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Abstract

This paper considers testing the transformation parameter of the Box-Cox model
when the distribution of the error is unknown. The transformation parameter indexes the
most commonly used functional forms. The null hypothesisis tested using Wald and
Lagrange Multiplier (LM) statistics constructed from GMM estimators. The finite sample
performance of the tests with asymptotic and bootstrap critical valuesisinvestigated in a
Monte Carlo study. The LM test with asymptotic critical values satisfactorily controls
the Type | error for sample sizes available in practice. The numerical performance of the

Wald test with bootstrap critical values is disappointing.
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1.Introduction
The Box-Cox (1964) regression model is a transformation model of the form
T(Y,a)=X® +U, (1.1)
where T isastrictly increasing function, Y is an observed dependent variable, X isan
observed K dimensional random column vector, b is avector of constant parameters that
is conformable with X, and U is an unobserved random variable.

The Box-Cox transformation is

y-1 . 5
T(ya)="a '@ %Y (12)

logy, ifa =0,y3 0.
The transformation provides a flexible parameterization of the relation between the
dependent variable and the regressors. In particular, the model isalinear model if a =1,
apower transformation model if a * O or 1, and alog linear model if a = 0.

If the cumulative distribution function (CDF) of U, denoted by F, is known or
known up to finite dimensiona parameters, then a and b and any parameters of F can be
estimated by maximum likelihood. A widely used procedure, which was suggested by
Box and Cox (1964), isto estimate a and b by the maximum likelihood (ML) under the
assumption that the U is normally distributed. The resulting estimator of a and b is
referred to as the Box-Cox ML estimator. The Box-Cox ML estimator is discussed in
many econometric textbooks, for example, Amemiya (1985), Greene (2000) and

Mittelhammer, Judge and Miller (2000) and Ruud (2000).



The assumption of normality cannot be strictly true, however. T(y,a) isbounded from
below (above) if a >0 (a< 0) unlessa isan odd integer or 0. Thus, the Box-Cox
transformation cannot be applied to models in which the dependent variable can be
negative or the distribution of U has unbounded support, and, hence, this rules out the
case where U is normally distributed.

In practice, however, F is often unknown. Thus, an empiricaly relevant statistical
problem isto obtain consistent estimators of a and b when F is unknown. The solution
proposed by Amemiya and Powell (1981) is to use the nonlinear two-stage least squares
(NL2SLS) estimator of a and b. The NL2SL S estimator is a generalized method of
moments (GMM) estimator, and it is the efficient GMM estimator for the choice of
instruments used by Amemiya and Powell, provided U is homoskedastic. Horowitz
(1998) discusses GMM estimation of a and b .

Khazzoom (1989) pointed out that the NL2SL S estimates for this model areill-
defined for data sets in which the dependent variable always exceeds (or is exceeded by)
one. The non-negative GMM objective function has a global minimum of zero as a tends
to minus infinity wheny >1 and infinity when y <1. Powell (1996) has proposed a ssimple
rescaling of the GMM objective function that helps ensure the estimates are interior
points of the parameter space.

The focus of this paper is on testing the transformation parameter a in the Box-Cox
model when F is unknown. This null is tested using Wald and Lagrange Multiplier (LM)
test statistics constructed from GMM estimators. The test of the null is based on an
estimator of the Type | critical value. Horowitz and Savin (2000) define this critical

value as one that would be obtained if the exact finite sample distribution of the test



statistic under the true data generation process were known. In our setting, the true Type
| critical value is unknown because the null hypothesisis composite; that is, the exact
finite-sample distribution of the test statistic depends on b and F, population parameters
not specified by the null. Thus, an approximation to the Type | critical valueis required
to implement the test.

An approximation to the Type | error critical value can be obtained by using the
first-order asymptotic distribution of the test statistic to approximate its finite-sample
distribution. The approximation is useful because most test statistics in econometrics are
asymptotically pivotal: their asymptotic distributions do not depend on unknown
population parameters when the null hypothesis being tested is true. Hence, an
approximate Type | critical value can be obtained from first-order asymptotic distribution
theory without knowledge of the true data generation process. Thisis true for the Wald
and LM statistics employed to test null hypotheses about the transformation parameter.

However, Monte Carlo experiments have shown that first-order asymptotic theory
often gives a poor approximation to the exact distributions of test statistics with the
sample sizes available in applications. As aresult, the difference between the true and
nominal probabilities that a test rejects a correct hypothesis, the error in the rejection
probability, can be large when an asymptotic critical value is used.

Another approach is to use the bootstrap. The bootstrap is a method for estimating
the distribution of a statistic or a feature of the distribution, such asamoment or a
guantile. Under regularity conditions, the bootstrap provides an approximation to the

Type | critical value that is more accurate than the approximation of first-order



asymptotic theory. These regularity conditions are satisfied for the Wald and LM test
statistics considered in this paper.

This paper investigates the numerical performance of the tests with asymptotic
critical values and with bootstrap critical values. In the Monte Carlo experiments, two
different specifications are considered for the Box-Cox model. Thefirst is the two-
parameter gamma distribution for Y given x proposed by Amemiya and Powell (1981),
and the second is the truncated normal for T(y,a) given x used by Poirier (1978). The
Monte Carlo results show that the tests with bootstrap critical values provide good
control over the Type | error for sample sizes used in applications.

In the context of the Box-Cox model, the linear model can be tested against other
specifications that are indexed by the transformation parameter. For example, the linear
model can be tested against the log-linear model by testing the null hypothesisthat a =1
against the aternative a = 0. For the tests to be useful, they must be able to discriminate
between aternative specifications. We examine the power of the bootstrap-based Wald
test against various alternative specifications and similarly for the LM test.

