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1. Introduction 

This chapter discusses classical estimation methods for limited dependent variable 
(LDV) models that employ Monte Carlo simulation techniques to overcome compu- 
tational problems in such models. These difficulties take the form of high-dimen- 
sional integrals that need to be calculated repeatedly. In the past, investigators were 
forced to restrict attention to special classes of LDV models that are computationally 
manageable. The simulation estimation methods we discuss here make it possible to 
estimate LDV models that are computationally intractable using classical estima- 

tion methods. 
We first review the ways in which LDV models arise, describing the differences 

and similarities in censored and truncated data generating processes. Censoring and 
truncation give rise to the troublesome multivariate integrals. Following the LDV 
models, we described various simulation methods for evaluating such integrals. 
Naturally, censoring and truncation play roles in simulation as well. Finally, estima- 
tion methods that rely on simulation are described. We review three general ap- 
proaches that combine estimation of LDV models and simulation: simulation of 
the log-likelihood function (MSL), simulation of moment functions (MSM), and 
simulation of the score (MSS). The MSS is a combination of ideas from MSL and 
MSM, treating the efficient score of the log-likelihood function as a moment 

function. 
One of the most familiar LDV models is the binomial probit model, which 

specifies that the probability that a binomial random variable y equals one, condi- 
tional on the regression vector x, is @(x’fi) where a(.) is the univariate standard 
normal cumulative distribution function (c.d.f.). Although this integral has no 
analytical expression, @ has accurate, rapid, numerical approximations. These help 
make maximum likelihood estimation of the binomial probit model straightforward 
and most econometric software packages provide such estimation as a feature. 
However, a simple and common extension of the binomial probit model renders 
the resulting model too difficult for maximum likelihood computation. Introducing 
correlation among the observations generally produces a likelihood function con- 
taining integrals that cannot be well approximated and rapidly computed. 

An example places the binomial probit model in the context of panel data in 
which a cross-section of N experimental units (individuals or households) is observed 
repeatedly, say in T consecutive time periods. Denote the binomial outcome for the 
nth experimental unit in the tth time period by y,,~(0, l}. In panel data sets, 
econometricians commonly expect correlation among the y,, for the same n across 
different t, reflecting the presence of unobservable determinants of y,, that evolve 
slowly for each experimental unit through time. In order to model such correlation 
parsimoniously, econometricians have adapted familiar models with correlation to 
the probit model. One can describe each y,, as the transformation of a latent, 
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normally distributed, y,*,: 

Then, one can assign the latent y,: a nonscalar covariance matrix appropriate to 
continuously distributed panel data. For example, stacking the y,*, first by time 
period and then by experimental unit, a common specification of the covariance 
matrix is the variance components plus first-order autoregression model 

+ +JT, 

PT-2 . . . p 1 

(1) 

Now consider the impact of such nonscalar covariance matrices on the likelihood 
for the observed y,,. Although the marginal probabilities that y,, is zero or one are 
unchanged, the likelihood function consists of thejoint probabilities that the depen- 
dent series {yn1,yn2,. . . , ynT} are the observed sequences of zeros and ones. These 
joint probabilities are multivariate normal integrals over T dimensions and there 
are 2* possible integrals.’ 

The practical significance of the increased dimensionality of the integrals is that 
traditional numerical methods generally cannot compute the integrals with sufficient 
speed and precision to make the computation of the maximum likelihood estimator 
workable. In this chapter, we review a collection of alternative, feasible, methods 
based on the ideas of estimation with simulation suggested by McFadden (1989) 
and Pakes and Pollard (1989). 

In Section 2, we describe LDV models and illustrate the computational difficulties 
classical estimation methods encounter. Section 3 summarizes basic simulation 
methods, covering censored and truncated sampling methods. Estimation of LDV 
models and simulation are combined in Section 4 where three general approaches 
are reviewed: simulation of the log-likelihood function, simulation of moment 

’ A partial list of studies in numerical analysis of such integrals is Clark (1961), Daganzo (1980), Davis 
and Rabinowitz (1984), Dutt (1973), Dutt (1976). Fishman (1973), Hammersley and Handscomb (1964), 
Horowitzeta1.(1981),Moran(1984),Owen(1956),Rubinstein(l981),Stroud(l97l)andThisted(1988). 
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functions, and simulation of the efficient score. We provide computational examples 
throughout to illustrate the various methods and their properties. We conclude this 
chapter with a summary of the main approaches presented. 

2. Limited dependent variable models 

2.1. The latent normal regression model 

Consider the problem of maximum likelihood estimation given the N observations 
on the vector of random variables y drawn from a population with cumulative 
distribution function (c.d.f.) F(0, Y) = Pr{y < Y}. Let the corresponding density 
function with respect to Lebesgue measure be f(0, y). The density f is a parametric 
function and the parameter vector 0 is unknown, finite-dimensional, and 0~63, 
where 0 is a compact subset of RK. Estimation of 19 by maximum likelihood (ML) 
involves the maximization of the log-likelihood function IN(d) = C,“= 1 In f(0; y,) 
over 0. Often, finding the root of a system of normal equations V,l,(O) = 0 is 
equivalent. In the limited dependent variable models that we consider in this 
chapter, F will be a mixture of discrete and continuous distributions, so that f may 
consist of nonzero probabilities for discrete values of y and continuous probability 
densities for intervals of y. These functions are generally difficult to compute because 
they involve multivariate integrals that do not have closed forms, accurate approxi- 
mations or rapid numerical solutions. As a result, estimation of 0 by classical 
methods is effectively infeasible. 

In this section, we review the various forms of likelihood functions that arise in 
LDV models. In the second subsection, we discuss models generated as partially 
observed or censored latent dependent variables. The third subsection describes 
truncated latent dependent variables. In this case, one views observations in a latent 
data set as missing entirely from an observed data set. Within these broad categories, 
we review discrete, mixed discrete/continuous, and mixture likelihood functions. 
Following our discussion of likelihood functions, Section 2.6 treats the structure 

of the score function for LDV models and the last subsection gives a concrete 
illustration of the intractability of classical estimation methods for the general LDV 
model. 

