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Abstract

The Multinomial Probit (MNP) framework is known to sufler {rom
two serious impediments which amplify with increasing number of al-
ternatives. The first is related to the dimensionality of the multi-
fold normal choice probability integrals. Current practice suggests
to replace the choice probabilities with easy to compute (asympto-
cally) unbiased efficient simulators. A unique characteristic of our
MNP formulation is the presence of an additional i.i.d. Gumbel er-
ror term which meakes the Multinomial Logit (MNL) model a special
case. The MNL kernel feature leads to a smooth and unbiased MNP
choice probability simulator. The second impediment relates to the
large number of unknown parameters in the error covariance matrix
of situations with large choice sets. “This paper suggests different fac-
tor analytic specifications to model the inter-dependencies among the
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errors. They enable one to approximate general error covariance struc-
tures with parsimonious parametric specifications. For estimation, we
employ a simulated maximum likelihood estimation procedure. We
test the methodology with two empirical applications. The estima-
tion results and additional computational experiments indicate that
our MNP methodology is a useful tool for discrete choice analysis.

1 Introduction

The Multinomial Probit (MNP) model provides the most general frame-
work for inter-dependent alternatives in discrete choice analysis. The inter-
dependencies are accounted for through the correlation structure of normally
distributed error terms. The primary impediment to the application of the
MNP model is related to the dimensionality of the multifold normal choice
probability integrals of about the size of the choice set. The earlicst solution
to the problem has becn to ignore the presence of potential inter-dependencies
among the alternatives. This is the case with the widely used MultiNom:al
Logit (MNL) formulation in which the choice probabilities have a closed form
that can be calculated easily. The Generalized Extreme-Value (GEV) mod-
els, which includes in particular the multinomial logit and the nested logit,
permit inter-dependencies with closed form expressions for the choice proba-
bilities. However, in this class of models, the inter-dependencies are captured
in a very limited way.

Recent solutions to the MNP dimensionality problem replace the multi-
fold normal integrals with smooth (asymptotically) unbiased eflicient simn-
ulators computed from an underlying latent variable model. To usc these
probability simulators in a standard maximum likelihood framework leads
to the Simulated Maximum Likelihood (SML). An alternative to the SML
setting is the Method of Simmulated Moments (MSM) proposed by McFad-
den (1989) and Pakes and Pollard {1989). MSM is often favored over SML
because a given level of accuracy in model parameter estimation can be ob-
tained with a fairly small number of replication draws. The accuracy of the
SMI: methodology critically depends on using a large number of simulation
draws because the log-likelihood function is simulated with a non-negligible
downward bias. For computational reasons, in this paper, we still stick to
the SML approach, mainly on the ground that the SML requires the com-
putation of the probability of only the chosen alternative, while MSM needs



all choice probabilities. With large choice sets, which is often the situation
in transportation, this factar can be quite important. Our numerous experi-
ments indicated that with a smooth unbiased simulator, to use a few hundred
conventional draws is sufficient to make this bias negligible. Also, using an-
tithetic draws significantly reduces the number of draws required to obtain
a comparable level of accuracy. Another reason for our choice is that the
objective function associated with SML is numerically better behaved than
the MSM objective function.

A unique feature of our Logit kernel MNP formulation is the presence
of an additional independently and identically distributed (1.3.d.; Gumbel
error term which makes the MNL model a special case obtained by imposing
restrictions on specific parameters of the error structure. The simulator that
we propose for the MNP probabilities is unbiased, smooth and efficient. It
arises very naturally in our suggested framework and 1t is based on & mixture
of MNL kernels computed from standard normal distributions. To estimatce
the model parameters, we replace the choice probabilities in a standard Max-
imum Likelihood algorithm with these smooth MNL kernel sirnulators.

A second complication with implementing MNP concerns the number
of unknown paramecters to estimate in the error covariance matrix. Except
for limiting cases such as those implied by equicorrelated errors or by GLV
models, for example, the number of these parameters usually increases ex-
ponentially with the number of alternatives. In models with large number
of alternatives, this problem can seriously limit the usefulness of MNP, To
tackle this parameter estimation problem, we suggest several factor based
error structure specifications. These frameworks allow one to capture fairly
general error covariance structures using parsimonious parametric specifica-
tions. The main advantage of these approaches is that the number of un-
derlying parameters increase quite independently with the size of the choice
sel.

