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1 Introduction

Several semi-parametric methods for index models have been developed. In a
single index model, the conditional expectation of a dependent variable y given
a r × 1 vector of explanatory variables x is

E[y |x] = τ(x′β0), (1)

for an unknown vector of parameters β0 and an unknown univariate function
τ(·). This model is implied by many important limited dependent variable and
regression models, as discussed in Ruud (1986) and Stoker (1986). Consis-
tent estimators for β0, up to an unknown scale factor, have been developed by
Ruud (1986), Stoker (1986), Powell, Stock, and Stoker (1989), Ichimura (1993),
and others.

In this paper, we return to a type of estimator developed by Ruud (1986).
He proposed an inverse-density-weighted quasi-maximum likelihood estimator.
We consider least squares estimation that is weighted by the ratio of an ellipti-
cally symmetric density with compact support to a kernel estimator of the true
density. We give conditions for

√
n-consistency and asymptotic normality of the

estimator, and derive a consistent estimator for the asymptotic variance. We
also show that the first-order conditions for the scaled least squares coefficients
has an analogous form to the efficient score for an index model. This form is
used to suggest ways to choose weights that have high efficiency.

Among the semi-parametric index estimators, the inverse-density-weighted
least squares estimator is unique because it permits discontinuities in the trans-
formation τ . Discontinuities in the conditional expectation of dependent vari-
ables arise in such economic problems as optimization over nonlinear budget
sets and production frontiers. In labor supply for example, nonconvexities in
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the budget frontier caused by welfare programs imply discontinuities in the de-
sired hours of work. If the optimization errors are small, then these discontinu-
ities translate into discontinuities in the conditional expectation of hours given
socio-economic covariates that control for observable heterogeneity. The esti-
mators that we consider in this paper accommodate such breaks when the index
model is linear. In contrast, the average derivative estimators of Stoker (1986)
and Powell, Stock, and Stoker (1989), and the kernel regression estimators of
Ichimura (1993) all require that τ be differentiable. Thus, the results of this
paper provide a way of estimating index parameters in nonsmooth cases that
have previously been ruled out.

2 The Estimator

Our estimator is based on the idea of Ruud (1986). Suppose that the den-
sity has the linear conditional expectation (LCE) property that the conditional
expectation of x given any linear combination of x is linear in that combina-
tion. Ruud (1986) showed that in this case quasi-maximum likelihood estima-
tion (QMLE) is consistent for β0, up to scale. He exploited this property by
multiplying the quasi-likelihood function by the ratio of a LCE density to a
nonparametric estimator of the true density of x. The resulting QMLE will
be consistent for slope coefficients, because the “reweighting” has the effect of
making the limit be the same as if the regressor density were the LCE density.

In this paper we focus on weighted least squares estimators, because they
are particularly simple to compute. To describe the estimator, let f(x, θ) be an
elliptically symmetric pdf, that has compact support and is parameterized by
a vector θ. This density will be appropriate for the numerator of the weight,
because it is well known that elliptically symmetric pdf’s have the LCE property
(see also the appendix). Let θ̂ denote an estimator of some value θ0 of the
parameter vector. For a kernel K(u), satisyfing properties to be specified below,
and a bandwidth parameter λ, let

ĥ(x) =
1
N

n∑
i=1

Kλ(x− xi), Kλ(u) = λ−rK(u/λ),

where r is the dimension of x. This ĥ(x) is a kernel density estimator. For
X = (1, x′)′, an inverse density weighted least square estimator is obtained as

γ̂ =

(
n∑

i=1

ŵiXiX
′
i

)−1 n∑
i=1

ŵiXiyi, ŵi =
f(xi, θ̂)

ĥ(xi)
, (2)

where the data observations are indexed by i = 1, . . . , n.
The limit of this estimator will behave as if x had density f(x, θ0). Thus,

by Ruud (1986), we know that the coefficients of x in γ̂ are consistent for β0,
up to a common scale factor. The density f(x, θ) is required to have compact
support in order to deal with the technical problem that ĥ(x)−1 could be large
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for outlying values of x. Also, the parameter estimates θ̂ are present in order to
allow for centering the location and scale of the density. Furthermore, allowing
for θ̂ can be important for efficiency, as discussed in Section 4.

The kernel K(u) will be assumed to satisfy
∫ K(u)du = 1, have a compact

support, and satisfy other regularity conditions given below. It will also be
assumed that K(u) is nonrandom, although in practice one would often use a
scale normalization, where K(u) = det(Σ̂)−1/2p(Σ̂−1/2u) for a pdf p(u), and Σ̂
equal to the sample variance of xi.