2.2. Censoring 

In general, and particularly in LDV models, one can represent the data generating 
process for y as an “incomplete data” or “partial observability” process in which the 
observed data vector y is an indirect observation on a latent vector y*. In such cases, 
y* cannot be recovered from the censored random variable y. 
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De$nition 1. Censored random variables 

Let Y* be a random variable from a population with c.d.f. F(Y*) and support A. 
Let B be the support of the random variable Y = r(Y*) where z:A+ B is not 
invertible. Then Y is a censored random variable. 

In LDV models, r is often called the “observation rule”; and though it may not be 
monotonic, t is generally piece-wise continuous. An important characteristic of 
censored sampling is that no observations are missing. Observations on y* are merely 
abbreviated or summarized, hence the descriptive term “censored”. Let A c RM and 
Bc RJ. 

The latent c.d.f. F(B; Y*) for y* is related to the observed c.d.f. for y by the integral 
equation 

F(B; Y) = s dF(B; y*). (2) 
(Y*lr(Y*) d Y) 

In the LDV models that we consider, F(0; y*) is the multivariate normal c.d.f. given 
by F(B, y*) = J&y* - p, Qdy* where R is a positive definite matrix, and 

@(y* - p,Q) = {det[2nR]}-1’2exp[ -i(y* - ~)‘a-‘(y* -p)]. (3) 

We will refer to this multivariate normal distribution as the N(p,fl) distribution. 
The mean vector is often parameterized as a linear function of observed conditioning 
variables X: p(p) = Xp, where fi is a vector of K, slope coefficients. The covariance 
matrix is usually a function of a vector of K, variance parameters C. 

The p.d.f. for y is the function that integrates to F(8; Y). In this chapter, integration 

refers to the Lebesgue-Stieltjes integral and the p.d.f. is a generalized derivative of 
the c.d.f.2 This means that the p.d.f, has discrete and continuous components. 
Everywhere in the support of Y where F is differentiable, the p.d.f. can be obtained 
by ordinary differentiation: 

(4) 

A simple illustration of such p.d.f.‘s is given below in Example 2. In the LDV models 
we consider, F generally has a small nuumber of discontinuities in some dimensions 

‘Such densities are formally known as Radon-Nikodym p.d.t’s. with respect to Lebesgue measure 
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of Y so that F is not differentiable everywhere. At a point of discontinuity Yd, we 
can obtain the generalized p.d.f. by partitioning Y into the elements in which F is 
differentiable, { Y,, . . . , YJ,} say, and the remaining elements { Y,. + i, . . . , Y,} in which 
the discontinuity occurs. The p.d.f. then has the form 

f(e; y) = $& [F(0; Y) - F(8; Y - 0)] 
1 . . J’ 

= f(e; Y1,..., yJ,)Pr{Yj=Y~;j>~‘(6; yl,..., YJ'}, (5) 

where the discrete jump F(8; Y) - F(8; Y - 0) reflects the nontrivial probability of 
the event { Yj = Y:; j > 5’}.3 Examples 1 and 2 illustrate such probabilities. 

It is these probabilities, the discrete components of the p.d.f., that pose computa- 
tional obstacles to classical estimation. One must carry out multivariate integration 
and differentiation in (2))(5) to obtain the likelihood for the observed data - see the 
following example for a clear illustration of this problem. Because accurate numeri- 
cal approximations are unavailable, this integration is often handled by such general 
purpose numerical methods as quadrature. But the speed and accuracy of quadrature 
are inadequate to make the computation of the MLE practical except in special 
cases. 

Example 1. Multinomial probit 

The multinomial probit model is a leading illustration of the computational diffi- 
culties of classical estimation methods for LDV models, which require the repeated 
evaluation of (2))(5). This model is based on the work of Thurstone (1927) and was 
first analyzed by Bock and Jones (1968). For a multinomial model with J = M 

possible outcomes, the latent y* is N(p, f2) where p is a J x 1 vector of means and 
R is a J x J symmetric positive definite covariance matrix. The observed y is often 
represented as a vector of indicator functions for the maximal element of y*: r(y*) = 
[l(yf=max,y*}; j= l,..., 51. Therefore, the sampling space B of y is the set of 
orthonormal elementary unit vectors, whose elements are all zero except for a 
unique element that equals one: 

B= {(l,O,O ,..., O),(O,l,O,O ,..., 0) ,..., (0,O ,..., O,l)}. 

The probability function for y can be written as an integral over J - 1 dimensions 
after noting that the event {yj = 1, yi = 0, i # j} is equivalent to {y; - y* 3 0, i = 1,. . . , 

3The height of the discontinuity is denoted by 

F(O; Y) - F(B; Y - 0) = lim [F(f$ Y) - F(0; Y - E)]. 

40 
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J}. By creating the first-difference vector zj = [y: - y*, i = 1,. . . ,J, i #j] = AjY* 
and denoting its mean and covariance by pj = Ajp and fij = AjflA> respectively, 
F(B; y) and ~“(0; y) are both functions of multivariate normal negative orthant 
integrals of the general form 

0 s s 0 

@(p,L?) = ..’ 4(x + P, Wx. 
-m -co 

We obtain 

F(e;Y)= i l{Yj3 l}@(-Pj,.Rj) 

j=l 

and 

f (0; Y) = 
ng= r @( - ~j, Rj)Y’ ifyE& 

0 otherwise. 
(6) 

When J = 2, this reduces to the familiar binomial probit likelihood mentioned in 
the introduction: 

f (0; Y) = 
i 

WC12 -PI, l)y’@(P1 - P2, 1Y2 

@( - p’, 1)’ _Y’@($, 1)Y’ 
(7) 

where ji = pL1 - pLz and y’ = y,. 
If J > 5, then the likelihood function (6) is difficult to compute using conventional 

expansions without special restrictions on the covariance matrix or without adopting 
other distributions that imply closed-form expressions. Examples of the former 
approach are the factor-analytic structures for R analyzed in Heckman (1981), 
Bolduc (1991) and Bolduc and Kaci (1991), and the diagonal R discussed in 
Hausman and Wise (1978), p. 310. An example of the latter is the i.i.d. extreme-value 
distribution which, as McFadden (1973) shows, yields the analytically tractable 
multinomial logit model. See also Lerman and Manski (1981), p. 224, McFadden 
(198 1) and McFadden (1986) for further discussions on this issue. 

Example 2. Tohit 

The tobit or censored regression model4 is a simple example of a mixed distribution 
with discrete and continuous components. This model has a univariate latent 

4Tobin (I 95X). 
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structure like probit: y* - N(p, a’). The observation rule is also similar: r(y*) = 

l{y* >O}.y* which leads to the sample space B = {yeRly 2 0} and c.d.f. 