The paper is organized as follows. In section 2, we introduce the logit
kernel MNP model. In section 4, we discuss several interesting special cases
all based on a factor analytic representation of the error covariance structure.
Subsequently, we focus on the implementation of the proposed approach in
the (simulated) maximum likelihood context. In the final section of the pa-
per, we test our methodology with two empirical applications. The first one
involves a trinomial choice based on synthetic data and the second one con-
cerns a choice among five residential telephone service options using survey
data collected to predict residential telephone demand.
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2 The Model
2.1 The Discrete Choice Model

Consider the following discrete choice model. For a given individual n,n =
1,...,N and an alternative i,i = 1,..., J, where J, is the number of alter-
natives in the choice set C, specific to individual n, the model is written
as:

1 U2 U forj =1, 1
Yn = 0 otherwise, and \
Uin = Xinf + €in,

where v, indicates the observed choice, Uy, 1s the utility of alternative 7 as
perceived by individual n, Xy, is & (1 x K) vector of attributes describing
individual n and alternative i. This vector can contain ar alternative specific
dummy as well as generic and alternative specific variables. It is well-known
that one of the alternative specific constants cannot be estimated. As usual,
we drop form the model the constant associated with the last alternative.
Any alternative could be selected as the referent without affecting the results.
B is a (K x 1) vector.of fixed coefficients and &;, is a random disturbance.

2.2 The Logit Kernel MNP Model

Distributional assumptions on the error term
The &;, random utility term is defined as follows:

Ein == fin + Vin (2)
where:

- £, captures the interdependencies among the alternatives. It is assumed
to arise from a multivariate normal distribution.

- v;nis an i.1.d. standard Gumbel random variate.

Remark 1 Given &, = (€4,,,..,& ), the model corresponds to a multino-
mial logit formulation as follows:

eXin5+Ein

5 eXmPHn
JECH

A1 G 8 = (3)
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where At | Cp,&,,) is the probability that the choice is when the Ein s are
known.

2.3 The Model in Vector Form

In a more compact vector form, the model can be written as follows:
Yo = [Yin, - Youn]', (4)

U, = -Xmﬁ + &n, 15)
where y,,, U, and ¢, are (J, % 1) vectors and X, is a (J,, X K) matrix.
The error vector is decomposed as follows:

En = En + Vn, ‘b

where by assumption, £, ~ N(0,=,), which implies that the covariance ma-
trix can potentially change across observations.

2.4 Generalized Factor Analytical Representation

To capture the interdependencies among the alternatives, we use a factor
analytic structure:

gn = Fﬂgn: 'T‘

where:

- {15 a (M x 1} vector of factors. By assumption, the factors arc i.i.d.
standard normal distributed terms. The number of factors can be less,
equal or greater than the number of alternatives.

- F, is a (Jn x M) matrix of loadings that map the factors to the £ error
vector.

Remark 2 The error covariance structure captured by (7) is very general,
In the most flexible sttuation, ¢,, contains J = max Jn factors and F,, is a
(J. x J) matriz obtained from a (J x J} lower triangular Cholesky matriz
L, in removing the rows associated with the unavailable aliernatives. L, is
the matriz such that L L, = Y, where &, describes the covariance structure
among the J possible error ferms.
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Remark 3 Different interesting special cases covered by our model formula-
tion are discussed in the nexl section.

Substituting Equations (6) and (7) into Equation (5), finally gives:

Up = Xnf3 + Fol, + vn, (8)

where, under the assumptions made, E(U,) = X8 and

cov(Un) = I F, + g1, (9)
where g = 2/6 is the variance of a standard Guinbel random variable. As it
should be expected, the estimation of such model brings some identification
issues that need to be discussed. This is especially true and critical when
the error process is decomposed as in Equation (8). Our strategy will be to
discuss this issuc in each one of the special cases that we consider.