The estimator that will be consistent for β0 up to scale is the coefficients
of x that appear in γ̂. A convenient way to normalize the scale is to suppose
that the first coefficient in β0 is 1 (which is just a normalization as long as it
is nonzero). Partition γ = (γ1, δ

′) and γ̂ = (γ̂1, δ̂
′)′ conformably, where γ1 is a

scalar (coefficient of the constant) and δ is a r× 1 vector (the coefficients of x).
Also, partition β = (β1, β

′
2)

′ and δ = (δ1, δ′2)
′ conformably, where β1 is a scalar,

so that the dimension of β2 is r − 1. The true value of β1 is 1, by our scale
normalization. An estimator of β2 that includes this scale normalization is then

β̂2 = δ̂2/δ̂1. (3)

That is, β̂2 is the ratio of the coefficients in γ̂ of all the regressors except the
first one to the first regressor coefficient.

An important practical problem is the choice of bandwidth λ. The regularity
conditions given below for

√
n-consistency will require that λ be chosen to be

smaller than the value that would minimize the asymptotic mean square error
of ĥ, a feature that is often referred to as “undersmoothing.” Thus, choosing
the bandwidth from cross-validation, or any other method that minimizes the
asymptotic mean square error is not appropriate. It is beyond the scope of this
paper to say much more about the theory of how to choose λ, but a practical
method might be to start at a value obtained by cross-validation and decrease
λ until β̂2 does not change much relative to its estimated standard error.

3 Asymptotic Variance Estimation

The estimator is a weighted least squares estimator with an estimated weight.
In our case, where the conditional expectation (1) is not linear, estimation of the
weights will affect the limiting distribution, complicating asymptotic variance
estimation. There are two sources of variability in the weights, the nonparamet-
ric density estimator in the denominator and the θ̂ estimator in the numerator.
Both sources will affect the asymptotic variance of γ̂, but the asymptotic vari-
ance of β̂2 will only be affected by estimation of the denominator (the true
density). This simplification follows from Newey and McFadden (1993, The-
orem 6.2), which says that the asymptotic variance of β̂2 is not affected by
estimation of θ if the limit of θ̂ does not affect the limit of β̂2. Here, β̂2 will be
consistent no matter what the limit of θ̂ is, because of elliptical symmetry of
f(x, θ) for all θ.
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In most cases the parameters of interest are β2, so that estimation of θ̂ can
be ignored in the asymptotic variance. To avoid additional complication, we will
focus on this case, by giving a consistent estimator of the asymptotic variance
of β̂2.

An estimator of the asymptotic variance of β̂2 can be constructed as follows.
Let

ĝ(x) =
n∑

i=1

yiKλ(x− xi)

ĥ(x)

be a kernel estimator of E[y |x]. Define

Ĵ ≡ δ̂−1
1 [0r−1,−β̂2, Ir−1]

Q̂ ≡ 1
n

n∑
i=1

ŵiXiX
′
i

Σ̂ ≡ 1
n

n∑
i=1

ŵ2
iXiX

′
i[yi − ĝ(xi)]2,

where 0r−1 is a r − 1 dimensional column vector of zeros and Ir−1 is an r − 1
dimensional identity matrix. Then a consistent estimator of the asymptotic
variance of

√
n(β̂2 − β20) will be

V̂ = Ĵ ′Q̂−1Σ̂Q̂−1Ĵ (4)

This estimator can be interpreted as being obtained by combining the delta-
method with an asymptotic variance estimator for γ̂. Here Ĵ is the Jacobian
of the transformation from γ̂ to β̂2, while Q̂−1Σ̂Q̂−1 is an estimator for the
asymptotic variance of γ̂ that ignores estimation of θ0. Consistency of this
estimator of the asymptotic variance will be shown in Section 5.