/ 

0 if Y < 0, 

F(B; Y) = 

s 
+(y*-p,~)dy*=@(Y-~(,a*) ifY30. 

(Y’ < Y) 

The p.d.f. is mixed, containing discrete and continuous terms: 

i 

0 if Y < 0, 

f(@Y)= @(--~,a’) ifY=O, (8) 

f$(Y-~,a’) ifY>O. 

The discrete jump in F at Y = 0 corresponds to the nonzero probability of { Y = 0}, 
just as in binomial probit. F is differentiable for Y > 0 so that the p.d.f. is obtained 
by differentiation. Just as in the extension of binomial to multinomial probit, 
multivariate tobit models present multivariate integrals that are difficult to compute. 

Example 3. Nonrandom sample selection 

The nonrandom sample selection model provides a final example of partial observ- 
ability which generalizes the tobit model.’ In the simplest version, the latent y* 
consists of two elements drawn from a bivariate normal distribution where 

n(a) = l * al2 

[ 1 al2 a2 

The observation rule is 

so that the first element of y is a binomial variable and the second element is an 

observation on yf when y, = 1; otherwise, there is no observation of yf because y, 
is identically zero. That is, the sampling space of y is the union of two disjoint sets: 
B = { (O,O)} u { (l,y,), ~,ER}. Thus, two cases capture the nonzero regions of the 

‘See Gronau (1974), Heckman (1974), Heckman (1979), Lewis (1974), Lee (1978) and Lee (1979). 
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c.d.f. of y. First of all, the c.d.f. is constant on B, = [0, 1) x [0, co): 

F(B; Y) = s ddy* - p,fWy* = @( - ~l,lX YEB, 
rv: < 01 

because yr is unrestricted (and unobserved) in this case. Once Y, reaches 1, the 
entire sampling space for y, has been covered and the c.d.f. on B, = [l, co) x R is 
increased according to 

l{Y22O}@(-P1,1)+ s 4(~* - p, 0) dy*, YEB,, 

F(B; Y) = 
IY:~O,Y;~Y*) 

l{Y,2O}@(-Pr,l)+@ 

The p.d.f. will therefore be 

f (0; Y) = 1 @(- Pl> 1) if Y, = 0, 

@(PI + arAY - P2)/& 1 - 0:,/0:).4(Y, - ~,,a:) if Y, = 1. 

The sample selection process is often more complicated, with several causes of 

sample selection. In such cases, the latent yT is a vector with each element associated 
with a different cause of partial observation. The latent yT is observed only if all the 
elements of y: (suppose there are J = M - 1) are positive so that the observation 
rule is 

where 1 {y: 2 0) is an (M - 1) x 1 vector of indicator variables. The sampling space is 

M-l 

B= JJER~IYM=O, fl Yj=l,YjE{O,l}, j<M 
j= 1 

M-l 
JJER~IYM=O, JJ Yj=O,YjE{O,l} 9 

j=l 

and the likelihood function contains multivariate integrals over the M - 1 dimen- 
sions of yy. 

Other types of nonrandom sample selection lead to general discrete/continuous 

models and models of switching regressions with known sample separation. Such 



2392 V.A. Hajiwssiliou and P.A. Ruud 

models are discussed extensively in Dubin and McFadden (1984), Hanemann (1984) 
Lee (1978) Maddala (1983) and Amemiya (1984). 

2.3. Truncation 

When it is represented as a partial observation, a limited dependent variable is a 
censored latent variable. Another mechanism for generating limited dependent 
variables is truncation, which refers to dropping observations so that their realiza- 
tion goes unrecorded. 

Dejinition 2. Truncated random variables 

Let F(Y) be the c.d.f. of y* and let D be a proper subset of the support of F and DC 

its complement such that Pr { y*E DC} > 0. The function 

G(Y)= 
F(Y)/Pr{YED} if YED, 

0 if YED’. 

is the c.d.f. of a truncated y*. 

One can generate a sample of truncated random variables with the c.d.f. G by 
drawing a random sample of y* and removing the realizations that are not members 
of D. This is typically the way truncation arises in practice. To draw a single 
realization of the truncated random variable, one can draw y*‘s until a realization 
falls into D. The term “truncation” derives from the visual effect dropping the set DC 

has on the original distribution when DC is a tail region: the tail of the p.d.f. is cut 

off or truncated. 
To incorporate truncation, we expand the observation rule to 

4Y*) ify*ED, 
Y= 

unobserved otherwise, 

where D is an “acceptance region”. This situation differs from that of the nonrandom 
sample selection model in which an observation is still partially observed: at least, 
every realization is recorded. In the presence of truncation, the observed likelihood 

requires normalization relative to the latent likelihood: 

(10) 
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The normalization by a probability in the denominator makes the c.d.f. proper, 
with an upper bound of one. 

Example 4. Truncated normal regression 

Ify* - N(p, a’) and y is an observation of y* when y* > 0, the model is a truncated 
normal regression. Setting D = (y~f?I y > 0) makes B = D so that the c.d.f. and p.d.f. 
of y are 

r 0 if Y < 0, 

F(6; Y) = 4 y NY* - P, 4 dy* 
0 

s 
= @(y-PY~2)- @(-I44 if y>. 

m @(Y* -p,ddy* 
1- @(-p,c?) 

2 

0 

I 0 if Y d 0, 

f(& Y) = 

! 

&Y- K 0) 

1 -@(-&a”) 
ifY>O, 

As in the tobit model, a normal integral appears in the likelihood function. However, 
this integral enters in a nonlinear fashion, in the denominator of a ratio. Clearly, 
multivariate forms of truncation lead to multivariate integrals in the denominator. 

To accommodate both censored and truncated models, in the remainder of this 
chapter we will often denote the general log-likelihood function for LDV models 
with a two-part function: 

ln f@ Y) = ln ft (8 Y) - ln fd@ Y) (11) 

where fi represents the normalizing probability Pr { y* E D ] = SD dF(0; y*). In models 
with only censoring, f2 E 1. But in general, both fi and f2 will require numerical 
approximation. Note that in this general form, the log-likelihood function can be 
viewed as the difference between two log-likelihood functions for models with 
censoring. For example, the log-likelihood of the truncated regression in Example 
4 is the difference between the log-likelihoods of the tobit regression in Example 2 
and the binomial probit model mentioned in the introduction and Example 1 (see 
equations (7) and (S))? 