The organization of the paper is the following. GMM estimation of the Box-Cox
model is reviewed in Section 2. Section 3 introduces the Wald and LM tests constructed
from GMM estimators. The bootstrap method is presented in Section 4. Section 5
describes the main features of the design of the experiments. The results of the Monte
Carlo experiments on the numerical performance of the bootstrap are presented in Section
6. Section 7 contains the concluding comments.

2. GMM Estimators



This section reviews the estimation of the parametersa and b by the genera
method of moments (GMM). The GMM estimator is consistent under weak distribution
assumptions (Mittlehammer et al. (2000)).

Let W be a column vector of valid instruments. Validity requiresthat E(W U) =0
and dim(W) =m 3 k + 1. Powers, crossproducts and other nonlinear functions of X can
be used to form W. Given W, the parameters a and b can be estimated using the
population moment condition

EWT(ra)- X'b]} =0, (2.1
provided that this equation uniquely determines a and b.

Denote the estimation databy {Y;, X;: i =1, ..., n,} and assume that they are a

random sample from the joint distribution of {Y, X}.. Let q = (a,b9¢,

U (@) =T(.a)- Xb andU(q)= U,(q),...,U, (q))¢. Alsolet W = [W,...,W,]¢ denote the

matrix of instruments where W is avector of functions of X; that includes X;. Finally, let

q, = (4,,0,9¢ where 4, and b, denote the GMM estimators of a and b, respectively.
The GMM estimator solves

minimize: S,() =U (Q)8WWW (q) (2.2
q
where W, is apositive definite, possibly stochastic matrix. One possible choice of W, is

W, =[W'W]*, in which case (2.2) gives the NL2SL S estimator of Amemiya (1974,
1985). This choiceisasymptotically efficient if the errors U; are homoskedastic.
Amemiya and Powell (1981) and Amemiya (1985) discuss the use of NL2SL S for

estimation of the Box-Cox model.



We note that change in the NL2SL S estimate of b dueto arescaling of Xisthe
same as the change in the ordinary least squares (OLS) estimate in the linear regression
model. By contrast, the effect of rescaling Y depends on whether the parameters are
exactly or overidentified. In the exactly identified case, rescaling Y has no effect on the
NL2SLS estimate of a; only b is affected. In the overidentified case, rescaling Y
changes the estimates of both a and b.

The consistency of the estimator minimizing (2.3) is established by verification of
three conditions: compactness of the parameter space; convergence in probability of the
objective function S, to its expected value, uniformly in a and b; and uniqueness of the
solutions satisfying the moment condition (2.1). The compactness and identification
conditions turn out to be demanding due to the nature of the transformation function,
T(Y, a).

As Khazzoom (1989) notes, if y > 1, then T(y,a) ® Oasa ® -¥, and, similarly,
ify<1, T(y,a)® Oasa ® ¥ . Thisimpliesthat the compactness playsacrucia rolein
the uniqueness of the solution of (2.1). In particular, each residual
U,(@) =T(y,,a)- xb canbe set equal to 0 by setting a =-¥ and b =0if each y; >1. The
resulting pathology of the objective function isimportant in practice since in many data
sets all values of the dependent variable exceed one.

To avoid the problem associated with the scaling of the dependent variable,

Powell (1996) suggested the following rescaling of the GMM objective function:

Q@) =S,(@)X¥) ™, (2.3)



where the GMM objective function S,isgivenin (2.2) and v isthe geometric mean of

the absolute values of the dependent variable:

ye° expu a log(l y; I)?; (2.4)

Therescaled GMM objective function Q,islesslikely than S, to be minimized by values
on the boundary of the parameter space. However, as Powell (1996) notes, rescaling the

2a

origina GMM functionby y = cannot guarantee that a unique and finite minimizing
value of a will exist.
The objective function
Q.(@) =[U(@)W/ ¥ "W [WB(q)/ ¥°] (2.5)

can be concentrated as afunction of a only. Thisimpliesthat for agiven a the optimal

bin(2.7)is

b(a) =[(8 WX, 9%ME WX 8] (3 WX BoME W(T(y, 3 (26)

i=1 i=1 i=1 i=1
since y® cancels. The concentrated objective function in a is obtained by substituting

(2.8) into (2.7), which gives

Q.@)=Q,(a,b@))=S(@,b@))y" =S,@)/y*, (2.7)
where S, (a) isthe concentrated objective function for GMM. The estimation procedure
for rescaled GMM simplifies to a one-dimensional grid search via the concentrated
objective function and similarly for the original GMM estimation problem. Note that if
NL2SLS and RNL2SL S give the same estimate of a, then they both give the same

estimate of b.



Powell (1996) argues that the original and rescaled GMM estimators have the
same asymptotic distribution. Hence, the standard formulae for the first-order asymptotic
distribution and asymptotic covariance matrix estimators for GMM estimators apply
directly to the rescaled estimators.

3. Tests

This section introduces the Wald and LM tests of the null hypotheses h(g) =0
where h(q) isaq dimensional differentiable function. The tests are constructed using
GMM estimators.