3 Response Probabilities

Define P(i | Cy) as the probability of drawing a latent vector I/, with Uy, >
Ujn for j € C,, given X,,. Conditional on (,, Equation (8) defines a standard
MNL model since v, is i.i.d. Gumbel. Therefore, the unconditional choice
probability can be expressed as:

P(i| C) = [ Al | CrQYn(C, Lus) € (10)
where
. exiﬂﬁ'i'FinC
A(l | Cﬂ’g) = Z ern18+anC, (1]‘)
7eCn

is the MNL choice probability of alternative ¢ conditional on {. Also n(a, A)
denotes the value at a multivariate of normal density centered at zcro with
covariance matrix A.

Remark 4 For computational reasons, we will replace P(i| Cy) with an un-
biased simulator that we compute as:

951 Ca) = 5 5 Al Can ), (12)

where ¢, denotes draw r of { from a N(0, Ia).
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4 Special Cases

Many interesting cases can be embedded in the general specification intro-
duced above.

4.1 Heteroscedastic

This particular case is obtained when the F,, matrix in equation (7) is diag-
onal. For later reference, we use the notation 7, to designate this matrix.
Therefore, in the heteroscedastic case, the model is written as:

Un =Xnﬁ+TnCn+Vm (13)

where T, is a (J, x J,) diagonal matrix with the standard deviations as-
sociated with the J, alternatives available to individual n. Using a scalar

notation, we would write:
Uiﬂ. = inﬁ + G—i{:in + Viﬂ: ?‘ € Gﬂ' (14)
Idcentification

To address the identification issue, we consider the following tri-

. . - . -
nomial example with universal choice set: plee oo v b T

e

- i (’Lg, [ = S N TN N

v et 4 {
U = a1+ T1Y + 018 + Vin ‘L‘f o s
y ¢ R +
Uz = 0+ Ton¥ + T2l + Von R

Usn = +i3n Y + 03C3, + Van,

where the notation should be rather obvious. To identify the
model parameters, a given normalization has to be made. In order
for the MNL to be a case nested within the general formulation,
we set one of the o;’s to zero.

Problem: There is, in practice, no prior knowledge of arg mjin o4, l.e. the

minimurm variance alternative. Wit the help of empirical examples, we will
come out with intuitively acceptable procedures to identify the good candi-
dates for this normalization.!

LIt is important to mention that the problem that is raised here has been completely
ignored in the previous applications that we could review. State a few of them here.

7
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4.2 Factor Analytic

To keep a uniform notation for all sub-cases considered, we write this model
as:

fn = QnTgna (].6)
where Qn is (Jn X M) is a matrix of factor loadings and T is the diagonal ma-
trix that contains the factor specific standard deviations. In scalar notation,
this gives

M
gin = Z q,:anQOn, (S Cn' (}"7)
m=1
In order to fix the scale, since the ¢’s are estimated, we make the following
normalizations: 3,¢2,. = 1,Vi. We consider two possible types of factor
decomposition:

- exploratory: M < J and no exclusion restriction on (2.

Identification

In that case, there should be no identification problem. If Af - J
then this situation is similar to the heteroscedastic case consid-

ered above.

- confirmatory: Restrictions are mposed on ¢, by a priori setting some
Gimn' S LO zZero.

Identification

In that case, there should be ro identification problem. If M - J
then this situation is similar to the heleroscedastic case consid-
ered above. An important candidate within the class of confir-
matory factor analysis models is the following error component
formulation.

The Error Component Formulation
In the error component version, the £, error vector in Equation (7) is
assumed to be generated as:

fn == GHT gn (18)
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where G, is (J, x M) and T is a (M x M) diagonal matrix. The difference
with the confirmatory factor analytic structure is that the G, matrix is known
while the elements of ,, have to be estimated. In scalar notation, we write

M
éin = Z QianmCmn, 74 € Cn, [19)
m=1

where:

o _ )1 ifthe m* element of (,, applies to altenative ¢ for individual n
Garmn 0 otherwise

Identification

If M < J the problem does nct exist. If M = J then this situation
is similar to the heteroscedastic case considered above.