6Note that scale information about y* is available in the censored and truncated normal regression 
models which is not in the case of binary response, so that u2 is now identifiable. Hence, the normalization 
c’_= 1 is not necessary, as it is in the binary probit model where only the discrete information 1{ Y> 0) 
is available. 
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1 { y > 0) ln 

[ 
L!9kEL 
1 -@(-p,a2) 1 =l{Y>O}ln[C$(Y-/J,a)]+1{Y=0}@(-,U,0*) 

-[l(Y>O}ln[l-@(--p,c*)] 

+l(Y=o}@(-~,a*)]. 

2.4. Mixtures 

LDV models have come to include a family of models that do not necessarily have 
limited dependent variables. This family, containing densities called mixtures, shares 
an analytical trait with the LDV models that we have already reviewed: the p.d.f. 
generally contains discrete probability terms. 

Definition 3. Mixtures 

Let F(8; Y) be the c.d.f. of y* depending on a parameter 8 and H(8) another c.d.f. 
Then the c.d.f. 

G(Y) = 
s 

F(B; Y) dH(8) 

is a mixture. 

Possible ways in which mixtures arise in econometric models are unobservable 

heterogeneity in the underlying data generating process (see, for example, Heckman 
(198 1)) and “short-side” rationing rules (Quandt (1972), Goldfeld and Quandt 
(1975), Laroque and Salanit: (1989)). Laroque and Salanitt (1989) discuss simulation 
estimation methods for the analysis of this type of model. 

Example 5. Mixture 

A cousin of the nonrandom sample selection model is the mixture model generated 
by an underlying trivariate normal distribution, where 

The observation rule maps a three-dimensional vector into a scalar; the rule can be 
written as 
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An indicator function determines whether yT or y: is observed. An important 
difference with sample selection is that the indicator itself is not observed. Thus, y 
is a “mixture” of yz’s and yz’s. As a result, such mixtures have qualitatively distinct 
c.d.f’s, compared to the other LDV models we have discussed. In the present case, 

s 4(y* - PL, f4 dy*, 
F(8; Y) = o( 3 0.y; G Y)u (Y: < 0-y; Q Yl 

s 4(y* - PL, Qdy* + s $(Y* - PL, 4 dy*, 
(Y: a o,y: s Yl {Y: < 0.y: s Y) 

and 

where, for j = {2,3}, 

PlljeE(Y:lYj*= y)=Pl +alj(YTPj)/af9 

Llllj E Iqyyyj* = Y) = 1 - 0+; 

are conditional moments. The p.d.f. particularly demonstrates the weighted nature 
of the distribution: the marginal distributions of yz and ys are mixed together by 
probability weights. 

2.5. Time series models 

LDV models are not typically applied to time series data sets but short time series 
have played an important role in the analysis of panel or longitudinal data sets. 
Such time series are another source of high-dimensional integrals in likelihood 
functions. Here we expand our introductory example. 

Example 6. Multiperiod binary probit model 

A random sample of N economic agents is followed over time, with agent n being 
observed for T periods. The latent variable y,*, = pnt + E,, measures the net benefit 
to the agent characterizing an action in period t. Typically, pnt is a linear index 
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function of a k x 1 vector of exogenous explanatory variables x,,~, i.e., pL,t = xk#. The 
agent chooses one of two actions in each period, denoted by y,,,~jO, l}, depending 
upon the value of y,*,: 

r(y*) = 
i 

y,, = 1 ify,*, > 0, 

y,, = 0 if yz* d 0, I 
t= l,...,T. (12) 

Hence, the sample space for r(y*) is B = x T= I (0, l}, i.e., all possible (2r) sequences 
of length T, with 0 and 1 as the possible realizations in each period. 

Let the distribution of y,* = (y,*,, . . , y,*,)’ be the multivariate normal given in 

equation (3). Then, for individual n the LDV vector {y,,}, t = 1,. , T, has the 
discrete p.d.f. 

f(fi, 0; Y) = @(S,,, SOS), where p = x’b and S = diag{2y - 1). 

This is a special case of the multinomial probit model of Example 1, with J = 2r 
alternatives and a typically highly restricted 52, reflecting the assumed serial correla- 
tion in the {snt}T= 1 sequence. 

By way of illustration, let us consider the specific covariance structure, found very 
useful in applied work:7 

E”* = rn + in,, &I* = Pi,,* - 1 + “nt, IPI < 1 (13) 

and v and ye independent. This implies that 

1 p p2 . . . pT-’ 

P 1 p . . . pT-2 

p2 p . . . i 

. . . 1 P 
p T-l pT-2 . . . /, 1 

+ a;.J,. 

The variance parameters 0: and of cannot both be identified, so the normalization 
a~+~,2=1isused.’ 

The probability of the observed sequence of choices of individual n is 

s b&n) 

Pr (y,; 8, XJ = 4(~,* - A, f&J dy:, 
MYn) 

‘See Hajivassiliou and McFadden (1990), BGrsch-Supan et al. (1992) and Hajivassiliou (1993a). 
*This is the structure assumed in the introductory example see equation (1) above. 
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with 0 = (/3, of, p) and 

i 

0 
%t = 

if y,, = 1, 

-YE ify,, = 0, 

Note that the likelihood of this example is another member of the family of 
censored models. Time series models like this do not present a new analytical 
problem. Indeed, such time series models are more tractable for estimation because 
classical methods do provide consistent, though statistically inefficient, estimators 
(see Poirier and Ruud (1988), Hajivassiliou (1986) and Avery et al. (1983)).9 Keane 
(1993) discusses extensively special issues in the estimation by simulation of panel 
data models and Miihleisen (1991) compares the performance of alternative simula- 
tion estimators for such models. Studies of dynamic discrete behavior using simula- 
tion techniques are Berkovec and Stern (1991), Bloemen and Kapteyn ($991), 
Hajivassiliou and Ioannides (1991), Hotz and Miller (1989), Hotz and Sanders 
(1991), Hotz et al. (1991), Pakes (1992) and Rust (1992). 

In this chapter, we do not analyze the estimation by simulation of “long” time 
series models. We refer the reader to Lee and Ingram (1991), Duffie and Singleton 
(1993), Laroque and Salanie (1990) and Gourieroux and Monfort (1990) for results 
on this topic. 