Hansen (1982) derived the asymptotic distributional properties of the GMM
estimator. Hansen (1982) showed under mild regularity conditions that ¢, = (&,.b9tisa

consistent estimator of q and that g, is asymptotically normally distributed:

n“2(@, - q) ® “ N(O,V) (3.2)
where
V =(D'WD)}, (3.2
T

with D = Eﬂ—W[T(Y,a)- Xb] and W= plimW,. Letting U, =U(q)/fq and,
q ne ¥
U, =TU(@,)/1d , V can be estimated by replacing D in (3.2) by W&J, and Wby W, .
Thus, (3.1) and (3.2) with V replaced by
V, =0, Sww,we,

make it possible to carry out inference in sufficiently large samples.



The Wald statistic for testing h(q) = 0 is based on the unconstrained GMM

estimator of . The Wald statisticis
Wald = nm(dn)c;ﬁq\?nﬁqﬂ]' hia,). (3.3)

where i, =1h(@,)/1q . This statistic is distributed asymptotically as a chi-square
variable with q degrees of freedom if the null is true. The principle disadvantage of the
GMM based Wald statistic isthat it is not invariant to reparametrization of the null
hypothesis or rescaling of the dependent variable. Spitzer (1984) has shown asimilar lack
of invariance for the Wald statistic based on the Box-Cox ML estimator; see aso Drucker
(2000).

The null hypothesis tested in this paper specifies the value of the transformation

parameter: Hy: a =a,. The Wald statistic for testing Hy: a =a, is

2 2
Wald = % (3.4)

where § isthe first diagonal elementin V.. The Wald statistic (3.4) is distributed
asymptotically as chi-square variables with one degree of freedom when the null
hypothesisistrue. The GMM estimators that can be used in computing (3.4) include as
special casesthe NL2SL S and RNL2SL S estimators.

Newey and West (1987) have developed an LM test based on the constrained
GMM estimator. ThisLM test is presented in Greene (2000). The constrained estimator,
denoted by q, = (&, b,9¢, solves (2.2) subject to the constraint h(g) = 0. The GMM-based

LM statisticis

U ®,U, [U,%,U,]"0, 8,0 /U8 (35



whereR, =W(W)*W¢, U =U(g,)and U, =1U(q,)/Tq. Thisis nxR? from aregression of
Uon RV, . That is, the LM statistic can be obtained from regressing U, on W, calculating
the predicted value, and then calculating n>R? from aregression of the restricted residual
on these predicted values. The constrained NL2SLS and RNL2SL S estimates of a are the

same, and, hence, the constrained NL2SL S and RNL2SL S estimates of b are the same.
As aresult, the values of the LM statistic for NL2SLS and RNL2SL S are aso the same.

The LM test is especially convenient when testing the null hypothesisHy: a =a,,.

Note first that by having X; included in W, the constrained estimator is g, = (a,, b,9¢
where b isthe OLS estimator obtained by regressing T(Y;,a,) onX; . Therefore the
constrained residual vector U isjust the residual vector from the OL S regression of
T(Y.a)onX . Also U, =1U(q,)/q =[T, .- X] , where
T, =(T(y,.a.)/Ta,...1T(y,.a,)/Ta)¢ and X = [X,,..., X, ]¢. Furthermore, if X; includedin
W, thenR U, =[R.T, .- X]. Thus, the LM statistic for testing a can be obtained in three
steps as follows:

1. Obtainthe OLSresidualsfrom regressing T(Y,,a,) on X;.

2. Obtain the predicted valuesregressing T(Y,a,) on W.

3. Cdlculate the test statistic as n>R?from regressing the residuas from 1 on the
predicted value for 2 and X; . This n>R?isthe LM statistic.

The GMM based LM statistic is invariant to reparametrization of the null

hypothesis, but not always to the rescaling of the dependent variable. Invariance to

rescaling depends on whether the parameters are exactly identified. The LM statisticis

10



invariant to rescaling of the dependent variable in the exactly identified case but not in.
the overidentified case.
4. Bootstrap Critical Values

This section explains how the bootstrap isimplemented in a simple setting and
shows how the bootstrap can be used to obtain a Type | critical value for hypothesis tests.
The presentation is based on Horowitz (1999).

In this section, let the data be a random sample of size n from a probability
distribution whose CDF is F,. Denote the databy {X;: 1,...,,n}. Let Fobelong to afinite
or infinite-dimensional family of distribution functions, and let F denote a general
member of thisfamily. Let T, =T, (Xy,...,X,) beadtatistic. Let G,(t,F,)° P(T,£t) denote
the exact, finite-sample distribution CDF of T,. Let G,(xF) denote the exact CDF of T,
when the data are sampled from the distribution whose CDF isF .

Usudly, G,(t,F)isadifferent function of t for different distributions F. An

exception occurs if G, (xF) does not depend on F, in which case T,, is said to be pivotal.
For example, thet statistic for testing a hypothesis about the sample mean of a normal
population is independent of the unknown population under the null hypothesis and,
therefore, is pivotal. Pivotal statistics are not available in most econometric applications,
however, without making strong distributional assumptions. Therefore, G,(xF) usualy
dependson F, and G, (xF,) cannot be calculated if Fqisunknown.

