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Abstract 

This paper considers testing the transformation parameter of the Box-Cox model 

when the distribution of the error is unknown. The transformation parameter indexes the 

most commonly used functional forms. The null hypothesis is tested using Wald and 

Lagrange Multiplier (LM) statistics constructed from GMM estimators. The finite sample 

performance of the tests with asymptotic and bootstrap critical values is investigated in a 

Monte Carlo study.  The LM test with asymptotic critical values satisfactorily controls 

the Type I error for sample sizes available in practice. The numerical performance of the 

Wald test with bootstrap critical values is disappointing. 
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1.Introduction 

The Box-Cox (1964) regression model is a transformation model of the form 

 ( , ) ,T Y X Uα β′= +                    (1.1) 

where T is a strictly increasing function, Y is an observed dependent variable, X is an 

observed K dimensional random column vector, β is a vector of constant parameters that 

is conformable with X, and U is an unobserved random variable.  

   The Box-Cox transformation is  
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The transformation provides a flexible parameterization of the relation between the 

dependent variable and the regressors.  In particular, the model is a linear model if α = 1, 

a power transformation model if α ≠ 0 or 1, and a log linear model if α = 0.  

If the cumulative distribution function (CDF) of U, denoted by F, is known or 

known up to finite dimensional parameters, then α and β and any parameters of F can be 

estimated by maximum likelihood. A widely used procedure, which was suggested by 

Box and Cox (1964), is to estimate α and β by the maximum likelihood (ML) under the 

assumption that the U is normally distributed. The resulting estimator of α and β  is 

referred to as the Box-Cox ML estimator. The Box-Cox ML estimator is discussed in 

many econometric textbooks, for example, Amemiya (1985), Greene (2000) and 

Mittelhammer, Judge and Miller (2000) and Ruud (2000). 
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 The assumption of normality cannot be strictly true, however.  T(y,α) is bounded from 

below (above) if α > 0 (α< 0) unless α is an odd integer or 0. Thus, the Box-Cox 

transformation cannot be applied to models in which the dependent variable can be 

negative or the distribution of U has unbounded support, and, hence, this rules out the 

case where U is normally distributed.   

 In practice, however, F is often unknown. Thus, an empirically relevant statistical 

problem is to obtain consistent estimators of α and β when F is unknown. The solution 

proposed by Amemiya and Powell (1981) is to use the nonlinear two-stage least squares 

(NL2SLS) estimator of α and β. The NL2SLS estimator is a generalized method of 

moments (GMM) estimator, and it is the efficient GMM estimator for the choice of 

instruments used by Amemiya and Powell, provided U is homoskedastic. Horowitz 

(1998) discusses GMM estimation of α and β . 

         Khazzoom (1989) pointed out that the NL2SLS estimates for this model are ill-

defined for data sets in which the dependent variable always exceeds (or is exceeded by) 

one. The non-negative GMM objective function has a global minimum of zero as α tends 

to minus infinity when y >1 and infinity when y <1. Powell (1996) has proposed a simple 

rescaling of the GMM objective function that helps ensure the estimates are interior 

points of the parameter space.   

 The focus of this paper is on testing the transformation parameter α in the Box-Cox 

model when F is unknown. This null is tested using Wald and Lagrange Multiplier (LM) 

test statistics constructed from GMM estimators.  The test of the null is based on an 

estimator of the Type I critical value.  Horowitz and Savin (2000) define this critical 

value as one that would be obtained if the exact finite sample distribution of the test 
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statistic under the true data generation process were known.  In our setting, the true Type 

I critical value is unknown because the null hypothesis is composite; that is, the exact 

finite-sample distribution of the test statistic depends on β and F, population parameters 

not specified by the null.  Thus, an approximation to the Type I critical value is required 

to implement the test. 

 An approximation to the Type I error critical value can be obtained by using the 

first-order asymptotic distribution of the test statistic to approximate its finite-sample 

distribution. The approximation is useful because most test statistics in econometrics are 

asymptotically pivotal: their asymptotic distributions do not depend on unknown 

population parameters when the null hypothesis being tested is true. Hence, an 

approximate Type I critical value can be obtained from first-order asymptotic distribution 

theory without knowledge of the true data generation process. This is true for the Wald 

and LM statistics employed to test null hypotheses about the transformation parameter.   

 However, Monte Carlo experiments have shown that first-order asymptotic theory 

often gives a poor approximation to the exact distributions of test statistics with the 

sample sizes available in applications. As a result, the difference between the true and 

nominal probabilities that a test rejects a correct hypothesis, the error in the rejection 

probability, can be large when an asymptotic critical value is used.  

Another approach is to use the bootstrap. The bootstrap is a method for estimating 

the distribution of a statistic or a feature of the distribution, such as a moment or a 

quantile. Under regularity conditions, the bootstrap provides an approximation to the 

Type I critical value that is more accurate than the approximation of first-order 
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asymptotic theory. These regularity conditions are satisfied for the Wald and LM test 

statistics considered in this paper.   

This paper investigates the numerical performance of the tests with asymptotic 

critical values and with bootstrap critical values.  In the Monte Carlo experiments, two 

different specifications are considered for the Box-Cox model. The first is the two-

parameter gamma distribution for Y given x proposed by Amemiya and Powell (1981), 

and the second is the truncated normal for T(y,α) given x used by Poirier (1978). The 

Monte Carlo results show that the tests with bootstrap critical values provide good 

control over the Type I error for sample sizes used in applications. 

In the context of the Box-Cox model, the linear model can be tested against other 

specifications that are indexed by the transformation parameter. For example, the linear 

model can be tested against the log-linear model by testing the null hypothesis that α = 1 

against the alternative α = 0. For the tests to be useful, they must be able to discriminate 

between alternative specifications. We examine the power of the bootstrap-based Wald 

test against various alternative specifications and similarly for the LM test.  