2.6. Score functions 

For models with censoring, the score for 8 can be written in two ways which we will 
use to motivate two approaches to approximation of the score by simulation. 

V,lnf(Q;y) =z 

= ~JW~lnf(~;~*)l~l (15) 

where V0 is an operator that represents partial differentiation with respect to the 
elements of 0. The ratio (14) is simply the derivative of the log-likelihood and 

(14) 

‘Panel data sets in which each agent is observed for the same number of time periods T are called 
balanced, while sets with T. # T for some n = 1,. , N are known as unhalancrd. As long as the determi- 
nation of T. is not endogenous to the economic model at hand, balanced and unbalanced sets can be 
analyzed using the same techniques. There exists, however, the interesting case in which T,, is determined 
endogenously through an economic decision, which leads to a multiperiod sample selection problem. 
See Hausman and Wise (1979) for a discussion of this case. 
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simulation can be applied to the numerator and denominator separately. The 
second expression (15), the conditional expectation of the score of the latent log- 
likelihood, can be simulated as a single expectation if V, lnf(8; y*) is tractable. 
Ruud (1986), van Praag and Hop (1987), Hajivassiliou and McFadden (1990) and 
Hajivassiliou (1992) have noted alternative ways of writing score functions for the 
purpose of estimation by simulation. 

Here is the derivation of (15). Let F(8; y* 1 y) denote the conditional c.d.f. of y* 
given that r(y*) = y.” We let 

ECNY*)IYI = 
s 

r(y*)dF(&y*Iy) (16) 

denote the expectation of a random variable t(y*) with respect to the conditional 
c.d.f. F(B; y* 1 y) of y* given r(y*) = y. Then 

vtm Y) _ 1 
f(R Y) s .m Y) (y*,r(y*) ‘y) 

V,dF(&y*) 

= s v&m Y*) fvt Y*) dy* 

(y'lr(y*) 'Y) fvt Y*) fvt Y) 

= -V,WV;Y*)I~(Y*) = ~1 

since We; Y*)ifvt Y) = fv3 Y*YJ(~.,~(~*)=~~ f(8; y*)dy* is the p.d.f. of the truncated 
distribution {y* 1 r(y*) = y}. 

This formula for the score leads to the following general equations for normal 

LDV models when y* has the multivariate normal p.d.f. given in (3): 

v, ln f(e; Y) = a- 1 [E(Y* I Y) - ~1, 

V,lnf(e;Y)=~~-l{~(Y*lY)+c~(y*i~(y*)=y)-~i 

x [WY* I r(Y*) = Y) - PI’ - fl>fl- r, (17) 

using the standard derivatives for the log-likelihood of a multivariate normal 

I0 Formally, 

F(O; Y* 1 T(y*) = y) E lim 
Pr{y*< y*,y-E<T(y*)<y} 

610 Pr{y-E<T(y*)<y} 
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According to (17), the score of a normal LDV model depends only on the first two 
moments of a truncated multivariate normal random variable z generated by the 
truncation rule 

Y* if r(y*) = y, 
z= 

unobserved otherwise. 
(19) 

The functional form of these moments depends on the specification of the LDV 

function 2. 
For LDV models with truncation, there are no changes to (14)-(16). The only 

change that (9) requires for (19) is the restriction to the acceptance region D. That 
is, the score depends on only the first two moments of a truncated multivariate 
normal random variable z’ generated by the truncation rule 

z’ = Y* if r(y*) = y, Y*E& 

unobserved otherwise. 

As a result, there is a basic change to (17). Because the log-likelihood function of 
truncated models is the difference between two log-likelihood functions for censored 
models (see equation (1 l)), the score is expressed as the difference in the scores for 
such models: 

V. ln f(& Y) = V. ln fl(& Y) - V. ln f,(Q; Y) 

= .W,lnf(R~*)l~(~*) = ~1 - W,lnf(R~*)l~*~Dl 

and (17) becomes 

V,lnF(B;y)=R-‘[E(y*)z(y*) =y)-E(y*ly*~D)], 

v,lnF(B;y)=~R-‘{EC(y*-~)(y*-I*)‘I~(y*)=y] 

- EC(Y* - P)(Y* - ~)ll~*~Dl}fl-‘. 

2.7. The computational intractability of LDV models 

The likelihood contribution f(t9; y,) and the score V, lnf(B; y,) are functions of at 
most M-dimensional integrals over the region D(y) = {ylz(y*) = y} in the domain 
of the M x 1 latent vector yx. The fundamental source of the computational intract- 
ability of classical estimation methods for the general LDV model is the repeated 
evaluation of such integrals. To illustrate, consider a multinomial probit model with 
M = 16 alternatives, with K = 20 exogenous variables that vary by alternative. A 
random sample of N = 1000 observations is available. Suppose the M x M variance- 
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covariance matrix R of the unobserved random utilities has (15 x 16/2) - 1 = 119 
free elements (after imposing identification restrictions). Then, the number of param- 
eters to be estimated is p = 139. Suppose the analyst uses an iterative Newton- 
Raphson type of numerical procedure, employing numerical approximations to the 
first derivatives based on two-sided first differences and that 20 iterations are 
required to achieve convergence, which is a realistic number.” Each iteration 
requires at least 2p evaluations of the likelihood function for approximating the first 
derivatives. We thus expect that finding the ML estimator will require about 20 x 2p 
function evaluations. Since the sample consists of N = 1000 individuals, we will have 
to calculate N x 20 x 2p contributions to the likelihood function, each of which, in 
general, will be 16-dimensional integrals. Let s be the time in seconds a given 
computer requires to approximate a 16-dimensional integral by numerical quad- 
rature methods. Our hypothetical ML estimation will thus require about N x 20 x 
2p x s seconds. On a typical modern supercomputer (say a Cray 1) one could expect 
s z 2. Hence, using such a supercomputer, our problem would take about 1000 x 
20 x 178 x 2/3600 hours, which is about 4 months of Cray 1 CPU! It is crucial to 
stress that such numerical quadrature methods offer only poor approximations to 
integrals of such dimension. I2 The maximum likelihood estimates resulting from 4 

months of Cray 1 CPU would be utterly unreliable. The need for alternative 
estimation methods for these problems is apparent. 