First-order asymptotic distribution theory is awidely used method for estimating
G, (xF,) . The asymptotic distributions of many econometric statistics are standard normal
or chi-square, possibly after centering and normalization regardless of the distribution

from which the data were sampled. Such statistics are called asymptotically pivotal,
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meaning that their asymptotic distributions do not depend on unknown population
parameters. Let G, (xF,) denote the asymptotic distribution of T,. Let G, (xF) denote the
asymptotic CDF of T,, when the data are sampled from the distribution whose CDF isF.
If T,, isasymptotically pivotal, then G, (xF) ° G, (3 does not depend on F under the null
hypothesis. Therefore, if nissufficiently large, G,(xF,) can be estimated by G, (3 without
knowing Fo. This method for estimating G, (xF,) is often easy to implement, but G, (3 can
be avery poor approximationto G, (xF,) with the sample sizes available in applications.
The bootstrap provides an alternative approximation to G, (xF,) or features of
G, (xF,) such asits quantileswhen Fyis unknown. Whereas first-order asymptotic
approximations replace the unknown distribution function G, with the known distribution
function Gy, the bootstrap replaces the unknown distribution function F with a known

estimator. Let F,, denote the estimator of Fy. Two possible choices of F, are:

(1) The empirical distribution function (EDF) of the data:

F.()==a (X £Xx),

18
Niz

where| istheindicator function.

(2) A parametric estimator of Fy.
If the distribution of X is not assumed to belong to a known parametric family, the EDF
of X isthe most obvious candidate for F,,. In the case of the semiparametric Box-Cox
model, the EDF is the estimator of F.

Regardless of the choice of F,, the bootstrap estimator of G,(xF,) is G,(xF,).
Usually, G,(xF,) cannot be evaluated analytically. It can, however, be estimated with

arbitrary accuracy by carrying out a Monte Carlo simulation in which random samples

12



aredrawn from F,.. Thus, the bootstrap is usually implemented by Monte Carlo
simulation. The essential characteristic of the bootstrap is the use of F, to approximate Fo
in G,(xF,), hot the method that is used to evaluate G,(xF,).

Now let T, be statistic for testing a hypothesis Hy about the sampled population.
Assume that under Hy, T, is asymptotically pivotal and satisfies certain technical
conditions. Consider a symmetrical, two-tailed test of Hy. For such atest, Hqisrejected if
[Tn | exceeds a suitable critical value and is accepted otherwise. This test rejects Hy at the

a levd if [T, z.,,, where z_,,, the exact, finite-sample a/2-level critical value, isthe 1-

a/2 quantile of the distribution of T,. The critical value solves the equation

Gi(Z,a/2:F0) - Go(- 2,40, Fo) =1-a.. (4.1
Horowitz and Savin (2000) refer to z,,, asthe exact Typel critical value of the test of Hy,.
Unless T, is exactly pivotal, however, equation (4.1) cannot be solved in an application
because Fy is unknown. Therefore, the exact, finite-sample critical value cannot be
obtained in an application if T, isnot pivotal.

First-order asymptotic approximations obtain afeasible version of (4.1) by

replacing G, by Gy. Thus, the asymptotic critical value, z,,,, solves

Gy (% a2 Fo)- Ge(-%a/2oFd =1-2. (4.2)
Assuming Gy is the standard normal distribution when T, is asymptotically pivotal,
z,.,, can be obtained from the table of standard normal quantiles. It can be shown that the
asymptotic critical value approximates the exact finite sample critical value with an error

whose sizeis O(n™).
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The bootstrap obtains afeasible version of (4.1) by replacing Fo with F,,. Thus the

bootstrap critical value, z,, ,*, solves

G (2,22" Fo) - G (- 2,5 ," Fp) =1-a. (4.3)
Equation (4.3) usually cannotbe solved analytically, but z . ,* can be estimated with
any desired accuracy by Monte Carlo ssimulation.

The accuracy of the bootstrap critical value as an estimator of the exact fi nite-
sample critical value z_,, isgiven by

Znar2* = Zyar T O(N) (4.4)
almost surely. Thus, the bootstrap critical value for a symmetrical, two-tailed test differs
from the exact, finite-sample critical value by O(n"¥?) almost surely. The bootstrap
critical value is more accurate than the asymptotic critical value, z,,,,, whose error is
o(n™.

The rejection probability of the test based on T,, when Hyistrueis
P(T, P z..,.) =a When thetest is based on the exact but infeasible Type | critical value.
With the asymptotic critical value, the rejection probability is

PUT, B z.,,,)=a +O(n'?). (4.5)
Thus, with the asymptotic critical value, the true and nominal rejection probabilities
differ by O(n™"). The rejection probability with the bootstrap value is

P(T,F 2,42*) =a +0O(n"?). (4.6)
Notethatz_,,* isarandom variable, which complicates the derivation of (4.6). The

result (4.6) saysthe nominal of rejection probability of a symmetrical, two-tailed test

with a bootstrap critical value differs from the true rejection probability by O(n?) when
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the test statistic is asymptotically pivotal. In contrast, the difference between the nominal
and true rejection probabilitiesis O(n™) when the asymptotic critical value is used. For
details, see Hall (1992).

Finally, consider the power of atest based on a bootstrap critical value. Suppose
that bootstrap samples are generated by a model that satisfies afalse Hy, and, therefore,
is misspecified relative to the true data-generation process. If Hg is simple, meaning that
it completely specifies the data-generation process, then the bootstrap amounts to Monte
Carlo estimation of the exact finite-sample critical value for testing Ho against the true
data generation process. In most applications, including the one in this paper, the null Hqy
iscomposite. That is, it does not specify the value of afinite-or infinite-dimensional
“nuisance’ parameter y . It can be shown, however, that atest of a composite hypothesis
using a bootstrap-based critical value is a higher-order approximation to a certain exact
test. The power of the test with a bootstrap critical value is a higher-order approximation
to the power of the exact test.

5. Design of Experiments

This section presents the general features of the designs used in the Monte Carlo
experiments. The section concludes with a description of how the bootstrap critical
values are computed for the Wald and LM tests of the null hypothesis about the
transformation parameter.