        The organization of the paper is the following. GMM estimation of the Box-Cox 

model is reviewed in Section 2.  Section 3 introduces the Wald and LM tests constructed 

from GMM estimators. The bootstrap method is presented in Section 4. Section 5 

describes the main features of the design of the experiments. The results of the Monte 

Carlo experiments on the numerical performance of the bootstrap are presented in Section 

6. Section 7 contains the concluding comments. 

2. GMM Estimators 
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This section reviews the estimation of the parameters α and β by the general 

method of moments (GMM).  The GMM estimator is consistent under weak distribution 

assumptions (Mittlehammer et al. (2000)). 

Let W be a column vector of valid instruments.  Validity requires that E(W’U) = 0 

and dim(W) = m  ≥ k + 1. Powers, crossproducts and other nonlinear functions of X can 

be used to form W.  Given W, the parameters α and β can be estimated using the 

population moment condition 

 { [ ( , ) ' ]} 0,E W T Y Xα β− =        (2.1) 

provided that this equation uniquely determines α and β.   

Denote the estimation data by {Yi, Xi: i = 1, …, n,} and assume that they are a 

random sample from the joint distribution of {Y, X}. . Let ( , )θ α β ′ ′= , 

1( ) ( , ) and ( ) ( ( ),..., ( ))i i i nU T Y X U U Uθ α β θ θ θ′ ′= − = . Also let W = 1[ ,..., ]nW W ′  denote the 

matrix of instruments where Wi is  a vector of functions of Xi that includes Xi. Finally, let 

ˆ ˆˆ( , )n n na bθ ′ ′=  where ˆna  and n̂b  denote the GMM estimators of α and β, respectively. 

The GMM estimator solves 

 : ( ) ( ) W W ( )nminimize S U U
θ

θ θ θ′ ′= Ω      (2.2)  

where  Ωn is a positive definite, possibly stochastic matrix. One possible choice of nΩ  is 

1[W'W]n
−Ω = , in which case (2.2) gives the NL2SLS estimator of Amemiya (1974, 

1985).  This choice is asymptotically efficient if the errors Ui are homoskedastic. 

 Amemiya and Powell (1981) and Amemiya (1985) discuss the use of NL2SLS for 

estimation of the Box-Cox model.  



 6

We note that change in the NL2SLS estimate of β due to a rescaling of X is the 

same as the change in the ordinary least squares (OLS) estimate in the linear regression 

model. By contrast, the effect of rescaling Y depends on whether the parameters are 

exactly or overidentified.  In the exactly identified case, rescaling Y has no effect on the 

NL2SLS estimate of α; only β is affected.  In the overidentified case, rescaling Y 

changes the estimates of  both α and β.  

The consistency of the estimator minimizing (2.3) is established by verification of 

three conditions: compactness of the parameter space; convergence in probability of the 

objective function Sn to its expected value, uniformly in α and β; and uniqueness of the 

solutions satisfying the moment condition (2.1). The compactness and identification 

conditions turn out to be demanding due to the nature of the transformation function,  

T(Y, α).  

As Khazzoom (1989) notes, if y > 1, then ( , ) 0 as -T y α α→ → ∞ , and, similarly, 

if y < 1, ( , ) 0as T y α α→ → ∞ . This implies that the compactness plays a crucial role in 

the uniqueness of the solution of (2.1). In particular, each residual 

'( ) ( , )i i iU T y xθ α β= − can be set equal to 0 by setting α = -∞ and β = 0 if each yi >1. The 

resulting pathology of the objective function is important in practice since in many data 

sets all values of the dependent variable exceed one.  

To avoid the problem associated with the scaling of the dependent variable, 

Powell (1996) suggested the following rescaling of the GMM objective function: 

 2( ) ( ) ( ) ,n nQ S y αθ θ −= ⋅ &        (2.3) 
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where the GMM objective function Sn is given in (2.2) and y&  is the geometric mean of 

the absolute values of the dependent variable: 

  

 
1

1
exp log(| |) .

n

i
i

y y
n =

 ≡  
 

∑&        (2.4) 

 
The rescaled GMM objective function Qn is less likely than Sn to be minimized by values 

on the boundary of the parameter space. However, as Powell (1996) notes, rescaling the 

original GMM function by 2y α−&  cannot guarantee that a unique and finite minimizing 

value of α will exist.  

The objective function  

 ( ) [ ( ) W / ]' [W ( ) / ]nQ U y U yα αθ θ θ′ ′= Ω& &      (2.5) 

can be concentrated as a function of α only. This implies that for a given α the optimal 

β in (2.7) is  

 1

1 1 1 1

( ) [( ) ( )] ( ) ( ( , )
n n n n

i i i i i i i i
i i i i

W X W X W X W T y aβ α −

= = = =

′ ′ ′′ ′= Ω Ω∑ ∑ ∑ ∑   (2.6) 

since y α−&  cancels. The concentrated objective function in a is obtained by substituting 

(2.8) into (2.7), which gives 

 2 2( ) ( , ( )) ( , ( ))/ ( ) /n n n nQ Q S y S y
α αα α β α α β α α= = =& & ,   (2.7) 

where  Sn (α) is the concentrated objective function for GMM. The estimation procedure 

for rescaled GMM simplifies to a one-dimensional grid search via the concentrated 

objective function and similarly for the original GMM estimation problem. Note that if 

NL2SLS and RNL2SLS give the same estimate of α, then they both give the same 

estimate of β.  
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 Powell (1996) argues that the original and rescaled GMM estimators have the 

same asymptotic distribution. Hence, the standard formulae for the first-order asymptotic 

distribution and asymptotic covariance matrix estimators for GMM estimators apply 

directly to the rescaled estimators. 

3. Tests  
 

This section introduces the Wald and LM tests of the null hypotheses h(θ) = 0 

where h(θ) is a q dimensional differentiable function. The tests are constructed using 

GMM estimators.   