The form of this estimator can be motivated by deriving the asymptotic
variance of γ̂, assuming that θ̂ = θ0. Let w(x) = f(x, θ0)/h0(x), and γ0 =
Q−1 E[w(x)Xy] be the limit of γ̂, for Q = E[w(x)XX ′]. Then for u = y−X ′γ0,

√
n(γ̂ − γ0) =

1√
n
Q̂−1

n∑
i=1

ŵiXiui. (5)

Under appropriate regularity conditions, the first term will have limit Q−1, so
the asymptotic variance of γ̂ will be Q−1ΣQ−1, where Σ is the asymptotic vari-
ance of

∑n
i=1 ŵiXiui/

√
n. We can derive Σ using the results of Newey (1993,

Propostion 5), which gives a general asymptotic variance formula when non-
parametric density estimators are present. Let

D(x) = E

[
f(x, θ0)Xu

∂(1/h)
∂h

∣∣∣∣
h=h0(x)

∣∣∣∣∣x
]

(6)

= −w(x)X{E[y |x] −X ′γ0}
h0(x)

. (7)
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Then by E[D(x)h0(x)] = −E[w(x)Xu] = 0 and Newey (1993),

1√
n

n∑
i=1

ŵiXiui =
1√
n

n∑
i=1

w(xi)Xiui

+
1√
n

n∑
i=1

{D(xi)h0(xi)− E[D(x)h0(x)]} + op(1)

=
1√
n

n∑
i=1

w(xi)Xi{yi − E[yi |xi]} + op(1).

This equation is given precise justification in Lemma 1 of Section 5. From this
equation and the central limit theorem, the asymptotic variance of the term∑n

i=1 ŵiXiui/
√
n will be Σ = E[w(x)2XX ′{y − τ(x′β0)}2]. The estimator Σ̂

that appears in V̂ is simply a sample analogue of Σ, where w(x) and E[y |x]
have been replaced by estimators.

It is interesting to note that estimation of the density has the effect of low-
ering the asymptotic variance of the estimator. If the estimated density in the
denominator were replaced by the true density, then Σ in the asymptotic vari-
ance would be replaced by the variance of w(x)Xu. Because Σ is the variance
of w(x)Xu−E[w(x)Xu |x], it is smaller in the positive semi-definite sense than
the variance of w(x)Xu.

4 Asymptotic Efficiency

The asymptotic efficiency of the estimator can be evaluated by comparing its
asymptotic variance with the semiparametric variance bound for the index
model of equation (1). It follows from the analysis of Section 3 that the asymp-
totic variance of

√
n(β̂2 − β20) is V = J ′Q−1ΣQ−1J for J = δ−1

10 [0,−β20, I]. It
is straightforward to derive a more convenient expression, as in V = E[ψψ′],
where v = x′β0,

ψ = δ−1
10 {Ew[Varw(x2 | v)]}−1

w(x) [x2 − Ew(x2 | v)] [y − τ(v)] (8)

and Ew[·] ≡ E[w(x)(·)]: Details of this derivation are given in Lemma 3 in
the Appendix. By way of comparison, the semiparametric variance bound for
estimators of β̂2, as given by Newey and Stoker (1993), is V ∗ = E[ψ∗ψ∗′], where

ψ∗ = {Eσ[Varσ(τvx2 | v)]}−1
σ(x)−2τv(v) [x2 − Eσ(x2 | v)] [y − τ(v)] (9)

and σ2(x) = Var(y |x),
Eσ[·] ≡ E[(·)/σ2(x)]

E[1/σ2(x)]
,

and τv(v) = dτ(v)/dv (assuming differentiability holds).
The formulas (8) and (9) are analogous but fundamentally different. First of

all, the weight w(x) in Ew[·] is replaced by 1/σ2(x). The weighting by 1/σ2(x) in
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the variance bound accounts for heteroskedasticity, while the weighting by w(x)
is necessary for consistency of the WLS estimator. In addition, the efficiency
bound contains the Jacobian term τv(x′β0), which is not present in the WLS
case, effectively replacing x2 with τvx2. It is possible to extend this analysis to a
nonlinear least squares framework that would permit us to introduce analogous
terms. A good choice of the nonlinear regression function would be likely to
improve the efficiency of the WLS estimator.

5 Asymptotic Normality

This section presents regularity conditions for asymptotic normality and consis-
tency of the asymptotic variance estimator. We first derive a useful intermediate
result, on the asymptotic distribution of a sample average that is weighted by
the inverse of a kernel density estimator. This result justifies the asymptotic
variance calculation given in Section 3.

To obtain results it is useful to impose certain conditions on the kernel, the
density, and the bandwidth.

Assumption 1 K(u) is Lipschitz, zero outside a bounded set,
∫ K(u)du = 1,

and there is a positive integer s such that for all r-tuples of nonnegative integers
(j1, . . . , jr) with

∑r
�=1 j� < s,

∫
K(u)[

r∑
�=1

(u�)j� ]du = 0.

The bounded support condition for the kernel is imposed here to keep the
conditions relatively simple. The last condition requires that the kernel be a
higher order (bias reducing) kernel of order s. It will be used here to guarantee
that the bias of the kernel estimator is small relative to variance. The next
condition imposes smoothness on the density h0(x).