The model simulated in the experimentsis

T(Ya)=b,+b,X +U (5.1)
where X isascalar random variable. Let {Y;, X;, i =1, ..., n} beasample from (Y, X).

The instruments used in the NL2SL S and RNL2SL S estimators are those employed by

15



Amemiyaand Powell (1981), namely, 1, X and X2 Hence, with this set of instruments,
the parameters are exactly identified and the NL2SL S is the efficient GMM estimator.

Three different specifications for the conditional distribution of Y given X are
considered for the Box-Cox model. Thefirst is the two-parameter gamma distribution for
Y given X proposed by Amemiya and Powell (1981). The second is a truncated normal
suggested by Poirier (1978). Let U be N(0, (0.5)%) with left truncation point U = -1. The
third is an exponential for U with parameter | = 4. The truncated normal and exponential
distributions of U are generated independently of X. However, the construction of the
conditional distribution of Yin the case of gammaimpliesthat U and X are dependent.
Thevaues of X are obtained by random sampling the following marginal distributions of
X: Uniform [-1, 1], lognormal based on N(O, 1) and exponential with | = 1.

The sample sizes investigated are n = 50, 100, 200. For each specific design, the
number of Monte Carlo replications is 1000 (to be increased to 5000 in final draft). The
grid for a isdivided into units of 0.10 and runs from -5.0 to 5.0 about the true value of a.
The computations were performed using GAUSS for Windows NT/95, Version 3.2.33.

Each experiment consists of testing the null hypothesis, Hy: a =a,, a¢=0.0,0.5

1.0. TheWad and LM dtatistics for testing H are described in Section 3. The
asymptotic critical value, z,,,, for the Wald and LM tests is obtained from atable of the
guantiles of the chi-square one distribution, or of the standard normal distribution.

The Monte Carlo procedure for computing the bootstrap critical value for the
Wald test is the following:

W1. Usetheestimation data{Y;,, Xi:i=1,...,n} tocompute the unconstrained

GMM estimator.

16



W2. Generate a bootstrap sample by size n by sampling { Y, X} pairs from the
estimation data with replacement. Compute the unconstrained GMM estimators of g and
V from the bootstrap sample. Call the results q,* =(3,*,b,*9¢and V, * . The bootstrap

version of the Wald statisticis

*_ A4 )2
Wald* =@ *- )" (5.2)

a2 %
S

where §* isthefirst element of V,*. Notethat apisreplaced by &, .

Wa3. Use the results of 299 repetitions of W2 to compute the EDF of Wald *. The

bootstrap critical value z,, * isequal to the 1-a quantile of this distribution.

At this point, it is worth remarking that Horowitz (1997, 1999) considers an
example in which the bootstrap critical value of the Wald test is computed assuming that
U isindependent of X and U is normally distributed. With these assumptions, the efficient

procedure consists of the following: Estimate g by the maximum likelihood estimator

and generate Y valuesfrom Y =[a,(X®&, +U*)+1"> where =q, = (a,,b,$¢denotes the
maximum likelihood estimator and U* is randomly sampled from the normal distribution.
This method cannot employed in the present setting because U is, in general, not
independent of X, and U is not normally distributed.

Next, consider the Monte Carlo procedure for computing the bootstrap critical
value for the LM test.

LM1. Usetheestimationdata{Y, Xi:i =1, ...,n,} tocompute the constrained
GMM estimator.

LM2. Generate a bootstrap sample by size n by sampling { Y, X} pairsfrom the

data estimation data with replacement. Compute the constrained GMM estimator of g

17



from the bootstrap sample. Call theresult q.* =(&,*,b,*9¢and V. * . The bootstrap version
of the LM statistic requires further study!
(5.3

LM3. Use the results of 299 repetitions of LM 2 to compute the EDF of LM *. Set
z..,,* equal tothe 1-a quantile of this distribution.

The true rejection probability of the Wald test of Hy with a bootstrap critical value
is estimated by conducting a Monte Carlo experiment. The experiment consists of
repeating the following steps 1000 times.

MCL1. Generate an estimation dataset of size n by random sampling from the
model with the null hypothesis Hy: a =a,imposed. Compute the value of the Wald
statistic.

MC2. Use the Monte Carlo procedure (W1- W3) for computing the bootstrap
critical value, z,, *.

MC3. Regect Hp at the nominal a-level if the value of the Wald statistic exceeds

z,. *. The power of the Wald test with the bootstrap critical value is estimated by
carrying out the same steps except that a * a,in MCL.

This experiment can also be used to estimate the rejection probability of the Wald
test based on the asymptotic critical valuez,,,, . Inthiscase, Hy is rejected at the nominal

a-levd if the test statistic exceeds the 1-a quantile of the chi-square distribution with one

degree of freedom.
The experiment to estimate the true rejection probability of the LM test based on

the bootstrap critical valueis similar to the experiment consisting of steps MC1-MC3.
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The differenceisthat in step MC1 the LM statistic is computed instead of the Wald
statistic, in step MC2 the Monte Carlo procedure LM1-LM3 is used to compute the
bootstrap critical value instead of W1-W3, and in step MC3 the null Hy isrejected at the
nominal a-level if the value of the LM statistic exceeds the bootstrap critical value.

The estimate of the rejection probability under Hyis computed as R/G where R is
the number of rejections of Hg in G nontdeleted estimation samples. A sampleis deleted
if the minimum value of the objective function essentially exceeds zero, namely, 0.005,
when the unconstrained GMM estimate is calculated. 1n theory, the minimum value of
the objective function is zero because the parameters are exactly identified. Nevertheless,
in practice, the minimum can be nonzero if the range of the grid for a employed in the
grid search istoo narrow. For the designs we consider, nonzero values occur very
infrequently. In computing the bootstrap critical value for the Wald test, a bootstrap
sampleis aso deleted if the objective function exceeds zero when the unconstrained
GMM estimate is cal cul ated.