Hansen (1982) derived the asymptotic distributional properties of the GMM 

estimator.  Hansen (1982) showed under mild regularity conditions that θn = ˆˆ( , )n na b ′ ′ is a 

consistent estimator of θ  and that θn is asymptotically normally distributed: 

 1 / 2 ˆ( ) (0, )d
nn N Vθ θ− →         (3.1) 

     

where 

 1( ' ) ,V D D −= Ω         (3.2) 

with [ ( , ) ]D E W T Y Xα β
θ
∂

= −
∂

 and lim n
n
p

→∞
Ω = Ω .  Letting  ( ) /U Uθ θ θ= ∂ ∂ and, 

ˆˆ ( ) /nU Uθ θ θ= ∂ ∂ , V can be estimated by replacing D in (3.2) by ˆW Uθ′  and Ω  by nΩ . 

Thus, (3.1) and (3.2) with V replaced by  

 ˆ ˆ ˆW Wn nV U Uθ θ
′= Ω ′   

 make it possible to carry out inference in sufficiently large samples. 
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 The Wald statistic for testing h(θ) = 0 is based on the unconstrained GMM 

estimator of θ.   The Wald statistic is  

 1ˆ ˆ ˆ ˆˆ( ) [ ] ( )Wald n h h V h hn n nθ θθ θ
−′= ⋅ ′ ,      (3.3) 

where ˆ ˆ( ) /nh hθ θ θ= ∂ ∂ .  This statistic is distributed asymptotically as a chi-square 

variable with q degrees of freedom if the null is true. The principle disadvantage of the 

GMM based Wald statistic is that it is not invariant to reparametrization of the null 

hypothesis or rescaling of the dependent variable. Spitzer (1984) has shown a similar lack 

of invariance for the Wald statistic based on the Box-Cox ML estimator; see also Drucker 

(2000). 

            The null hypothesis tested in this paper specifies the value of the transformation 

parameter: H0: 0α α= . The Wald statistic for testing H0: 0α α=  is  

             
2

0
2

ˆ( )
ˆ

n

n

n aWald
s

α−= ,                                                                                          (3.4) 

where 2ˆns  is the first diagonal element in n̂V . The Wald statistic (3.4) is distributed 

asymptotically as chi-square variables with one degree of freedom when the null 

hypothesis is true.  The GMM estimators that can be used in computing (3.4) include as 

special cases the NL2SLS and RNL2SLS estimators. 

          Newey and West (1987) have developed an LM test based on the constrained 

GMM estimator. This LM test is presented in Greene (2000). The constrained estimator, 

denoted by ( , )n n na bθ ′ ′=% %% , solves (2.2) subject to the constraint h(θ) = 0.  The GMM-based 

LM statistic is  

 1
W W W[ ] /n U P U U P U U P U U Uθ θ θ θ

−′ ′′ ′⋅ % % % % % % % % ,     (3.5) 
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where W
-1W(WW) WP ′ ′= , ( )nU U θ= %% and .( ) /nU Uθ θ θ= ∂ ∂%%  This is 2n R⋅  from a regression of 

U% on WP Uθ
% . That is, the LM statistic can be obtained from regressing Uθ

% on W, calculating 

the predicted value, and then calculating 2n R⋅  from a regression of the restricted residual 

on these predicted values. The constrained NL2SLS and RNL2SLS estimates of α are the 

same, and, hence, the constrained NL2SLS and RNL2SLS estimates of β are the same. 

As a result, the values of the LM statistic for NL2SLS and RNL2SLS are also the same. 

 The LM test is especially convenient when testing the null hypothesis H0: 0α α= . 

Note first that by having Xi included in Wi, the constrained estimator is 0( , )n nbαθ ′ ′=% %  

where β%  is the OLS estimator obtained by regressing 0( , )iT Y α on Xi .. Therefore the 

constrained residual vector U%  is just the residual vector from the OLS regression of 

0( , )iT Y α on Xi . Also , X] ( ) / [nU U Tαθ θ θ −= ∂ ∂ =%% % , where 

1 0 0( ( , ) / ,..., ( , ) / )nT T y T yα α α α α ′= ∂ ∂ ∂ ∂%  and X = 1[ ,..., ]nX X ′ . Furthermore, if  Xi included in 

Wi, then XW , X][ TP U P αθ −= %% . Thus, the LM statistic for testing α can be obtained in three 

steps as follows: 

 1.  Obtain the OLS residuals from regressing 0( , )iT Y α on Xi. 

 2.  Obtain the predicted values regressing 0( , )iT Y α  on Wi.  

 3.  Calculate the test statistic as 2n R⋅ from regressing the residuals from 1 on the 

predicted value for 2 and Xi . This 2n R⋅ is the LM statistic.  

 The GMM based LM statistic is invariant to reparametrization of the null 

hypothesis, but not always to the rescaling of the dependent variable. Invariance to 

rescaling depends on whether the parameters are exactly identified. The LM statistic is 
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invariant to rescaling of the dependent variable in the exactly identified case but not in. 

the overidentified case. 

4.  Bootstrap Critical Values 
 
 This section explains how the bootstrap is implemented in a simple setting and 

shows how the bootstrap can be used to obtain a Type I critical value for hypothesis tests.  

The presentation is based on Horowitz (1999). 

In this section, let the data be a random sample of size n from a probability 

distribution whose CDF is F0. Denote the data by {Xi : 1,…,,n}.  Let F0 belong to a finite 

or infinite-dimensional family of distribution functions, and let F denote a general 

member of this family.  Let Tn = Tn (X1,…,Xn) be a statistic. Let 0( , ) ( )n nG F P Tτ τ≡ ≤  denote 

the exact, finite-sample distribution CDF of Tn. Let ( , )nG F⋅  denote the exact CDF of Tn 

when the data are sampled from the distribution whose CDF is F .  

Usually, ( , )nG Fτ is a different function of τ for different distributions F.  An 

exception occurs if  ( , )nG F⋅ does not depend on F, in which case Tn is said to be pivotal. 

For example, the t statistic for testing a hypothesis about the sample mean of a normal 

population is independent of the unknown population under the null hypothesis and, 

therefore, is pivotal.  Pivotal statistics are not available in most econometric applications, 

however, without making strong distributional assumptions. Therefore, ( , )nG F⋅ usually 

depends on F, and 0( , )nG F⋅  cannot be calculated if F0 is unknown.  