Assumption 2 There is a nonnegative integer d ≥ s and an extension of h0(x)
to all of Rr that is continuously differentiable to order d with bounded derivatives
on Rr.

This condition is used in conjunction with Assumption 1 to make sure the
bias of the estimator is small. It rules out cases where the density of x and its
derivatives are nonzero on the boundary of the support by requiring smoothness
everywhere. The next condition imposes some conditions on the bandwidth.

Assumption 3 λ = λ(n) such that
√
nλr/ ln(n) → ∞ and

√
nλs → ∞.

Note that this condition implies that s > r, so that the order of the kernel and
the degree of differentiability of the density must be larger than the dimension
of x.

These three conditions imply the following result.
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Lemma 1 If Assumptions 1–3 are satisfied, a(z) = 0 except on a compact set
X where h0(x) is bounded away from zero, E

[
‖a(z)‖4

]
< ∞, E[a(z) | x] is

bounded on X and continuous in x on a set of full Lebesgue measure, then

1√
n

n∑
i=1

a(zi)

ĥ(xi)
=

1√
n

n∑
i=1

a(zi)
h0(xi)

− 1√
n

n∑
i=1

{
E[a(z) | xi]
h0(xi)

− E
[
a(z)
h0(x)

]}
+ op(1).

For a(z) = f(x, θ0)Xu, the conclusion of this result implies equation (7).
Also, this result may be useful for other semiparametric estimators that depend
on averages which are weighted by an inverse kernel density.

Some additional conditions are useful for showing asymptotic normality of
the estimator from Section 2. The next condition imposes some requirements
on the spherically symmetric density f(x, θ). Let C(θ) denote the closure of
{f(x, θ) �= 0} and θ0 the probability limit of θ̂.

Assumption 4 C(θ0) is bounded, h0(x) > 0 for x /∈ C(θ0), C(θ) is a con-
tinuous correspondence for θ in a neighborhood Θ of θ0, and f(x, θ) is twice
differentiable in θ with derivatives continuous in (x, θ).

This assumption, which restricts the density h0(x) to be bounded away from
zero where the trimming function is positive (the set C(θ0)), is extremely useful.
It negates the “denominator problem” that would be present if the density of
x were allowed to approach zero. This type of fixed trimming is theoretically
more convenient than trimming that is relaxed as the sample size grows. Also,
it may have the practical advantage of reducing outlier probl‘

The final condition imposes conditions on y and E[y |x].

Assumption 5 E[y4] < ∞, E[y |x] is continuous almost everywhere with re-
spect to Lebesgue measure and bounded on any bounded set, and Q = E[w(x)XX ′]
is nonsingular.

These conditions lead to the following asymptotic representation for γ̂.

Theorem 1 If Assumptions 1– 5 are satisfied then

√
n(γ̂ − γ0) =

1√
n
Q−1

n∑
i=1

w(xi)Xi{yi − E[yi | xi]}

+ Q−1 E
[
Xu

h0(x)
∂f(x, θ0)
∂θ′

]√
n(θ̂ − θ0) + op(1).

The asymptotic distribution of β̂2 now follows in a straightforward way.
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Theorem 2 If Assumptions 1– 5 are satisfied, δ10 �= 0, and f(x, θ) is a spher-
ically symmetric for all θ in a neighborhood of θ0, then

√
n(β̂2 − β20)

d−→ N (0, J ′Q−1ΣQ−1J).

The last result that remains to be proved is the consistency of the asymptotic
variance estimator.

Theorem 3 If Assumptions 1– 5 are satisfied and δ10 �= 0 then

Ĵ ′Q̂−1Σ̂Q̂−1Ĵ
p−→ J ′Q−1ΣQ−1J.

6 Monte Carlo Experiments

Ruud (1986) performed a simple Monte Carlo experiment to illustrate the use
of density WLS. We repeat that experiment here to examine the success of the
asymptotic approximations and to make a comparison of these estimators with
the average derivative estimators of Powell, Stock and Stoker (1989). Both of
these estimators are marginal estimators in the sense that they exploit marginal
moment conditions, rather than conditional (on x) moment conditions.