4.3 General Autoregressive Process
In this case, the £ error vector in Equation (7) has the following form:
£, = F.T.(,, {207

where P, = (I — pW,)~!. This structure results from assuming that £, is
generated from the following first-order autoregressive process:

En - pw;ﬂén + Tﬂ(:n! Cn ~ N(O-‘ ]Jn))

where W, 1s a (J, x J,) matrix of weights w;;, describing the influence of
each &, error upon the others. Using a general notation, we write 1t as

*

w

Wiin = J—ij,n__, Vj # i and Wyijn = 0 VZ, U‘B]‘)
z w:k,n
k=1

w:j.ﬂ = g(jo.n) R?j,n) ) Rflj,nrglrgﬂa ---:BH): V.? '_//'_ i and w:j,n = 0 Vi,

where there are H parameters 8), and L variables R}, used to describe the
correlation structure in effect. Spatial studies that use Spatial AutoRegres-
sive of order 1{SAR(1)) error processes often define the contiguity structure
through a Boolean contiguity matrix. In that case, w; = 1 il and 7 are
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contiguous and w!; = 0 otherwise. See, for instance, Anselin (1989), CLff
and Ord (1981), Blommestein (1983) or Bivand (1984), for more details. For
a recent application of SAR(1) processes in econornics, see Case (1991).
The normalization used in Equation (21) ensures that the process is stable
for values of p in the (—1,1) interval. The interpretation and the sign of p,
usually referred to as the correlation coefficient, depend on the definition
of proximity embodied in wj;. For the specification just discussed, a p >
0 implies that errors of the same sign are grouped together. In practice,
the parameters in w’,. could be estimated. However, in the applications

tf,m

considered below, a Boolean structure will be postulated.

Identification
It is technically related to the error component case.

4.4 MNL with Normally Distributed Random Coeffi-
cients

The MNL forrnulation with normally distributed random taste coeflicients
can be written as:

Un = Xof3,, + v, (22)
where 3, is a K-dimensional random normal vector with mean vector 4 and
covariance matrix 2. Given the notation and assumptions previously used
and replacing /3, with the equivalent relationship: 8, = 5 + I'y,,, where
T is the lower triangular Cholesky matrix such that I'T' = 2, onc obtains
Equation (8) with I}, = X,I". The parameters that need to be estimated in
this model are those present in § anc in I'. We now consider the identification
Issue.

Identification

If there are alternative specific constants included in the X, ma-
trix, the identification problem raised above is going to occur.

The other special cases that we have considered assume that the ran-
domness in the coefficients only arise from the alternative specific constants.
This assumption was made so that we could better focus on the identification
maltters.
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9 Parameter Estimation

We now describe the method that we use to estimate the joint vector of pa-
rameters 6 which contains the 8 vector and those parameters to be estimated
in the error structure. We include the last set of parameters into v, a (px 1)
vector. Therefore, the parameter estimation concerns the vector § = (3',v')".
In the heteroscedastic model, only the alternative specific standard crrors are
included in . In the GAR(1) version based on a Boolean contiguily matrix,
the same standard error are estimated in addition to the p correlation coefli-
cient. The factor analytic and the MNL version with random coefficients are
the specifications that can potentially have a very large number of unknown
parameters.

5.1 Maximum likelihood

The log likelihood of the sample is
N -
L{6) =3 In P(i. | 6,C,), (23)
n=1

where P(i, | é,C,) is the probability associated with the choice made by
individual n. The score vector is:

8 L) n 1 8 Plin | 6,C.) (20
88 A1 Plin | 6,C0) aé '

Since we focus on the model formulated with the MNT, kernel eiven in
Equations (10) and (11), the score can therelore be computed as follows:

OLG) g 1 - nAin | 6,Car()
56~ = P, 6.0 LA(zn | 6,C,¢) 35 n{C, Ing) dC,
(25)

where

InAfin | 6,Cn,{) = Xinff+ Fin( —In 5 eXinftFmC,

JECK
and where /4, and ¢ were defined in Equation (7).
- Iterative estimation method

11



To sumplify the calculations, we suggest to use the BHHH technique which
makes use of the first derivatives only. The direction matrix that we call R
is therefore computed as follows:

N
R= § 2,7, (26)
where we define Zi, = Plin | 6,Cn) 10 P(in | 6,Cr)/86 . For practical
purposes, after convergence, we use Ryjy(R™! evaluated at &p ;. the ML
estimator of §) as the asymptotic variance-covariance matrix of &, Under
the usual regularity conditions which are satisfied with identified narametric
structures, we can conclude that asymptotically arp ~ N(6, Ry,

Unless the dimension of ¢ is small (< 3), the Maximum Likelihood {ML)
estimator §xs7 just described, cannot be computed in & reasonable amount, of
time. For models with ¢ of larger dimension, we suggest to use the Simulated

Maximurm Likelihood (SML) methodology.

