR ³cibΓ (1)´ by regressing Y − cibΓ (1)X on Z. Calculate the

residuals MX from a regression of X on Z.

(c) Choose a ψ or ϕ function and compute the test statistic Q
³
cibΓ (1)´.

(d) Use the method in section 3.1 to calculate the athl and athh quantiles of
Q (c, ρ). In the Monte Carlo study we use the 2.5% and 97.5% quantiles.

The null is rejected when bσ−1ψ Q
³
cibΓ (1)´ is greater than the athh quantile

or less than the athl quantile.

3. The 100 (ah − al)-percent confidence region consists of all ci which the hypoth-
esis tests fail to reject.

Figure 4 provides encouraging results about the small sample coverage probabil-
ities of the robust intervals. The four graphs depict empirical coverage probabilities
from 2000 Monte carlo replications of sample size 100 from the model with iid er-
rors vt drawn from the standard normal, double exponential, log normal and mixture
normal distributions. The true values for 1 − γ range from 0 to 1.2. We make the
unrealistic assumption that the reseacher knows that the errors are iid and includes
no lagged ∆yt terms in the design matrix. The model includes an intercept and time
trend.
In this simple setup the small sample coverage probabilities are quite close to the

nominal probabilities of .95. This holds for each test and error distribution, even for
values of γ far from the integrated case γ = 0. Thus the local to zero asymptotics
provide good small sample approximations for both integrated and stationary data.
This occurs because under the null the test statistic Q (α) is stochastically bounded
for both the integrated and stationary cases. In the stationary case Q (α) has a
limiting standard normal null distribution, and the local to zero asymptotics lead to
complicated representations of standard normal variables.
These methods do not work nearly as well when the dependence structure of

the error is unknown. Table 4 gives empirical coverage probabilities of the various
confidence sets for several types of serial correlation:

IID: vt = εt
AR: vt = .3vt−1 + εt
MA: vt = εt − .3εt−1.

The numbers are reasonably close to the nominal coverage rate of .95 so long as the
true value of c is 0. For c = −30, the coverage rates are strongly biased downward.
This is true of all the tests, and the effect is strongest for the PT test. IID errors lead
to the best coverage rates, with probabilities close to .9 in many cases. A possible
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Table 4: Empirical coverage probablities

N(0,1) errors DE errors Log Norm errors Mixture errors
Test IID AR MA IID AR MA IID AR MA IID AR MA

True c = 0
PT .94 .91 .91 .94 .92 .91 .95 .93 .92 .95 .93 .91

Least squares .95 .94 .94 .95 .94 .93 .96 .95 .95 .94 .93 .93
LAD .96 .95 .96 .96 .95 .95 .95 .95 .95 .97 .96 .95

Huber’s M .95 .94 .94 .96 .94 .94 .96 .95 .94 .96 .95 .93
Student’s t3 .96 .94 .95 .95 .94 .94 .96 .95 .95 .96 .95 .94
Wilcoxon .96 .95 .95 .96 .95 .94 .96 .95 .95 .96 .95 .95

Normal ranks .96 .95 .94 .96 .95 .94 .96 .95 .94 .96 .95 .95
Sign ranks .96 .96 .94 .95 .95 .94 .95 .95 .95 .96 .96 .96

True c = −30
PT .61 .31 .36 .61 .30 .34 .66 .26 .34 .71 .28 .32

Least squares .88 .63 .74 .88 .63 .75 .87 .61 .74 .92 .58 .73
LAD .90 .75 .82 .88 .57 .71 .86 .46 .62 .90 .48 .71

Huber’s M .88 .65 .76 .87 .54 .69 .84 .34 .51 .88 .33 .45
Student’s t3 .88 .67 .78 .87 .52 .66 .83 .33 .51 .87 .32 .47
Wilcoxon .88 .66 .77 .87 .53 .68 .81 .28 .50 .87 .36 .55

Normal ranks .89 .64 .75 .88 .58 .71 .81 .29 .52 .88 .35 .52
Sign ranks .91 .75 .82 .88 .57 .71 .84 .38 .59 .90 .49 .73

Notes: The model includes an intercept and time trend, with (µ1, µ2) = (1, 1). There are
2000 Monte Carlo replications. Sample size is n = 100.

explanation for these results is that the estimator for Γ(1) performs poorly at alter-
natives far from c = 0. Another explanation is that the asymptotic approximations
work only when the largest root of the autoregressive polynomial for ut dominates the
other roots. As the alternative range from c = 0 to c = −30, the largest root shrinks
relative to the other roots. While these results are discouraging, there may be ways
to improve the nuisance parameter estimates or the asymptotic approximations.

5 Appendix

A Sketches of Proofs

To be completed....
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Figure 4: Empirical coverage probabilities when the researcher knows that vt are iid.
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Notes: The model includes an intercept and time trend, with (µ1, µ2) = (1, 1). There are
2000 Monte Carlo replications. Sample size is n = 100.
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