The data were generated as follows. Two explanatory variables were drawn
from a mixture of normal distributions:

h(x1, x2) = φ(x1 − 1/2)φ(2x2) + φ(x2 + 1/2)φ(2x1), (10)

where φ is the standard normal pdf. In this way, positive x1 tend to coincide
with small x2 and negative x2 tend to coincide with small x1. The dependent
variable was generated by

y = exp(x1 + x2 + u) (11)

where u had a uniform distribution on [−1/2, 1/2]. Because the exponential
function is convex, the OLS estimator for the linear regression of y on x1, x2,
and a constant will overstate the relative effect of x1 compared to the effect of
x2. The weights of the feasible density WLS estimator were computed using a
kernel estimator of the density h and centering a normal pdf in the numerator
on the sample mean and using the sample covariance matrix for a dispersion
matrix. This pdf was trimmed at a standardized deviation from the mean of√

6.
The joint pdf for x1 and x2 is pictured in Figure 1. Despite the mixture

of two normals, the joint density remains unimodal and does not appear to
be strangely idiosyncratic. The conditional expectation of x2 given x1 + x2 is
pictured in Figure 2. This function has a slight convexity, but not a dramatic
one. This convexity will cause the OLS estimator to be inconsistent for the
ratio of the slope parameters. Figure 3 gives a plot of the p.d.f. for x′β =
x1+x2 and the bounds on y conditional on x′β from the data generating process.
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Figure 1: Contour Plot of Joint Density of x1 and x2

Figure 2: Conditional Expectation of x2 Given x1 + x2
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Figure 3: y Versus x′β = x1 + x2

There is substantial heteroskedasticity, with the variance increasing in the most
informative region of the x′β domain.

The extent of the inconsistency of OLS is shown in the first row of Table
1. For 100 observations, and 500 Monte Carlo replications, the average ratio of
β2/β1 is 0.62. As expected, the relative importance of x2 is diminished by its
association with small values of x′β. The second line gives the feasible density
WLS estimator and the third line the same estimator with the estimated density
replaced by the actual density. The prediction of asymptotic approximations
that the former would have smaller dispersion holds, but there is some bias
in the feasible estimator. The fourth line of Table 1 lists a local version of
the feasible estimator that divides the sample up into four orthants using the
sample medians of x1 and x2, pooling the four estimators that can be computed
for each orthant in a minimum chi- square estimator. This estimator exhibits
none of the bias of the simple feasible estimator and also has a smaller variance
than the exact density WLS estimator.

The remaining lines of the Monte Carlo results give the summary statistics
for various average derivative estimators. The first average derivative estimator
uses the exact density; the other four estimators are the four estimators simu-
lated in Powell, Stock and Stoker (1989). The infeasible estimator also has no
bias, but the feasible estimators exhibit strong bias relative to the density WLS
estimators. The feasible estimators also exhibit less variation than the infeasible
one, but on a root mean-squared error basis their performance is comparable.

At the bottom of Table 1, the efficiency bound and the asymptotic approxi-
mation to the variance of the feasible WLS estimator are given. The asymptotic
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approximation works very well. But the efficiency bound is much smaller than
the variance of the feasible density WLS estimator. In further research, we plan
to investigate the possibility of attaining this bound using a technique like the
local feasible WLS estimator just described.

The WLS estimators apply to discontinuous τ functions, whereas the average
derivative estimators do not. We ran a second experiment to investigate the
success of WLS with such functions. Using the same explanatory variables as
in the first experiment, we changed (11) to

y = 1 {x1 + x2 > 1} + u

where u ∼ N (0, 0.01). In words, the data generating process of y is a mixture of
N (0, 0.01) and N (1, 0.01) distributions, with the mean determined discretely by
x1 +x2. Using 500 Monte Carlo replications of data sets with 100 observations,
the OLS estimator (regressing y on a consant and the two x’s) averaged 0.66
for the true ratio β2/β1 = 1, with a standard deviation of 0.17. The feasible
density WLS estimator averaged 0.79 with a standard deviation of 0.32 and
the (infeasible) exact density WLS estimator averaged 1.02 with a standard
deviation of 0.44. In finite sample, the estimation of the density h clearly
introduces some bias in the estimator that is not present when the exact density
is used.
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METHOD TRUE MEAN SD RMSE LQ MEDIAN UQ MAE
OLS 1.00 0.62 0.23 0.45 0.47 0.58 0.71 0.42
Weight Least Squares
Feasible WLS 1.00 0.91 0.13 0.16 0.82 0.90 0.97 0.12
Exact WLS 1.00 0.99 0.33 0.33 0.78 0.95 1.16 0.19
Local WLS 1.00 0.98 0.26 0.26 0.82 0.95 1.11 0.15
Average Derivatives
Exact IV 1.00 1.04 0.25 0.26 0.88 1.01 1.15 0.13
Un-Jackknifed Delta 1.00 0.78 0.14 0.26 0.68 0.76 0.87 0.24
Jackknifed Delta 1.00 0.81 0.14 0.23 0.72 0.80 0.89 0.20
Un-Jackknifed IV 1.00 0.76 0.12 0.27 0.67 0.75 0.83 0.25
Jackknifed IV 1.00 0.80 0.11 0.23 0.71 0.80 0.87 0.20
Asymptotic Approximations
Efficient Score 1.00 1.00 0.037
WLS 1.00 1.00 0.117