5.2 Simulated Maximum Likelihood

When high dimensional integrals are involved, one solution to the compu-
tational limitations is to replace the hard to compute probability related
functions with efficiently simulated ones. As seen before, the log-likelihoad
and the score vector are expressed as normal mixtures of MNI. probabilities
and MNL derivatives.

The SML approach replaces the response probability for aliernative ¢
with:

" R . o
fi'(l | ‘5>Cﬂ) = }% rgl A.(?, | 6: Oﬂ:‘:nr): (I‘-Jf)

an unbiased simulator where (,,, cenotes draw r of a random vector from

N(0,Iy). Similarly Z;, is substituted by

8InA(i |8, Cn, Cor'

‘ L RG] 6,Cu) (28)
Rr:]_ v 3 Iy snr 815 . {\ A

Lin = T
g(i]6,Cn)

where §(i | 8§, C,,) is computed using (27). In the iterative estimation process,
one replaces the R matrix defined in (26) with its simulated counterpart
that we denote by Rgpz. Also, the asymptotic results for the joiut vector of
estimated parameters is 6 ~ N (6, Rgi, ).

12



A well-known result previously cbtained in Bérsch-Supan and Hajivassil-
iou (1993), among others, indicates that the likelihood function is simulated
with a downward bias. As noted in Remark 4, g(i | C,) provides an unbiased
simulator for P(i | C,,). A second degree Taylor’s expansion of In(g(z | C.))
around P(i | Cy), gives:

1
"PGIC)

In(g(i] Cn)) = In(P(E] Cn)) (g(i| Cn) — P(| Cr))

Taking the expected value of this relationship therefore implies that :

. var(gli |6, Co
L{é) - L{t) = ~ (CQLP(?;(I Js;cn)z)))

<0,

which suggests that in order to minimize the bias in simulating the log-
likelihood function, it is important to simulate the probabilities with good
precision. For a fixed number of raplications, to use a variance reduction
technigue such as drawing variates with an antithetic property is advisable.
Our experiments indicate that a sirnulator with 250 standard draws or 100
antithetic draws is large enough to produce a negligible simulatior bias.

6 Applications

In this section, we consider two applications, one based on synthetic data
and a second one on real data. The first sample concerns an hypothetical
choice situation among three alternatives. The focus i1s on the parameter
identification problems that may occur in the different versions of the Logit
kernel MNP considered above. The second application is based on a subset
of a survey collected to predict residential telephone demand. Five different
telephone service options are considered.

6.1 A Trinomial Choice Situation

The first application concerns an hypothetical choice situation among three
alternatives. The model specification that we use is as displayed in Iiquation

13
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(15) that we repeat here for convenience. The postulated true parameter
values are : a; =ay=1,7= —1,0, =0,090 = 1,03 = 2.

Uln = ay+Z1aY+ 01610 + Vin
Usp, = g+ Zon¥ + 02l + Von (29)
U3n = +$3n'7 + O-3§3n + V3n,

In generating the data for estimation, we consider the following sample

sizes: N = 500,1000, 4000.

Table 1 Estimation results: Different Structures

Unidentified Structures ’Selectedl MNL
true  R=1000 R=5000 R=2000 R=2000

Parameter value N=500 N=1000 ~N=400 N=4000 N=4000
o 1 2.76 2.04 1.49 0.98 0.89
( 0.28) ( 0.24) { 1.16} (13.34)  {18.84)
Qo 1 1.87 2.16 1.33 (.58 0.91
( 0.27) ( 0.24) ( 1.15 (10.03; (19.39)
~y -1 -3.89 -1.72 -1.41 -1.00 -.67
(-0.28) (-0.25) (-l.24) (-7.15) (-25.82)
71 0 2.41 2.72 1.52 0
( 0.21) ( 0.20) ( 0.65
Ty 1 6.30 3.01 1.95 1.17
{ 0.26) ( 0.21) ( 0.88) (2.17)
T3 2 8.33 2.81 3.23 2.10
( 0.27) ( 0.21) { 1.05; (4.56)
(Simul.} Log.-Likelihood -452.22 -934.69 -3764.64% -3765.37 -3778.53
Number of 1terations 13 10 9 4 5
The estimation is performed using large number of draws. ‘%\‘