6. Resultsof Monte Carlo Experiments

This section reports the results of selected Monte Carlo experiments that illustrate
the numerical performance of the Wald and LM tests when they are based on asymptotic
critical values and on bootstrap critical values.

Design 1: Truncated Normal, bo=b; =1, s =.5, X uniform [-1, 1]. The empirical
rejection probabilities under Hy are reported in Table 1. They show that the Wald test
with asymptotic critical values performs poorly for n = 50 and 100, especially for ag = 0.
The empirical rejection probabilities are within the 99 percent confidence intervals for the

nominal rejections levelswhen n = 200. The distortions are smaller when the test is
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based on bootstrap critical values. For the bootstrap, the empirical rejection probabilities
are within the 99 percent confidence intervals for the nominal rejections levelswhenn =
100. In the case of the LM test with asymptotic critical values, the differences between
the empirical and nominal rejection probabilities are essentially zero at n = 50. The
performance of the LM test with bootstrap critical valuesiswork in progress.

Design 2: Gamma, bg=b; =1, s =.5, X perfect uniform [-1, 1] population. The
empirical rejection probabilities under Hy are reported in Table 2. The Wald test with
asymptotic critical values performs poorly for n = 50 and 100, but the test does not
perform noticeably better with bootstrap critical values, except at the nominal 10 percent
level. Again, the LM test with asymptotic critical values has empirical rejection
probabilities that are close to the nominal levels.

Design 3: Exponential, by =0, b; = 1, X uniform [-1, 1]. For the Wald test with
asymptotic critical values, Table 3 shows that differences between the empirical and
nominal rejection probabilities are essentially zero when n = 100, based on the 99 percent
confidence intervals for the nominal rejection probabilities. The Wald test with bootstrap
critical values does not perform noticeably better, except at the nominal 10 percent level
in some cases. The LM test with asymptotic critical values produces empirical rejection
probabilities that are close to the nominal levels for samples of n = 50.

Design 4: Truncated normal, bg=0, b; =1, s =.5, X lognormal. For this design,
Table 4 does not report results for the Wald test of Hy: a =0 because the percent of
deleted sampleis very large, namely more than 50 percent for both NL2SL S and
RNL2SLS. For Hy: a =1, the Wald test tends to perform noticeably better with bootstrap

critical values than test with asymptotic critical values, starting with n = 50. Again, the
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LM test with asymptotic critical values produces empirical rejection probabilities that are
close to the nominal levels for samples of n = 50.

Design 5: Truncated normal, bg =0, b; = 1, s =.5, X exponential. For the Wald
test, Table 5 shows that the differences between the empirical and nominal rejection
probabilities are essentially zero when n = 50. Moreover, the Wald test performs
noticeably worse with bootstrap critical values than with asymptotic critical values. For
the both Design 5 and 6, the differences between the empirical and nominal rejection
probabilities are essentially zero at n = 50 for the LM test with asymptotic critical values.

Design 6: Exponential, by =0, b; = 1, X exponential. With design, thereisa
striking difference between the performance of the Wald test of Hy: @ =0 based on the
NL2SL S estimator and on the RNL2SL S estimator. The latter estimator produces much
more reasonable results. Nevertheless, neither the asymptotic nor the bootstrap Wald test
works for n = 200. For the Wald test of Hy: a =1, the asymptotic and bootstrap critical
values give similar empirical rejection probabilities, which tend to be close to the
nominal rejection probabilities.

We estimated the powers of the asymptotic and bootstrap Wald tests. The
estimated powers are for the tests based on the RNL2SL S estimator. Figure 1 illustrates
the empirical powers for Design 3 (Exponential, Uniform) and Design 4 (Truncated
Normal, Lognormal). The empirical powers are reported for a0.01 level test of Hy:

a =1 againgt alternatives 0.8, 0.6, 0.4,0, 0.2 and 0 and for a0.01 level test of Hy: a =0
against the aternativesa = 0.2, 0.4, 0.6, 0.8 and 1.0. The sample sizeisn = 50.
In Figure 1, the solid line shows the empirical powers for the tests with

asymptotic critical values, and the dashed line shows the empirical powers for the tests
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with bootstrap critical values. For each design, the asymptotic and bootstrap tests have
essentially the same empirical powers. The empirical power functions for Design 3 show

that the empirical power of the test of Hy: @ =1 against the alternative a = 0 is about 0.8

and similarly for the empirical power of thetest of Hy: @ =0 againsta = 1. The
empirical powers are substantially higher in the case of Design 4, especially for
alternatives near the null value of a. For the designs used in this study, the empirical
powers show that the Wald test can discriminate between the linear and loglinear models.
Our results also show that the design can make a substantial difference asto whether the
test can discriminate among local alternatives.

Our plan isto estimate the powers of the LM test.
7. Concluding Comments

For the designs considered in this study, the Wald and LM tests with asymptotic
critical values often work reasonably well for samples sizes available in practice. In the
case of the Wald test, this finding holds when estimation is based on the rescaled
NL2SL S estimator. The differences between the empirical and nominal rejection
probabilities under Hy are small for the Wald test with asymptotic critical values when
the sample sizeisn = 100. The LM test performs better than the Wald test when the null
hypothesisis true. The differences between the empirical and nominal rejection
probabilities under H, are essentially zero for the LM test with n = 50.