First-order asymptotic distribution theory is a widely used method for estimating 

0( , )nG F⋅ . The asymptotic distributions of many econometric statistics are standard normal 

or chi-square, possibly after centering and normalization regardless of the distribution 

from which the data were sampled. Such statistics are called asymptotically pivotal, 
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meaning that their asymptotic distributions do not depend on unknown population 

parameters. Let 0( , )G F∞ ⋅ denote the asymptotic distribution of Tn. Let ( , )G F∞ ⋅  denote the 

asymptotic CDF of Tn when the data are sampled from the distribution whose CDF is F. 

If Tn is asymptotically pivotal, then ( , ) ( )G F G∞ ∞⋅ ≡ ⋅ does not depend on F under the null 

hypothesis. Therefore, if n is sufficiently large, 0( , )nG F⋅ can be estimated by ( )G∞ ⋅  without 

knowing F0. This method for estimating 0( , )nG F⋅  is often easy to implement, but ( )G∞ ⋅  can 

be a very poor approximation to 0( , )nG F⋅  with the sample sizes available in applications. 

  The bootstrap provides an alternative approximation to 0( , )nG F⋅  or features of 

0( , )nG F⋅  such as its quantiles when F0 is unknown. Whereas first-order asymptotic 

approximations replace the unknown distribution function Gn with the known distribution 

function G∞, the bootstrap replaces the unknown distribution function F with a known 

estimator. Let Fn denote the estimator of F0. Two possible choices of Fn are: 

(1) The empirical distribution function (EDF) of the data: 

 
1

1( ) ( ),
n

n i
i

F x I X x
n =

= ≤∑  

where I  is the indicator function. 

 (2) A parametric estimator of F0. 

If the distribution of X is not assumed to belong to a known parametric family, the EDF 

of X is the most obvious candidate for Fn. In the case of the semiparametric Box-Cox 

model, the EDF is the estimator of F0.  

Regardless of the choice of Fn, the bootstrap estimator of 0( , )nG F⋅  is ( , )n nG F⋅ .  

Usually, ( , )n nG F⋅  cannot be evaluated analytically. It can, however, be estimated with 

arbitrary accuracy by carrying out a Monte Carlo simulation in which random samples 
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are drawn from Fn. Thus, the bootstrap is usually implemented by Monte Carlo 

simulation. The essential characteristic of the bootstrap is the use of Fn to approximate F0 

in 0( , )nG F⋅ , not the method that is used to evaluate ( , )n nG F⋅ .  

Now let Tn  be statistic for testing a hypothesis H0 about the sampled population. 

Assume that under H0, Tn is asymptotically pivotal and satisfies certain technical 

conditions. Consider a symmetrical, two-tailed test of H0. For such a test, H0 is rejected if 

|Tn | exceeds a suitable critical value and is accepted otherwise. This test rejects H0 at the 

α level if |Tn|> / 2nz α , where / 2nz α , the exact, finite-sample α/2-level critical value, is the 1-

α/2 quantile of the distribution of Tn.   The critical value solves the equation 

 0 0, / 2 , /2( , ) ( , ) 1n nn nG z F G z Fα α α− − = − .       (4.1) 

Horowitz and Savin (2000) refer to / 2nz α as the exact Type I critical value of the test of H0. 

Unless Tn is exactly pivotal, however, equation (4.1) cannot be solved in an application 

because F0 is unknown. Therefore, the exact, finite-sample critical value cannot be 

obtained in an application if Tn is not pivotal. 

First-order asymptotic approximations obtain a feasible version of (4.1) by 

replacing Gn by G∞. Thus, the asymptotic critical value, / 2z α∞ , solves  

0 0, /2 , / 2( , ) ( , ) 1G z F G z Fα α α∞ ∞∞ ∞− − = − .      (4.2) 

Assuming G∞ is the standard normal distribution when Tn is asymptotically pivotal, 

/ 2z α∞ can be obtained from the table of standard normal quantiles. It can be shown that the 

asymptotic critical value approximates the exact finite sample critical value with an error 

whose size is O(n-1).  
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 The bootstrap obtains a feasible version of (4.1) by replacing F0 with Fn. Thus the 

bootstrap critical value, , /2 *nz α , solves 

 0 0, /2 , /2( *, ) ( *, ) 1nn n nG z F G z Fα α α− − = − .     (4.3) 

Equation (4.3) usually cannot be solved analytically, but , /2 *nz α  can be estimated with 

any desired accuracy by Monte Carlo simulation. 

 The accuracy of the bootstrap critical value as an estimator of the exact finite-

sample critical value / 2nz α  is given by 

 3/2
, / 2 , / 2* ( )n nz z O nα α

−= +         (4.4) 

almost surely.  Thus, the bootstrap critical value for a symmetrical, two-tailed test differs 

from the exact, finite-sample critical value by O(n-3/2) almost surely. The bootstrap 

critical value is more accurate than the asymptotic critical value, / 2z α∞ , whose error is 

O(n-1). 

 The rejection probability of the test based on Tn when H0 is true is 

, / 2(| | )n nP T z α α> =  when the test is based on the exact but infeasible Type I critical value. 

With the asymptotic critical value, the rejection probability is 

 1
, /2(| | ) ( )nP T z O nα α −

∞≥ = + .       (4.5) 

Thus, with the asymptotic critical value, the true and nominal rejection probabilities 

differ by O(n-1).  The rejection probability with the bootstrap value is  

 2
, /2(| | *) ( )n nP T z O nα α −≥ = + .       (4.6) 

Note that / 2 *nz α  is a random variable, which complicates the derivation of (4.6).  The 

result (4.6) says the nominal of rejection probability of a symmetrical, two-tailed test 

with a bootstrap critical value differs from the true rejection probability by O(n-2) when 



 15

the test statistic is asymptotically pivotal.  In contrast, the difference between the nominal 

and true rejection probabilities is O(n-1) when the asymptotic critical value is used. For 

details, see Hall (1992). 