6.2 An Empirical Application

In this section, we test our methodology with an application to residential
telephone demand analysis. The model involves a choice among five resi-
dential telephone service options for local calling. A household survey was
conducted in 1984 for a telephone company and was used to develop a com-
prehensive model system to predict residential telephone demand (Train et
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al., 1987). Below we use part of the data to estimate a model that explicitly
account for inter-dependencies between residential telephone service options
using some of the different error structure introduced above. We first describe
the data. Then we compare the estimation results obtalned.
- The data

Local telephone service typically involves the choice between flat (l.e. a
fixed monthly charge for unlimited calls within a specified geographical arca)
and measured (i.e. a reduced fixed monthly charge for a limited number of
calls plus usage charges for additicnal calls) services. In the current appli-
cation, five services are involved, two measured and three flat. They can be
described as follows:

1. Budget measured - no {ixed monthly charge; usage apply to each call
made.

2. Standard measures - a fixed monthly charge covers up to a specified
dollar amount (greater that the fixed charge) of local calling, after
which usage charges apply Lo each call made.

3. Local flat - a greater monthly charge that may depend upon residential
location; unlimited free calling within local calling area; usage charges
apply to calls made outside local calling area.

4. Extended area flat - a further increase in the fixed monthly charge to
permit unlimited free calling within an extended area.

5. Metro area flat, - the greatest fixed monthly charge that perriiis unbim-
ited free calling within the entire metropolitan area.

The sample concerns 434 households. The availability of the scrvice op-
tions of a given household depends on its geographical location. iictalls arc
provided in Table 2. In Table 3, we summarize the service option availabilities
over the usable sample.
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Table 2: Availability of Service Options

Geographical Location
Service Options Metropolitan Perimeter Exchanges All Other
Areas Adjacent to Metro Areas
Budget Measured Yes Yes Yes
Standard Measured Yes Yes Yes
Local Flat Yes Yes Yes
Fxtended Flat No Yes No
Metro Flat Yes Yes No

Table 3: Summary Statistics on Availability of Service Options

Service Options Chosen Percent Tot. Avail
Budget Measured T4 0.168 434
Standard Measured 123 0.283 434
Local Flat 173 0.410 434
Extended Flat 3 0.007 13
Metro Flat 57 0.131 280
Total : 434 1.000 1595

The model that we use in the present analysis is intentionally specified {o
be simple. The explanatory variables used to explain the choice between the
five service options arc four alternative specific constants which correspond
to the first four service options and a generic cost variable which 1s defined as
the natural log of the monthly cost of the different service options expressed
i dollars.

The results are displayed in Table 4:
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Table 4: Heteroscedastic Case: Telephone Data *
Unidentified Structures | Selected | MNL
R=150 R=250 R=1000 R=5000 E=1000
Parameter N=434 N=434 N=434 N=434 N=434 N=434
Altern. specific constants
Budget Measured (1) -3.44 -3.37 -3.32 -44.2 -3.38 -2.46
(-4.27) (-5.30) (-4.20) (n.a. (-3.62)  (-7.84)
Standard Measured (2)  -2.69  -2.63  -256  -34:  -2.60  -1.74
(-3.83) (-4.20) (-3.77) (n.a.) (-3.50)  (-6.28)
Local Flat (3) -1.49 -1.39 -1.37 -18.4 -1.40 -0.51
(-2.77)  (-2.83) (-2.71) (n.a.} (-2.60)  (-2.57)
Extended Flat (4) -1.11 -1.07 -1.09 -13.6 -1.07 -0.74
(:0.56) (-0.81) (-0.58)  (na)  (-0.99)  (-L.02)
Log Cost. -2.78 -2.77 -2.70 -37.9 -2.73 -2.03
(-4.58)  (-4.56) (-5.45)  (na.  (-5.09)  (-0.47)
Ty 0.29 0.05 0.23 17.6 0.38
(0.21)  (0.02)  (0.09) (n.a.) ((1L19)
T2 0.63 0.53 (1.35 17.0 (.39
(0571 (0.41) (0.16) (n.a. (0.19)
O3 3.06 299 283 48.3 2.95
(2.52)  (249)  (2.65) (n.a.] (2.59)
T4 0.37 0.3% 0.44 16.2 0.08
(0.03)  (0.04) (0.04) (n.a.} (0.02)
Os 0.18 0.34 0.01 22.2 0

(0.07  {0.15)  (0.01) (n.a.)