3. Simulation methods 

3.1. Overview 

Two general approaches to exploiting simulation in parametric estimation are to 
approximate the likelihood function and to approximate such moment functions 
as the score. The likelihood function can be simulated by Monte Carlo techniques 
over the latent marginal distribution f(0; y*) in equation (4) for the mixture case, 
equation (5) for the discrete/continuous case and equation (10) for the truncated 
case. Alternatively, the score can be approximated either by integrating both nume- 
rator and denominator in equation (14) or by integrating over the latent conditional 
p.d.f. f(0; y* 1 y) as in equation (15). Thus, simulation techniques focus on the simula- 
tion from these two distributions, f(0; y*) and f(0; y* 1 y). The censoring and trunca- 
tion discussed above for LDV models also appear in simulations and we consider 

methods for effecting each type of observation rule below. As we will show in Section 
4, some simulation estimation methods use censored simulation for the estimation 
of the main types of LDV models discussed in Section 2 (censored, truncated and 

“See Quandt (1986) for a discussion of issues in numerical optimization methods. 
“Clark (1961) proposed another numerical approximation method for such integrals - see also 

Daganzo et al. (1977) and Daganzo (1980). The Horowitz et al. (1981) study finds serious shortcomings 
in the numerical accuracy of the Clark method in typical problems with high .I and unrestricted R. 
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mixture models), whereas other estimation methods use truncated simulation for 
the estimation of these models. 

Simulation of standard normal random variables is an old and well-studied 
problem. Relatively fast algorithms are widely available for generating such random 
variables on a computer. Thus, consider the simulation of the latent data generating 
process. We can always write 

where q is a vector of M independent standard normal random variables and I- is 
a matrix square root of Q, so that R = I-T’. It is convenient to set r to the (lower 
triangular) Cholesky factor. Clearly, the latent data generating process can be 
simulated rapidly with simulations of q for any values of p and R. Such simulations 
can be used in turn to simulate the likelihood and log-likelihood functions and their 
derivatives with respect to the parameters. 

As in all of the examples given above, the observation rules common in LDV 
models imply regions of integration that are rectangles: that is, for some matrix A 

and vectors b, and b,, possibly with some infinite elements, 

(21) 

where rank(A) d M. These are the problems that we will consider. Since Ay* is also 
normally distributed, it will often be convenient to simulate Ay* instead of y*. In 
that case, we simply transform the mean vector and covariance matrix to Ap and 
ARA’, respectively. Without any loss of generality in this section, we set A = I,, 
the M x M identity matrix. We denote D = {zeR”I b, < z < b,}. 

Such regions as (21) have two important analytical properties. First of all, rect- 
angular regions have constant boundaries with respect to the variable of integration, 
simplifying integration. Secondly, the differentiation in (4) and (5) can be carried 
out analytically to obtain likelihood functions composed of multivariate normal 
p.d.f.‘s of the form (3) and multivariate normal c.d.f.‘s of the form 

Pr{D;p,fl} = 
s 

l{y*ED}+(y*-p,n)dy*. (22) 

Thus, simulation of the likelihood can be restricted to terms in Pr( D; p, l2}. Simula- 
tion of the score in (14) involves only the additional terms 

V,Pr(D;fl,R} =0-i 
s 

I{Y*ED)(Y* -/MY* - ~fl)dy*, 

V,Pr{D;p,R} = $Q-l 
is 

I{Y*ED)C(Y*--)(Y*-/+-J&~*-@)~~* 

(23) 
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Normalized by Pr { D; p, Q}, these equations transform to 

(24) 

which are terms in (17). 
In the remainder of this section, we will discuss the simulation of (22)-(24). For 

this purpose we denote 

yTi= [yi;m= l,...,M;m#i], 

p-i S E(Y*i)j 

n_i,~i ~ V(YTi), 

R_i,i = cov(y*,,y*) 

and the conditional moments 

p_i,i(y*) s E(Y*~~YF) and R-,.-iii E t’(Y’iIYF). 

These conditional moments have the well-known formulas 

The conditional mean and variance of y* given y? i, denoted nil _ i and nii, _ i, are 
defined analogously. We also define 

y*,,=[y$m= l,...,i- 11 

and use a similar notation for the marginal and conditional moments of ‘this 

subvector of random variables. For example, the conditional mean ofy: given y*, i is 

3.2. Censored simulation 

We begin by focusing on the integrals in (22) and (23) accumulated in the vector 

E[h(y*, D)] s E 

[ [veci y*J]' 

1 {y*ED} (25) 



The elements of h are censored random variables. We consider two basic methods 
of simulation: direct censoring of the multivariate normal random variable and 
importance sampling. 

3.2.1. Multivariate normal simuhtion 

A direct method for simulating Pr{ D; p, Q} and its derivatives is to make repeated 
Monte Carlo draws for ye, use (20) to calculate y* for each q, and then form an 
empirical analogue of (25), by working only with the realizations that fall in set D. 

Let {YIP,..., qR} be R simulated draws from the N(0, ZJ distribution and J, = p + l-q, 
(r=l,...,R)sothat 

is an unbiased simulation of (25). As R gets larger, the sampling variance of h, 

P(l - P)/R, approaches zero and h coverges strongly to E[h(y*, D)]. The simula- 
tion of Pr{ D; p, 0) is simply the observed frequency with which the simulations of 
y* fall into D. Its derivatives with respect to p and Q are functions of the average 
simulation of l{y*~D}y* and l{y*~D}y*y*‘. We will call this the crude Monte 
Curlo (CMC) simulator. Lerman and Manski (1981) conducted the first extensive 
application of Monte Carlo integration as a numerical technique to the estimation 
of LDV models using the CMC simulator. 

The CMC is quick to compute and ideal for computers with a “vectorization 
facility”.’ 3 However, the CMC also has at least two major drawbacks. First, it is 
not continuous in parameters. The simulator jumps at parameter values where a 
J, is on the boundary of D. For example, consider parameter values (pug, r,) chosen 
so that the mth element of the rth simulation equals its lower bound in D: 

where r,, is the mth row of r,. Decreasing the parameter pm from porn will cause 
the indicator l{jTl~D> to jump from 1 to 0, and this will result in discrete jumps in 
the elements of h(jj,, D) and h. Such discontinuities make computation of estimators 
and asymptotic distribution theory awkward.i4 Second, the number of computa- 
tions required by the CMC rises inversely with Pr{D; p, Q}, which makes it intract- 
able when this probability is small. It should be noted that in principle the accuracy 
of the CMC can be improved by use of so-called simulation-variance-reduction 

“Such a mechanism allows simultaneous operation on adjacent elements of a vector using multiple 
processors. See Hajivassiliou (1993b) which shows that the CMC exhibits the greatest speed gains from 
vectorization among 13 alternative simulation methods. 