The numerical performance of the Wald and LM tests with bootstrap critical
valuesis not noticeably better than with asymptotic critical values for most of the designs
inthis study. Thiswas not the result we expected. The relatively poor performance of the

bootstrap under Hy may be due a combination of two factors. One is that the bootstrap is
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based on the sampling of { Y, X} pairs, and the other is that the number of bootstrap
replications may be too small. Given the semiparametric setting, there is no alternative to
sampling{Y, X} pairs. We plan to investigate the effect of increasing the number of
bootstrap replications.

For the designsin this study, the asymptotic and bootstrap Wald tests have
essentially the same empirical powers. Moreover, the Wald test can discriminate
between the linear and loglinear models. Our results al'so show that the design can make a
substantial difference as to whether the Wald test can discriminate among local

aternatives.
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Design 3: Exponential, by =0, b; =1, X uniform [-1, 1]
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Design 4: Truncated normal, by =0, b, =1, s =.5, X lognormal
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Figure 1. Empirical powers of asymptotic (solid line) and bootstrap (dashed line) Wald
tests based on the RNL2SL S estimator, n = 50. The curves on |eft show the empirical
powers of a0.01 level test of Hy: a =1 against the alternatives 0.8, 0.6, 0.4,0, 0.2 and 0,
and the curves on the right show the empirical powers of a0.01 level test of Hy: a =0
against the dternativesa = 0.2, 0.4, 0.6, 0.8 and 1.0.
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Tablel

Empirical Rejection Probabilities (Percent) of Wald and LM Tests

Design: Truncated Normal, bp=b;=1,s =.5, X uniform [-1, 1]

Critical Hypothesis| 1 5 10 1 5 10 1 5 10
Vdue
Wwald LM
NL2SLS RNL2SLS NL2SLS
n=50
Asymptotic | a =0 0.00 | 0.92 | 328 | 0.00 | 1.02 | 3.37 | 051 | 522 |9.72
a=05 0.20 | 1.32 | 417 | 0.20 | 1.43 | 418 | 1.13 | 5.12 | 10.6
a=1 0.10 |0.72 | 390 | 0.10 | 1.72 | 381 | 0.31 | 4.25 | 943
Bootstrap | a =0 0.21 | 154 | 482 | 0.31 | 1.84 | 542
a=05 0.10 | 1.12 | 488 | 0.20 | 1.33 | 5.10
a=1 0.00 | 1.23 | 6.16 | 0.10 | 1.55 | 6.08
n=100
Asymptotic | a =0 0.00 | 0.91 | 4.63 | 0.00 | 0.90 | 4.72 | 1.20 | 5.22 | 10.0
a=05 0.10 | 3.10 | 6.41 | 0.01 | 311 | 641
a=1 0.20 |3.70 | 6.71 | 0.20 | 3.71 | 6.71 | 0.80 | 6.31 | 124
Bootstrap |a =0 0.00 | 272 | 7.85 | 0.00 | 2.61 | 7.93
a=05 0.20 | 3.40 | 9.71 | 0.20 | 3.41 | 10.0
a=1 0.50 | 3.80 {9.81 | 050 | 4.01 | 9.92
n =200
Asymptotic | a =0 0.10 | 286 | 797 | 0.20 | 341 | 883 | 1.01 | 535|114
a=05 0.40 | 3.50 | 8.10 | 0.40 | 3.50 | 8.00
a=1 0.50 | 4.00 | 850 [ 0.50 | 4.00 | 850 |1.80 |5.80 |110
Bootstrap | a =0 051 | 521 | 120 | 050 | 522 | 11.8
a=05 0.40 | 5.20 | 11.9 | 0.40 | 5.30 | 11.6
a=1 0.60 | 5.30 | 10.9 | 0.60 | 5.40 | 10.9

Notes: The empirical rejection probabilities are computed using 1000 Monte Carlo
replications. The 95 percent confidence intervals for the 0.01, 0.05 and 0.10 levels are
(0.4, 1.6), (3.6, 6.4) and (8.1, 11.9), respectively; the 99 percent confidence intervals are

(0.2, 1.8), (3.2, 6.8) and (7.6, 12.4), respectively.
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Table?2

Empirical Rejection Probabilities (Percent) of Wald and LM Tests

Design: Gamma, by=b;=1,s =.5, Xuniform[-1, 1]

Critical Hypothesis| 1 5 10 1 5 10 1 5 10
Vaue
wald LM
NL2SLS RNL2SLS NL2SLS

n=50
Asymptotic | a =0

a=05

a=1 041 | 227 | 485|042 | 228 | 477 | 1.14 | 541 | 9.99
Bootstrap |[a =0

a=05

a=1 041 | 227 | 691 | 062 | 238 | 6.94 | 1.04 | 4.06 | 9.89
n =100
Asymptotic | a =0

a=05

a=1 040 | 262 | 6.05 | 040 | 252 | 6.05| 111 | 4.06 | 8.78
Bootstrap |a =0

a=05

a=1 051 | 373 | 827 | 050 (383|827 |091 | 444 | 105
n =200
Asymptotic | a =0

a=05

a=1
Bootstrap |a =0

a=05

a=1

Notes: See Table 1
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Table3

Empirical Rejection Probabilities (Percent) of Wald and LM Tests

Design: Exponential, bo=0, b; =1, X uniform [-1, 1]