Table 1: Monte Carlo Experiment Results
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7 Appendix

We first give the a result showing that the LCE property holds for a spherically
symmetric density.

Lemma 2 Let x ∼ f [(x−θ)′A−1(x−θ)] be a random variable with an elliptically
symmetric (about θ) p.d.f. If E [‖x‖] exists, then E(x | δ′x) = α0 + α1δ

′x.

Proof. Let B = δ(δ′Aδ)−1δ′ and b = δ′x. According to the orthogonal decom-
position

A−1 = (I −BA)(A−ABA)−(I −AB) +B

where (A−ABA)− denotes a generalized inverse of A−ABA, we can write

(x− θ)′A−1(x− θ) = (b− δ′θ)′(δ′Aδ)−1(b− δ′θ) + (x− γ)′(A−ABA)−(x− γ)

where
γ ≡ θ +Aδ(δ′Aδ)−1(b− δ′θ).

Therefore the conditional distribution of x given δ′x = b is symmetric around
the point θ+Aδ(δ′Aδ)−1(b−δ′θ). Under existence of E [‖x‖], implying existence
of the conditional expectation, the result follows with α0 = θ − ABθ and α1 =
Aδ(δ′Aδ). QED.

Lemma 3 The asymptotic variance V of β̂2 is (8).

Proof. Note that X ′γ = γ1 + vδ1 + δ10x
′
2π2, where v = x′β0 and π2 = (δ2 −

β20δ1)/δ10. Let π̂2 be the coefficient of δ10x2 in the inverse density weighted
least squares regression of y on (1, v, δ10x′2). By the usual least squares property,
π̂2 = (δ̂2 − β20δ̂1)/δ10. Noting that π̂2 is just a linearization of β̂2, the delta
method implies that the asymptotic variance of β̂2 is the same as ν̂2. Let
Ew[·] = E[w(x)(·)] denote the expectation when the marginal distribution of
x is f(x, θ0). Then by elliptical symmetry of f(x, θ0), the projection of δ10x2

on (1, v) equals δ10 Ew[x2 | v]. Then equation (8) follows by the the usual partial
least squares formula. QED.

Throughout the rest of the Appendix, C will denote a generic positive
constant (not depending on N), that may be different in different uses, and∑

i =
∑n

i=1. The outline of the Appendix is that some useful Lemmas will first
be given, and then the results in the body of the paper proven.

Proof of Lemma 1: The proof proceeds by verifying the conditions of Lemmas
5.2 and 5.4 of Newey (1992). Let X denote a compact set where h0(x) is bounded
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away from zero and a(z) = 0 for x not in X , and let ‖h‖ = supx/∈X |h(x)|. Also,
let

m(z, h) =
a(z)
h(x)

,

D(z, h) = −a(z)h(x)
h0(x)2

,

A(x) = E[a(z) |x],
m(h) = E[D(z, h)]

Note thatm(h) =
∫
ν(x)h(x)dx for ν(x) = −E[a(z) |x]/h0(x). Note that ν(x) is

continuous almost everywhere (with respect to Lebesgue measure), zero outside
the compact set X , and bounded. Therefore, by Assumption 3, the conditions
of Lemma 5.2 of Newey (1992) are satisfied, so by its conclusion,

√
n[m(ĥ) −m(h0)] =

1√
n

∑
i

{ν(xi)− E[ν(xi)]} + op(1).