14See Quandt (1986) for a discussion ofiterative parameter search algorithms and their requirements 
for differentiability of the function to be optimized. 
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techniques, as, for example, the use of control and antithetic variates. See Hendry 
(1984) for definitions. 

3.2.2. Importance sampling 

Importance sampling is another general method for reducing the sampling variance 
of integrals computed by Monte Carlo integration over (censoring) intervals. The 
CMC involves sampling y* from the #(y* - ~1~0) p.d.f. and evaluating the function 
h(y*, D). A simple generalization of this procedure rewrites EC/r] in terms of another 
sampling distribution y: 

E[h] = h(y*, D)$(y* - p, Wy* = s S[ & 

, 
D) a - PL, f4 

yw; P, fl,4 1 
16; P, Q, 4 d9 

6 is a vector of parameters characterizing the design of the importance sampler y(.). 
Note that for h(.) = 1 {LED}, this expression corresponds to Pr{D;p, 01. By drawing 

a random variable j from the importance p.d.f. y and evaluating the weighted 
indicator function h@)w(j), where 

w(J) = m - P, Q) 
Y(k zGi’ 

one obtains an alternative unbiased simulation of Pr{ D; p, Ll>. The first advantage 
offered by importance sampling is the ability to substitute sampling from y for 
sampling from 4. In some cases, y may be sampled more quickly, or, in a more 
general setting, sampling from 4 may be impractical. 

In addition, if y also has an analytical integral over a truncated sampling region 
C such that D G C, then this analytical integral can be exploited as an approxima- 
tion to Pr{ D; p, f2} as follows: 

Pr{D;p,R} = Pr{jEC} 
s C 

I(j%D}w(j)~~~dj. 

By drawing from the truncated p.d.f. y(J, ,u, 0, fi)/Pr{jEC}, fewer simulations are 
“wasted” on outcomes of zero and, in effect, Pr{ jEC}w(j) approximates Pr{ D; p, f2). 
When y is a good approximation to 4, so that the ratio of densities w = 4/y is 
relatively constant, the sampling variance of the importance-sampling simulator is 
small. As noted above, the sampling variance of the CMC for a single simulation is 
P( 1 - P), while the sampling variance of the importance sampler is 

W’c.1 {SD}w(J)) = P~%V’(w(Wd’) + (1 - f’,).E(~(j)lj%D)~], 

where PC= Pr{$EC} and PD = Pr{JED}. In the extreme case that y = 4, 
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V(W(J)IJED) = 0 and E(w(J)ljj~0)’ = P D. Therefore, good approximations to 4 

afford improvements over the CFC. Geweke (1989) introduces importance sampling 
in Monte Carlo integration in the context of Bayesian estimation.i5 

Dejinition 4. GHK importance-sampling simulator 

The GHK importance p.d.f. is the “recursively truncated”multivariate normal p.d.f. 

for jkD where (T,,<,,, = fi,,,,,,,,, and 

Cim E him - &nI < m(9 < nJ2 i=O,l. 

By construction, the support of this p.d.f. is D. Conditional on J<,,,, p,,, is univariate 
truncated normal on D, with conditional mean determined by p<,. Draws from y 
can be made recursively according to the formula 

where the o are independently distributed uniform random variablesi The GHK 
simulator is the product 

It is an unbiased simulator of E(h). 

The GHK simulator was developed by Geweke (1992), Hajivassiliou and 
McFadden (1990) and Keane (1990). Experience suggests that the sampling variance 
of &uk(jj) is very small so that it approximates E(h) well in practice. This approxi- 
mant has the properties of lying in the unit interval, summing to one over all the 

t50ther investigations of the use of Monte Carlo integration in Bayesian analysis are, inter aha, 
Bauwens (1984), Kloek and van Dijk (1978) van Dijk (1987) and West (1990). 

16This method is described extensively in Devroye (1986) and is a simple application of the cumulative 
probability integral transform result -see Feller (1971). Computationally more efficient methods for 
generating univariate truncated normal variates exist -for example Geweke (1992). The advantage of 
the method presented in the preceding equation, however, is that it is continuous in p, 0, and w,, which, 
as already mentioned, is a desirable property of simulators for asymptotic theory and for iterative 
parameter search. The method of constructing y in this example can also be extended to a bivariate 
version using a bivariate normal c.d.f. and standardizing adjacent pairs of elements. 
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disjoint rectangular regions surrounding and including D, and being a continuous 
function of w, p, L2, he, and b,. These properties are discussed in Borsch-Supan and 
Hajivassiliou (1993). Moreover, Hajivassiliou et al. (1992) found conclusive evidence 
for the superior root-mean-squared-error performance of the GHK method in an 
extensive Monte Carlo study comparing the GHK to 12 other simulators for 
normal rectangle probabilities Pr{ D; p, l2}. 

3.3. Truncated simulation 

We now turn to the expectations in (24). These are ratios of the integrals in (25) and 
cannot be simulated without bias using the censored simulation methods above. 
Even ignoring the bias, one must ensure that the denominator of the ratio is not 
zero. For example, the CMC and some importance-sampling simulators can yield 
outcomes of zero for probabilities and thus violate this requirement.17 In this 
subsection, we describe two general procedures which draw directly from the 
truncated distributions associated with the expectations in equation (24). 

3.3.1. Acceptance/rejection methods 

Acceptance/rejection (A/R) methods provide a mechanism for drawing from a 
conditional density when practical exact transformations from uniform or standard 
normal variates are not available. The following result is standard; see Devroye 
(1986) Fishman (1973) or Rubinstein (1981) for proofs. 

Proposition 1 

Suppose b(y*) is a J-dimensional density, and one wishes to sample from the 
conditional density 4(y* I D) = 4(y*)/jD r#~(y*)dy*. Suppose y(J) is a density with a 
support A from which it is practical to sample, with the property that 

supa<a< + co, 
D Y(J) ’ 

where D s A. Draw J from y and o from a uniform density on [0, 11, repeat this 
process until a pair satisfying PED and 4(J) 3 occ.r(J) is observed, and accept the 

associated 9. Then, the accepted points have density 4(.1 D). 