Finally, consider the power of a test based on a bootstrap critical value. Suppose 

that bootstrap samples are generated by a model that satisfies a false H0, and, therefore,  

is misspecified relative to the true data-generation process. If H0 is simple, meaning that 

it completely specifies the data-generation process, then the bootstrap amounts to Monte 

Carlo estimation of the exact finite-sample critical value for testing H0 against the true 

data generation process. In most applications, including the one in this paper, the null H0 

is composite. That is, it does not specify the value of a finite-or infinite-dimensional 

“nuisance’ parameter ψ. It can be shown, however, that a test of a composite hypothesis 

using a bootstrap-based critical value is a higher-order approximation to a certain exact 

test. The power of the test with a bootstrap critical value is a higher-order approximation 

to the power of the exact test. 

5. Design of Experiments 

This section presents the general features of the designs used in the Monte Carlo 

experiments. The section concludes with a description of how the bootstrap critical 

values are computed for the Wald and LM tests of the null hypothesis about the 

transformation parameter.   

The model simulated in the experiments is 

 0 1( , )T Y X Uα β β= + +         (5.1) 

where X is a scalar random variable. Let {Yi, Xi, i = 1, …, n} be a sample from (Y, X).  

The instruments used in the NL2SLS and RNL2SLS estimators are those employed by 
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Amemiya and Powell (1981), namely, 1, X and X2.  Hence, with this set of instruments, 

the parameters are exactly identified and the NL2SLS is the efficient GMM estimator.  

Three different specifications for the conditional distribution of Y given X are 

considered for the Box-Cox model. The first is the two-parameter gamma distribution for 

Y given X proposed by Amemiya and Powell (1981). The second is a truncated normal 

suggested by Poirier (1978).  Let U  be N(0, (0.5)2)  with left truncation point U = -1. The 

third is an exponential for U with parameter λ = 4.  The truncated normal and exponential 

distributions of U are generated independently of X.  However, the construction of the 

conditional distribution of Y in the case of gamma implies that U and X are dependent. 

The values of X are obtained by random sampling the following marginal distributions of 

X: Uniform [-1, 1], lognormal based on N(0, 1) and exponential with λ = 1.   

 The sample sizes investigated are n = 50, 100, 200.  For each specific design, the 

number of Monte Carlo replications is 1000 (to be increased to 5000 in final draft). The 

grid for α is divided into units of 0.10 and runs from -5.0 to 5.0 about the true value of α. 

The computations were performed using GAUSS for Windows NT/95, Version 3.2.33. 

 Each experiment consists of testing the null hypothesis, H0: 0α α= , α0 = 0.0, 0.5 

1.0. The Wald and LM statistics for testing H0 are described in Section 3.  The 

asymptotic critical value, / 2z α∞ , for the Wald and LM tests is obtained from a table of the 

quantiles of the chi-square one distribution, or of the standard normal distribution.  

 The Monte Carlo procedure for computing the bootstrap critical value for the 

Wald test is the following: 

W1.  Use the estimation data {Yi, Xi: i = 1, … , n,}  to compute the unconstrained 

GMM estimator. 
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W2.  Generate a bootstrap sample by size n by sampling {Y, X} pairs from the 

estimation data with replacement. Compute the unconstrained GMM estimators of θ and 

V from the bootstrap sample. Call the results ˆ ˆˆ* ( *, * )n n na bθ ′ ′= and ˆ *nV  .  The bootstrap 

version of the Wald statistic is 

2

2
ˆ( * )*

ˆ *
n n

n

n a aWald
s

−=        (5.2) 

where 2ˆ *ns  is the first element of ˆ *nV .  Note that α0 is replaced by ˆna .  

W3. Use the results of 299 repetitions of W2 to compute the EDF of Wald *. The 

bootstrap critical value , *nz α  is equal to the 1-α quantile of this distribution. 

 At this point, it is worth remarking that Horowitz (1997, 1999) considers an 

example in which the bootstrap critical value of the Wald test is computed assuming that 

U is independent of X and U is normally distributed. With these assumptions, the efficient 

procedure consists of the following: Estimate θ  by the maximum likelihood estimator 

and generate Y values from 1/[ ( *) 1] na
n nY a X b U′= + +  where = ( , )n n na bθ ′ ′= denotes the 

maximum likelihood estimator and U* is randomly sampled from the normal distribution. 

This method cannot employed in the present setting because U is, in general, not 

independent of X, and U is not normally distributed.  

 Next, consider the Monte Carlo procedure for computing the bootstrap critical 

value for the LM test. 

LM1.  Use the estimation data {Yi, Xi: i = 1, … , n,}  to compute the constrained 

GMM estimator. 

LM2.  Generate a bootstrap sample by size n by sampling {Y, X} pairs from the 

data estimation data with replacement. Compute the constrained GMM estimator of θ 
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from the bootstrap sample. Call the result * ( *, * )n n na bθ ′ ′=% %% and ˆ *nV  .  The bootstrap version 

of the LM statistic requires further study! 

(5.3) 

 LM3. Use the results of 299 repetitions of LM2 to compute the EDF of LM *. Set 

, /2 *nz α  equal to the 1-α quantile of this distribution. 

 The true rejection probability of the Wald test of H0 with a bootstrap critical value 

is estimated by conducting a Monte Carlo experiment. The experiment consists of 

repeating the following steps 1000 times: 

 MC1. Generate an estimation dataset of size n by random sampling from the 

model with the null hypothesis H0: 0α α= imposed. Compute the value of the Wald 

statistic. 

MC2. Use the Monte Carlo procedure (W1- W3) for computing the bootstrap 

critical value, , *nz α . 

MC3. Reject H0 at the nominal α-level if the value of the Wald statistic exceeds 

, *nz α .  The power of the Wald test with the bootstrap critical value is estimated by 

carrying out the same steps except that 0α α≠ in MC1.  

This experiment can also be used to estimate the rejection probability of the Wald 

test based on the asymptotic critical value / 2z α∞ . In this case, H0 is rejected at the nominal 

α-level if the test statistic exceeds the 1-α quantile of the chi-square distribution with one 

degree of freedom.  