Critical Hypothesis| 1 5 10 1 5 10 1 5 10
Vaue
wald LM
NL2SLS RNL2SLS NL2SLS
n =50
Asymptotic | a =0 0.70 1331|711 {070 |330 | 711
a=05
a=1 0.90 |3.30 | 740 | 090 | 3.30 | 7.40 | 1.00 | 5.80 | 10.0
Bootstrap | a =0 030 | 271 | 752 | 0.30 | 2.70 | 7.61
a=05
a=1 0.30. | 2.60 | 6.40 | 0.30.| 2.60 | 6.40
n=100
Asymptotic | a =0 0.30 | 3.70 | 7.70 | 0.30 | 3.60 | 7.70
a=05
a=1 0.40 | 3.60 | 850 | 0.40 | 3.60 | 8.50
Bootstrap | a =0 0.30 | 3.60 | 9.50 | 0.30 | 3.50 | 9.40
a=05
a=1 0.20 | 3.30 | 9.30 [ 0.20 | 3.30 | 9.30
n =200
Asymptotic | a =0 0.20 {490 | 105 | 0.20 | 4.90 | 104
a=05
a=1 1.20 | 550 | 11.7 | 1.20 | 550 | 11.6
Bootstrap | a =0 0.50 [ 490 | 11.2 | 0.50 | 4.80 | 10.7
a=05
a=1 0.80 | 520 | 11.6 | 0.80 | 5.20 | 115

Notes: See Table 1
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Table4

Empirical Rejection Probabilities (Percent) of Wald and LM Tests

Design: Truncated normal, by =0, b; =1, s =.5, Xlognormal
Critical Hypothesis| 1 5 10 1 5 10 1 5 10
Vaue
Wald LM
NL2SLS RNL2SLS NL2SLS
n=50
Asymptotic | a =0
a=05
a=1 193|732 (126 | 090 | 6.60 [ 121 | 1.40 | 6.90 | 12.8
Bootstrap |a =0
a=05
a=1 102 | 427 |11.0 | 130 | 500 | 121
n=100
Asymptotic | a =0
a=05
a=1 239 651 | 122 | 261 | 7.23 | 13.2
Bootstrap |[a =0
a=05
a=1 152 1684 115|181 | 683|112
n=200
Asymptotic | a =0
a=05
a=1 159 | 540 | 127 | 205 | 6.97 | 14.8
Bootstrap |[a =0
a=05
a=1 158 | 581 |10.0 | 1.43 | 5.42 | 8.80

Notes: See Table 1
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Table5

Empirical Rejection Probabilities (Percent) of Wald and LM Tests

Design: Truncated normal, by =0, b; =1, s =.5, X exponential

Critical Hypothesis| 1 5 10 1 5 10 1 5 10
Vaue
Wald LM
NL2SLS RNL2SLS NL2SLS
n=50
Asymptotic | a =0 092 | 459 | 9.99 | 0.92 | 459 |9.99
a=05
a=1 0.80 | 4.80 | 10.3 | 0.90 | 4.80 | 10.3 | 0.70 | 6.00 | 11.0
Bootstrap | a =0 092 | 6.01 |11.7 | 082 | 6.42 | 11.9
a=05
a=1 170 | 6.40 | 11.8 | 1.60 | 6.40 | 11.9
n=100
Asymptotic | a =0 139 | 544 | 108 | 1.39 | 5.66 | 11.0
a=05
a=1 0.90 | 5.00 | 11.2 | 0.90 | 5.00 | 11.2
Bootstrap | a =0 245 | 6.62 | 126 | 256 | 6.83 | 129
a=05
a=1 130 | 7.20 | 13.8 | 1.30 | 7.20 | 13.8
n =200
Asymptotic | a =0 165 | 582 | 106 | 1.90 | 6.20 | 11.1
a=05
a=1 1.00 | 540 | 10.1 | 1.00 | 540 | 10.1
Bootstrap | a =0 203 | 6.45 | 9.88 | 215 | 6.83 | 9.98
a=05
a=1 200 [ 650 | 124 | 2.00 | 6,50 | 124

Notes: See Table 1
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Table6

Empirical Rejection Probabilities (Percent) of Wald and LM Tests

Design: Exponential, bg=0, b; = 1, X exponential

Critical Hypothesis| 1 5 10 1 5 10 1 5 10
Vaue
Wald LM
NL2SLS RNL2SLS NL2SLS
n=50
Asymptotic | a =0 285 | 316 | 346 | 164 | 6.75 | 120
a=05
a=1 1.70 | 6.00 | 10.7 | 1.80 | 6.00 | 10.6 | 1.60 | 4.10 | 9.50
Bootstrap | a =0 0.00 | 1.00 | 2.20 | 0.92 | 4.09 | 8.28
a=05
a=1 1.20 | 480 | 109 | 1.30 | 4.80 | 10.8
n=100
Asymptotic | a =0 36.8 |40.2 | 439 |1.06 | 7.12 | 141
a=05
a=1 190 | 650 [ 119 | 1.80 | 650 | 11.8
Bootstrap | a =0 0.00 | 0.30 | 1.00 | 0.74 | 3.83 | 6.38
a=05
a=1 190 | 660 | 114 | 190 | 6.40 | 115
n =200
Asymptotic | a =0 378 | 414 | 444 | 294 | 9.62 | 15.1
a=05
a=1 140 | 550 [ 10.8 | 1.40 | 570 | 11.1
Bootstrap |[a =0 0.00 | 0.10 [ 0.20 | 094 | 7.05 | 16.2
a=05
a=1 1.20 | 540 | 105|130 |54 |10.6

Notes: See Table 1
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