To check the hypotheses of Lemma 5.4 of Newey (1993), let ∆ = ∆1 = ∆2 = 0,
so that the norm ‖h‖∆ of that result is ‖h‖ = supx/∈X |h(x)|. Note that

(i) D(z, h) is linear in h on the set where ‖h‖ <∞;

(ii) for b(z) = ‖a(z)‖ and ‖h− h0‖ ≤ ε for small enough ε,

‖m(z, h) −m(z, h0)−D(z, h− h0)‖

≤ ‖a(z)‖
∣∣∣∣ 1
h(x)

− 1
h0(x)

+
h(x)
h0(x)2

− 1
h0(x)

∣∣∣∣
= b(z)

∣∣∣∣ 1
h0(x)2h(x)

∣∣∣∣ ∣∣h0(x)2 − 2h(x)h0(x) + h(x)2
∣∣

≤ Cb(z) |h0(x) − h(x)|2

≤ Cb(z) ‖h0 − h‖2 ;

(iii) ‖D(z, h)‖ ≤ C ‖a(z)‖ ‖h‖ and E[‖a(z)‖4] <∞;

(iv) for ηn = [ln(n)/(nλr)]1/2 + λs,
√
nη2

n ≤ C[ln(n)/
√
n λr] +

√
nλ2s → 0,

and
√
nλr → 0 by r > s. Then by the conclusion of Lemma 5.4 of

Newey (1993),

1√
n

∑
i

[m(zi, ĥ)−m(zi, h0)] =
√
n[m(ĥ)−m(h0)] + op(1).

The conclusion then follows by the triangle inequality. QED.

The following Lemma is useful for proving Theorem 1.
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Lemma 4 If h0(x) is continuous and Assumption 4 is satisfied then there is
ε > 0 and a compact set X such that h0(x) > 0 for all x /∈ X and f(x, θ) =
0, ∂f(x, θ)/∂θ = 0, and ∂2f(x, θ)/∂θ∂θ′ = 0 for all x /∈ X and ‖θ − θ0‖ < ε.

Proof. By continuity of C(θ) and h0(x), there is ε small enough that h0(x) > 0
for all x /∈ X where X is the closure of ∪‖θ−θ0‖<εC(θ). By continuity of C(θ),
the set X is compact. Also, for any x /∈ X , f(x, θ) = 0 for all θ with ‖θ − θ0‖ <
ε, so differentiating this identity at any such θ implies ∂f(x, θ)/∂θ = 0 and
∂2f(x, θ)/∂θ∂θ′ = 0. QED.

Proof of Theorem 1: For the compact set X of Lemma 4,

sup
x/∈X

∣∣∣ĥ(x) − h0(x)
∣∣∣ p

−→ 0

by Lemma B.3 of Newey (1993). Then by h0(x) bounded away from zero on
X , ĥ(x) is bounded away from zero on X with probability approaching one.
Also, for the ε of Lemma 4,

∥∥∥θ̂ − θ0

∥∥∥ < ε with probability approaching one,

so that for all x /∈ X , f(x, θ̄) = 0, ∂f(x, θ̄)/∂θ = 0, and ∂2f(x, θ̄)/∂θ∂θ′, for
any θ̄ on the line joining θ̂ and θ0 (e.g., for θ̄ = θ̂). It then follows that with
probability approaching one, by X bounded on X and f(x, θ) Lipschitz in θ,∥∥∥∥∥Q̂−

∑
i

wiXiX
′
i/n

∥∥∥∥∥ ≤ C
∑

i

|ŵi − wi| /n

≤ C sup
x∈X

[∣∣∣f(x, θ̂)∣∣∣
∣∣∣∣∣ 1

ĥ(x)
− 1
h0(x)

∣∣∣∣∣
]

+ sup
x∈X

[
1

h0(x)

∣∣∣f(x, θ̂)− f(x, θ)
∣∣∣]

p−→ 0.

Also, by the law of large numbers,
∑

i wiXiX
′
i/n

p−→ Q, so by the triangle
inequality, Q̂

p−→ Q.
Next, by a mean value expansion, for w̃i = f(xi, θ0)/ĥ(xi),

1√
n

∑
i

ŵiXiui =
1√
n

∑
i

w̃iXiui +

[
1
n

∑
i

Xiui

ĥ(xi)

∂f(xi, θ̄)
∂θ′

]
√
n(θ̂ − θ0).

It follows similarly to the argument for Q̂
p−→ Q that the matrix in square

brackets converges in probability to E[Xu/h0(x) ∂f(x, θ0)/∂θ′]. It also follows
by Lemma 1 that

1√
n

∑
i

w̃iXiui =
1√
n

∑
i

wiXiui − 1√
n

∑
i

wiXi{E[yi |xi]−X ′
iγ0} + op(1).
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The conclusion then follows by the triangle inequality. QED.