Simulated Log Likelihood -471.39 -469.70  -471.14  -470.44 AT0.75  -477.56
Number of iterations 12 9 12 44 10 9

* Asymptotic t-statistics are in parenthesis.

According to the results obtained in estimating unidentified structures,
it seems reasonable to conclude that, the base alternative could be either
one of alternatives 1,2,4 or 5. The estimation performed based on 5000
replications indicates that alternative 4 should be selected as the base. As it
should be expected, with very large number of simulation draws, the hessian
should be singular in situations with unidentified error structures. With
R=1000, alternative 5 clearly appears to be the base and since to use the
last alternative as a reference is quite usual, this is the structure that we
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select. The T matrix that corresponds with this structure is as follows:

er O 0 0 O
0 Ja 0 0 0
T = 0 0 J3 0 0
0 0 0 [eFF] 0
0O 00 0 G

Table 4 also gives the estimation results obtained for the MINI.. The log
likelihood of the MNL model is -477.56 and there is an obvious gain to
incorporate heteroscedasticity in the model.

In Table 5, the estimation results of three alternative error component
specifications are provided. In column 2, a two factor case is considered
where factor one applies to alternatives 1 and 2, factor 2 to alternatives 3
and 4. The next two columns refer to a three factor structure. The second
colurnn uses the same structure as in the first one except that the exira fac-
tor applies to the last alternative. As expected, based on the heteroscedastic
estimates previously obtained as presented in Table 4, the estimated stan-
dard error associated with this alternative specific factor is found 1o be not
significantly different from zero. The last columnn corresponds to a structure
where alternative three, the one with apparently the highest variability, 1s
associated with a specific factar. Alternatives 1 and 2 share the first factor
and alternatives 4 and 5 the third factor. Clearly, this structure is the one

to favor.
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Table 5: Error Component Case: Telephone Data*

'T'wo Factors Three Factors
R=1000 R=1000 KE=1000
Parameter N=434 N=434 N=434
Altern. specific constants
Budget Measured (1) -3.62 -3.62 -3.76
(-5.14) (-4.84)  {-4.80)
Standard Measured (2) -2.85 -2.84 -2.97
(-4.38) (-4.07)  (-4.02)
Local Flat {3} -1.47 -1.47 -1.61
(-2.84) (-2.56)  (-2.52;
Extended Flat (4) -1.52 -1.51 -1.14
(-1.62) (-1.56) (-1.09;
Log Cost -3.04 -3.06 -3.20
(-4.98} (-4.89) (-5.02
o 1.31 1.30 1.46
(1.31) {0.99) (1.05;
Ty 1.31 1.30 1.46
(1.31) (0.99)  (L.0%,
Tq 2.98 3.02 3.36
(2.62) (2.56)  (2.57)
04 2.08 3.02 0.57
(2.62) (2.56) (0.21:
T 0 0.35 0.57
(0.11) (0.21)
Simulated Log Likelihood -470.91 -470.87  -470.35
Number of iterations 9 11 14

* Asymptotic t-statistics are in parenthests.

7 Conclusion

This paper developed a MNP formulation that permits a parsimonious speci-
fication of the covariance structure among the alternatives and contains MNI.
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as a special case. The methodolozy is most useful in situations with large
choice sets which require the use of probability simulators. The estimation
method used is simulated maximum likelihood that utilizes modern simula-
tors with efficient properties. A first example based on synthetic data and
also a real empirical case study which involves a choice among five residen-
tial telephone service options were used to demonstrate the feasibility and
desirability of the proposed approach. Clearly, more testing and experience
with other applications are needec. to further demonstrate the applicability
of the proposed model.
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