The experiment to estimate the true rejection probability of the LM test based on 

the bootstrap critical value is similar to the experiment consisting of steps MC1-MC3. 
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The difference is that in step MC1 the LM statistic is computed instead of the Wald 

statistic, in step MC2 the Monte Carlo procedure LM1-LM3 is used to compute the 

bootstrap critical value instead of W1-W3, and in step MC3 the null H0 is rejected at the 

nominal α-level if the value of the LM statistic exceeds the bootstrap critical value.   

The estimate of the rejection probability under H0 is computed as R/G where R is 

the number of rejections of H0 in G non-deleted estimation samples. A sample is deleted 

if the minimum value of the objective function essentially exceeds zero, namely, 0.005, 

when the unconstrained GMM estimate is calculated.  In theory, the minimum value of 

the objective function is zero because the parameters are exactly identified.  Nevertheless, 

in practice, the minimum can be nonzero if the range of the grid for α employed in the 

grid search is too narrow. For the designs we consider, nonzero values occur very 

infrequently. In computing the bootstrap critical value for the Wald test, a bootstrap 

sample is also deleted if the objective function exceeds zero when the unconstrained 

GMM estimate is calculated.   

 6.  Results of Monte Carlo Experiments 

 This section reports the results of selected Monte Carlo experiments that illustrate 

the numerical performance of the Wald and LM tests when they are based on asymptotic 

critical values and on bootstrap critical values.  

Design 1: Truncated Normal, β0 = β1 = 1, σ = .5, X uniform [-1, 1]. The empirical 

rejection probabilities under H0 are reported in Table 1. They show that the Wald test 

with asymptotic critical values performs poorly for n = 50 and 100, especially for α0 = 0. 

The empirical rejection probabilities are within the 99 percent confidence intervals for the 

nominal rejections levels when n = 200.  The distortions are smaller when the test is 
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based on bootstrap critical values. For the bootstrap, the empirical rejection probabilities 

are within the 99 percent confidence intervals for the nominal rejections levels when n = 

100. In the case of the LM test with asymptotic critical values, the differences between 

the empirical and nominal rejection probabilities are essentially zero at n = 50. The 

performance of the LM test with bootstrap critical values is work in progress. 

Design 2: Gamma, β0 = β1 = 1, σ = .5, X perfect uniform [-1, 1] population. The 

empirical rejection probabilities under H0 are reported in Table 2. The Wald test with 

asymptotic critical values performs poorly for n = 50 and 100, but the test does not 

perform noticeably better with bootstrap critical values, except at the nominal 10 percent 

level.  Again, the LM test with asymptotic critical values has empirical rejection 

probabilities that are close to the nominal levels. 

Design 3: Exponential, β0 = 0, β1 = 1, X uniform [-1, 1]. For the Wald test with 

asymptotic critical values, Table 3 shows that differences between the empirical and 

nominal rejection probabilities are essentially zero when n = 100, based on the 99 percent 

confidence intervals for the nominal rejection probabilities. The Wald test with bootstrap 

critical values does not perform noticeably better, except at the nominal 10 percent level 

in some cases. The LM test with asymptotic critical values produces empirical rejection 

probabilities that are close to the nominal levels for samples of n = 50. 

Design 4: Truncated normal, β0 = 0, β1 = 1, σ = .5, X lognormal. For this design, 

Table 4 does not report results for the Wald test of H0: 0α =  because the percent of 

deleted sample is very large, namely more than 50 percent for both NL2SLS and 

RNL2SLS. For H0: 1α = , the Wald test tends to perform noticeably better with bootstrap 

critical values than test with asymptotic critical values, starting with n = 50. Again, the 
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LM test with asymptotic critical values produces empirical rejection probabilities that are 

close to the nominal levels for samples of n = 50. 

Design 5: Truncated normal, β0 = 0, β1 = 1, σ = .5, X exponential. For the Wald 

test, Table 5 shows that the differences between the empirical and nominal rejection 

probabilities are essentially zero when n = 50. Moreover, the Wald test performs 

noticeably worse with bootstrap critical values than with asymptotic critical values. For 

the both Design 5 and 6,  the differences between the empirical and nominal rejection 

probabilities are essentially zero at n = 50 for the LM test with asymptotic critical values. 

Design 6: Exponential, β0 = 0, β1 = 1, X exponential. With design, there is a 

striking difference between the performance of the Wald test of H0: 0α =  based on the 

NL2SLS estimator and on the RNL2SLS estimator. The latter estimator produces much 

more reasonable results. Nevertheless, neither the asymptotic nor the bootstrap Wald test 

works for n = 200. For the Wald test of  H0: 1α = , the asymptotic and bootstrap critical 

values give similar  empirical rejection probabilities, which tend to be close to the 

nominal rejection probabilities. 

We estimated the powers of the asymptotic and bootstrap Wald tests. The 

estimated powers are for the tests based on the RNL2SLS estimator. Figure 1 illustrates 

the empirical powers for Design 3 (Exponential, Uniform) and Design 4 (Truncated 

Normal, Lognormal).  The empirical powers are reported for a 0.01 level test of H0: 

1α =  against alternatives 0.8, 0.6, 0.4,0, 0.2 and 0 and for a 0.01 level test of H0: 0α =  

against the alternatives α = 0.2, 0.4, 0.6, 0.8 and 1.0. The sample size is n = 50.  

In Figure 1, the solid line shows the empirical powers for the tests with 

asymptotic critical values, and the dashed line shows the empirical powers for the tests 
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with bootstrap critical values. For each design, the asymptotic and bootstrap tests have 

essentially the same empirical powers.  The empirical power functions for Design 3 show 

that the empirical power of the test of H0: 1α =  against the alternative α = 0 is about 0.8 

and similarly for the empirical power of the test of H0: 0α =  against α = 1. The 

empirical powers are substantially higher in the case of Design 4, especially for 

alternatives near the null value of α.  For the designs used in this study, the empirical 

powers show that the Wald test can discriminate between the linear and loglinear models. 