Proof of Theorem 2: By the Theorem 1, the delta method, and the central
limit theorem it sufficies to show that J ′Q−1 E[Xu/h0(x) ∂f(x, θ0)/∂θ′] = 0.
Let Q(θ) =

∫
XX ′f(x, θ)dx and m(θ) =

∫
X ·E[y |x]f(x, θ)dx. By boundedness

of X, E[y |x], and f(x, θ) on the set X of the proof of Theorem 2, both Q(θ) and
m(θ) are differentiable, and ∂m(θ0)/∂θ = E[Xu/h0(x) ∂f(x, θ0)/∂θ′]. It follows
by Q(θ0) = Q nonsingular that Q(θ) is nonsingular for θ in a neighborhood of
θ0. On this neighborhood of Q(θ) let γ(θ) = (γ1(θ), δ(θ)′)′ = Q(θ)−1m(θ). Note
that δ(θ) is continuous function of θ and δ(θ0) = δ0. Then by δ10 �= 0, there
is an even smaller neighborhood where δ1(θ) �= 0. Let β2(θ) = δ2(θ)/δ1(θ). By
spherical symmetry of f(x, θ), it follows as in Ruud (1986) that β2(θ) = β20.
Differentiating this identity gives 0 = J ′∂γ(θ0)/∂θ. Furthermore, differentiat-
ing the identity

∫
X{E[y |x] − X ′γ(θ)}f(x, θ)dx = 0 with respect to θ gives

∂γ(θ0)/∂θ = Q−1 E[Xu/h0(x) ∂f(x, θ0)/∂θ′]. QED.

Proof of Theorem 3: Ĵ
p−→ J follows by γ̂

p−→ γ0 and δ10 �= 0. Also
Q̂

p−→ Q follows as in the proof of Theorem 1. Therefore, by continuity of
matrix inversion and multiplication, it only remains to show that Σ̂

p−→ Σ. Let
d̂(x) =

∑n
i=1Kλ(x − xi)yi and d(x) = h0(x) E[y |x]. By a change of variables,

E[d̂(x)] =
∫
K(u)d(x + uλ)du = d̄(x), which is bounded on any bounded set

by K(u) having bounded support and d(x) bounded on any bounded set. Fur-
thermore, at each x where d(x) is continuous, d(x + uλ) → d(x) as λ → 0, so
by the dominated convergence theorem, d̄(x) → d(x) at each such x. Since
the set of such x values has full Lebesgue measure, the dominated conver-
gence theorem implies that

∫
X [d̄(x) − d(x)]2h0(x)dx → 0. By Lemma B.1

of Newey (1993), supx/∈X
∣∣∣d̂(x)− d̄(x)

∣∣∣ p−→ 0. Let 1i = 1(xi /∈ X ). Then∑
i 1i

∣∣d̄(xi)− d(xi)
∣∣2 /n p−→ 0 by the Markov inequality. Also, by ĥ(x) bounded

away from zero uniformly on X , with probability approaching one,

1
n

∑
i

1i |ĝ(xi) − g(xi)|2 ≤ C

n

∑
i

1i

∣∣∣d̂(xi)− d̄(xi)
∣∣∣2 +

1
n

∑
i

1i

∣∣d̄(xi) − d(xi)
∣∣2

+
1
n

∑
i

1i |d(xi)|2
∣∣∣∣∣ 1

ĥ(xi)
− 1
h0(xi)

∣∣∣∣∣
2

≤ C sup
x/∈X

∣∣∣d̂(x)− d̄(x)
∣∣∣ + op(1) + sup

x/∈X

∣∣∣ĥ(x) − h0(x)
∣∣∣ p−→ 0.

Let Σ̃ =
∑

i ŵ
2
iXiX

′
i[yi − g(xi)]/n. Then arguing as in the proof of Theorem

1, using Lemma 4, it follows by the Cauchy-Schwartz inequality that for 1i =
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1(xi /∈ X ),∥∥∥Σ̂ − Σ̃
∥∥∥ ≤ C

n

∑
i

1i

[
2 |yi| |ĝ(xi) − g(xi)| +

∣∣ĝ(xi)2 − g(xi)2
∣∣]

≤ C

n

∑
i

1i[ĝ(xi)− g(xi)]2

+ C




(
1
n

∑
i

|yi|2
)1/2

+

(
1
n

∑
i

|g(xi)|2
)1/2




[
1
n

∑
i

1i |ĝ(xi)− g(xi)|2
]1/2

p−→ 0.

It also follows similarly to the proof that Q̂
p−→ Q that Σ̃

p−→ Σ. The conclusion
that Σ̂

p−→ Σ then follows by the triangle inequality. QED.
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