Our results also show that the design can make a substantial difference as to whether the 

test can discriminate among local alternatives. 

Our plan is to estimate the powers of the LM test.  

7. Concluding Comments 

 For the designs considered in this study, the Wald and LM tests with asymptotic 

critical values often work reasonably well for samples sizes available in practice. In the 

case of the Wald test, this finding holds when estimation is based on the rescaled 

NL2SLS estimator. The differences between the empirical and nominal rejection 

probabilities under H0 are small for the Wald test with asymptotic critical values when 

the sample size is n = 100. The LM test performs better than the Wald test when the null 

hypothesis is true. The differences between the empirical and nominal rejection 

probabilities under H0 are essentially zero for the LM test with n = 50. 

 The numerical performance of the Wald and LM tests with bootstrap critical 

values is not noticeably better than with asymptotic critical values for most of the designs 

in this study.  This was not the result we expected. The relatively poor performance of the 

bootstrap under H0 may be due a combination of two factors. One is that the bootstrap is 
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based on the sampling of {Y, X} pairs, and the other is that the number of bootstrap 

replications may be too small. Given the semiparametric setting, there is no alternative to 

sampling {Y, X} pairs. We plan to investigate the effect of increasing the number of 

bootstrap replications. 

For the designs in this study, the asymptotic and bootstrap Wald tests have 

essentially the same empirical powers.  Moreover, the Wald test can discriminate 

between the linear and loglinear models. Our results also show that the design can make a 

substantial difference as to whether the Wald test can discriminate among local 

alternatives. 
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                          Design 3: Exponential, β0 = 0, β1 = 1, X uniform [-1, 1]  
 

        
                   

 Design 4: Truncated normal, β0 = 0, β1 = 1, σ = .5, X lognormal 
 

 

 
 
  
 
Figure 1. Empirical powers of asymptotic (solid line) and bootstrap (dashed line) Wald 
tests based on the RNL2SLS estimator, n = 50. The curves on left show the empirical 
powers of a 0.01 level test of H0: 1α =  against the alternatives 0.8, 0.6, 0.4,0, 0.2 and 0, 
and the curves on the right show the empirical powers of a 0.01 level test of H0: 0α =  
against the alternatives α = 0.2, 0.4, 0.6, 0.8 and 1.0. 
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Table 1 
Empirical Rejection Probabilities (Percent) of Wald and LM Tests 
Design: Truncated Normal,  β0 = β1 = 1, σ = .5, X uniform [-1, 1]  

Critical 
Value 

Hypothesis 1 5 10 1 5 10 1 5 10 

  Wald LM 
  NL2SLS RNL2SLS NL2SLS 
n = 50           
Asymptotic α = 0 0.00 0.92 3.28 0.00 1.02 3.37 0.51 5.22 9.72 
 α = 0.5 0.20 1.32 4.17 0.20 1.43 4.18 1.13 5.12 10.6 
 α = 1 0.10 0.72 3.90 0.10 1.72 3.81 0.31 4.25 9.43 
           
Bootstrap α = 0 0.21 1.54 4.82 0.31 1.84 5.42    
 α = 0.5 0.10 1.12 4.88 0.20 1.33 5.10    
 α = 1 0.00 1.23 6.16 0.10 1.55 6.08    
n = 100           
Asymptotic α = 0 0.00 0.91 4.63 0.00 0.90 4.72 1.20 5.22 10.0 
 α = 0.5 0.10 3.10 6.41 0.01 3.11 6.41    
 α = 1 0.20 3.70 6.71 0.20 3.71 6.71 0.80 6.31 12.4 
           
Bootstrap α = 0 0.00 2.72 7.85 0.00 2.61 7.93    
 α = 0.5 0.20 3.40 9.71 0.20 3.41 10.0    
 α = 1 0.50 3.80 9.81 0.50 4.01 9.92    
n = 200           
Asymptotic α = 0 0.10 2.86 7.97 0.20 3.41 8.83 1.01 5.35 11.4 
 α = 0.5 0.40 3.50 8.10 0.40 3.50 8.00    
 α = 1 0.50 4.00 8.50 0.50 4.00 8.50 1.80 5.80 11.0 
           
Bootstrap α = 0 0.51 5.21 12.0 0.50 5.22 11.8    
 α = 0.5 0.40 5.20 11.9 0.40 5.30 11.6    
 α = 1 0.60 5.30 10.9 0.60 5.40 10.9    
           
Notes: The empirical rejection probabilities are computed using 1000 Monte Carlo 
replications. The 95 percent confidence intervals for the 0.01, 0.05 and 0.10 levels are 
(0.4, 1.6), (3.6, 6.4) and (8.1, 11.9), respectively; the 99 percent confidence intervals are 
(0.2, 1.8), (3.2, 6.8) and (7.6, 12.4), respectively. 
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Table 2 
Empirical Rejection Probabilities (Percent) of Wald and LM Tests 
Design: Gamma,  β0 = β1 = 1, σ = .5, X uniform [-1, 1]  

Critical 
Value 

Hypothesis 1 5 10 1 5 10 1 5 10 

  Wald LM 
  NL2SLS RNL2SLS NL2SLS 
n = 50           
Asymptotic α = 0          
 α = 0.5          
 α = 1 0.41 2.27 4.85 0.42 2.28 4.77 1.14 5.41 9.99 
Bootstrap α = 0          
 α = 0.5          
 α = 1 0.41 2.27 6.91 0.62 2.38 6.94 1.04 4.06 9.89 
n = 100           
Asymptotic α = 0          
 α = 0.5          
 α = 1 0.40 2.62 6.05 0.40 2.52 6.05 1.11 4.06 8.78 
Bootstrap α = 0          
 α = 0.5          
 α = 1 0.51 3.73 8.27 0.50 3.83 8.27 0.91 4.44 10.5 
n = 200           
Asymptotic α = 0          
 α = 0.5          
 α = 1          
Bootstrap α = 0          
 α = 0.5          
 α = 1          
           
Notes: See Table 1 
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Table 3 
Empirical Rejection Probabilities (Percent) of Wald and LM Tests 
Design: Exponential,  β0 = 0, β1 = 1, X uniform [-1, 1]  

Critical 
Value 

Hypothesis 1 5 10 1 5 10 1 5 10 

  Wald LM 
  NL2SLS RNL2SLS NL2SLS 
n = 50           
Asymptotic α = 0 0.70 3.31 7.11 0.70 3.30 7.11    
 α = 0.5          
 α = 1 0.90 3.30 7.40 0.90 3.30 7.40 1.00 5.80 10.0 
Bootstrap α = 0 0.30 2.71 7.52 0.30 2.70 7.61    
 α = 0.5          
 α = 1 0.30.  2.60 6.40 0.30.  2.60 6.40    
n = 100           
Asymptotic α = 0 0.30 3.70 7.70 0.30 3.60 7.70    
 α = 0.5          
 α = 1 0.40 3.60 8.50 0.40 3.60 8.50    
Bootstrap α = 0 0.30 3.60 9.50 0.30 3.50 9.40    
 α = 0.5          
 α = 1 0.20 3.30 9.30 0.20 3.30 9.30    
n = 200           
Asymptotic α = 0 0.20 4.90 10.5 0.20 4.90 10.4    
 α = 0.5          
 α = 1 1.20 5.50 11.7 1.20 5.50 11.6    
Bootstrap α = 0 0.50 4.90 11.2 0.50 4.80 10.7    
 α = 0.5          
 α = 1 0.80 5.20 11.6 0.80 5.20 11.5    
           
Notes: See Table 1 
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Table 4 
Empirical Rejection Probabilities (Percent) of Wald and LM Tests 
Design: Truncated normal,  β0 = 0, β1 = 1, σ = .5, X lognormal  

Critical 
Value 

Hypothesis 1 5 10 1 5 10 1 5 10 

  Wald LM 
  NL2SLS RNL2SLS NL2SLS 
n = 50           
Asymptotic α = 0          
 α = 0.5          
 α = 1 1.93 7.32 12.6 0.90 6.60 12.1 1.40 6.90 12.8 
Bootstrap α = 0          
 α = 0.5          
 α = 1 1.02 4.27 11.0 1.30 5.00 12.1    
n = 100           
Asymptotic α = 0          
 α = 0.5          
 α = 1 2.39 6.51 12.2 2.61 7.23 13.2    
Bootstrap α = 0          
 α = 0.5          
 α = 1 1.52 6.84 11.5 1.81 6.83 11.2    
n = 200           
Asymptotic α = 0          
 α = 0.5          
 α = 1 1.59 5.40 12.7 2.05 6.97 14.8    
Bootstrap α = 0          
 α = 0.5          
 α = 1 1.58 5.81 10.0 1.43 5.42 8.80    
           
Notes: See Table 1 
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Table 5 
Empirical Rejection Probabilities (Percent) of Wald and LM Tests 
Design: Truncated normal,  β0 = 0, β1 = 1, σ = .5, X exponential 

Critical 
Value 

Hypothesis 1 5 10 1 5 10 1 5 10 

  Wald LM 
  NL2SLS RNL2SLS NL2SLS 
n = 50           
Asymptotic α = 0 0.92 4.59 9.99 0.92 4.59 9.99    
 α = 0.5          
 α = 1 0.80 4.80 10.3 0.90 4.80 10.3 0.70 6.00 11.0 
Bootstrap α = 0 0.92 6.01 11.7 0.82 6.42 11.9    
 α = 0.5          
 α = 1 1.70 6.40 11.8 1.60 6.40 11.9    
n = 100           
Asymptotic α = 0 1.39 5.44 10.8 1.39 5.66 11.0    
 α = 0.5          
 α = 1 0.90 5.00 11.2 0.90 5.00 11.2    
Bootstrap α = 0 2.45 6.62 12.6 2.56 6.83 12.9    
 α = 0.5          
 α = 1 1.30 7.20 13.8 1.30 7.20 13.8    
n = 200           
Asymptotic α = 0 1.65 5.82 10.6 1.90 6.20 11.1    
 α = 0.5          
 α = 1 1.00 5.40 10.1 1.00 5.40 10.1    
Bootstrap α = 0 2.03 6.45 9.88 2.15 6.83 9.98    
 α = 0.5          
 α = 1 2.00 6.50 12.4 2.00 6.50 12.4    
           
Notes: See Table 1 
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Table 6 
Empirical Rejection Probabilities (Percent) of Wald and LM Tests 
Design: Exponential,  β0 = 0, β1 = 1, X exponential  

Critical 
Value 

Hypothesis 1 5 10 1 5 10 1 5 10 

  Wald LM 
  NL2SLS RNL2SLS NL2SLS 
n = 50           
Asymptotic α = 0 28.5 31.6 34.6 1.64 6.75 12.0    
 α = 0.5          
 α = 1 1.70 6.00 10.7 1.80 6.00 10.6 1.60 4.10 9.50 
Bootstrap α = 0 0.00 1.00 2.20 0.92 4.09 8.28    
 α = 0.5          
 α = 1 1.20 4.80 10.9 1.30 4.80 10.8    
n = 100           
Asymptotic α = 0 36.8 40.2 43.9 1.06 7.12 14.1    
 α = 0.5          
 α = 1 1.90 6.50 11.9 1.80 6.50 11.8    
Bootstrap α = 0 0.00 0.30 1.00 0.74 3.83 6.38    
 α = 0.5          
 α = 1 1.90 6.60 11.4 1.90 6.40 11.5    
n = 200           
Asymptotic α = 0 37.8 41.4 44.4 2.94 9.62 15.1    
 α = 0.5          
 α = 1 1.40 5.50 10.8 1.40 5.70 11.1    
Bootstrap α = 0 0.00 0.10 0.20 0.94 7.05 16.2    
 α = 0.5          
 α = 1 1.20 5.40 10.5 1.30 5.4 10.6    
           
Notes: See Table 1 
 
 
 
 
 
 
 