“It should be noted that one of the attractive properties of the GHK simulator is that it generates 
simulated probability values that are bounded away from 0 and 1, unlike many other importance- 
sampling simulators. See Bgrsch-Supan and Hajivassiliou (1993) for details. 
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The choice of a suitable comparison density y(‘) is important because it deter- 
mines the expected “yield” of the acceptance/rejection scheme. The main attractive 
feature of A/R is that the accepted draws have the correct truncated distribution. 
The practical shortcoming, though, is that the operations necessary until a specific 
number of draws are accepted may be very large. 

The A/R scheme also provides an unbiased simulator of l/Pr{ D; p, f2} if JDy@)dJ = 
T(D) is practical to compute. The conditional probability of acceptance, given 

@ED}, is So6(J)dUa = Pr{D)l c(, so that the marginal probability of acceptance is 

T(D) Pr{D}/cr. The distribution of the number of trials to get an acceptance is the 
geometric distribution and its expectation is LY/[ZJZI) Pr(D}]. Therefore, if t is the 
number of draws made until J is accepted, t.T(D)/cc is an unbiased simulator of 
l/Pr( D}. 

Example 7 

The recursively truncated normal p.d.f. in Definition 4 works well in practice as the 
comparison distribution. A bound on the density ratio is given by 

a= fi {~(b,,-~L,,<,(bl<,),~~,<,)-~(bo,-~,,<,(bo<,),aH,<,)>, 
m=l 

where the conditional moments are conditioned on J<, equal to the boundaries. 
Since A = D, T(D) = 1. 

3.3.2. Gibbs resampling 

Gibbs resampling is another way to draw from truncated distributions. An infinite 
number of calculations are required to generate a finite number of draws with 
distribution approaching the true one. But convergence to the true distribution is 
geometric in the number of resamplings, hence the performance of this simulator 
in practice is generally very satisfactory. In addition, this simulator is continuous 
and differentiable in the parameters j.~ and R. The Gibbs simulator is based on 
a Markov chain that utilizes computable univariate truncated normal densities 
to construct transitions, and has the desired truncated multivariate normal as 
its limiting distribution.’ * This simulator is defined by the following Markovian 
updating scheme. 

Proposition 2 

Consider the multivariate normal distribution N(p,O) truncated on D, which is 
assumed to be finite. Define a recursive procedure with steps j = 1,. . . , J in rounds 
g=l , . . . , G. Let {y*‘jg’} be a sequence on D such that on the jth step of the gth 

“This simulator can be generalized in principle to non-normal distributions, provided the correspond- 
ing univariate distributions are easy to sample. 
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round, thejth element of y*(jg) is computed from J??~~“-~’ by 

yj*(jg) = pj, _ j(y j *(j&J - “) + aj, _ j’ @ - l [oj,y _ I aqc; j, dj, _ j) 

-(l -Oj,g-l)~(c~j’~jl-j)l’ 

where 

and the ojg are independent uniform [0, l] variates and cj, _ j = Gj. Repeat 
this process for G “Gibbs resampling rounds”. Then the random draws obtained by 
this simulator have a distribution that converges in L, norm at a geometric rate to 
the true truncated distribution {y*ly*~D} as the number of Gibbs resampling 
rounds G grows to infinity. 

This result is proved in Hajivassiliou and McFadden (1990). It relies on stochastic 
relaxation techniques as discussed in Geman and Geman (1984). See also Tierny 
(1992) for other theoretical results on the Gibbs resampling scheme.” We present 
below Monte Carlo experiments with simulation estimators based on this truncated 
simulation scheme. 

4. Simulation and estimation of LDV models 

4.1. Overview 

In this section, we bring together the parametric estimation of the LDV models 
described in Section 2 with the simulation methods in Section 3. Our focus is the 
consistent estimation of the parameters of the model; we defer the discussion of 
limiting distributions to a later section. Our exposition follows the general historical 
trend of thought in this area. We begin with the application of simulation to 
approximating the log-likelihood function. Next, we consider the simulation of 
moment functions. Because of the simulation biases that naturally arise in the 
log-likelihood approach, the unbiased simulation of moment functions and the 
method of moments are an alternative approach. Finally, we discuss simulation of 

the score function. Solving the normal equations of ML estimation is a special case 
of the method of moments and simulating the score function offers the potential for 
efficient estimation. 

One can organize a description of the methods along the following lines. Figure 1 
gives a diagrammatic presentation of a useful taxonomy. In this figure, the various 

“The usefulness of Gibbs resampling for Bayesian estimation has been recognized by Geweke (1992), 
Chib (1993), and by McCulloch and Rossi (1993). 
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GMSM 

Figure 1. Taxonomy of simulation estimators 

estimation methods are represented as elliptical sets and the properties of the 
associated simulation methods are represented as rectangular sets. Five families of 
estimation methods are pictured. All of the methods fall into the class of generalized 
method of simulated moments (GMSM). This is the simulated counterpart to the 

generalized method of moments (GMM) (see Newey and McFadden (1994)). Within 
the GMSM fall the method of simulated scores (MSS), the simulated EM (SEM), the 
method of simulated moments (MSM), and maximum simulated likelihood (MSL). 
In parallel with the types of LDV models, the simulation methods are divided 
between censored and truncated sampling. The simulation methods are further 
separated into those that simulate the efficient score of the LDV models with and 
without bias. 

The MSM is a simulated counterpart to the method of moments (MOM). As the 
figure shows, the MSM is restricted to simulation methods that generate unbiased 
simulations using censored simulation methods. The MSL estimation method also 
rests on censored simulation but, as we will explain, the critical object (the log- 
likelihood function) is simulated with bias. The SEM algorithm is an extension of 
the EM algorithm using unbiased simulations from truncated distributions; it falls, 
therefore, in the upper half of the figure. Of these methods, only the MSS has 
versions that use both classes of simulation methods, censored and truncated, that 
we have described above. 

Throughout this section, we will assume that we are working with models for 
which the maximum likelihood estimator is well-behaved. In particular, we suppose 
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that the usual regularity conditions are met, ensuring that the ML estimator is the 
most efficient CUAN estimator. We will illustrate the methods using the rank 

ordered prohit model. This LDV model is a natural candidate for most approaches 
to estimation with simulation and the exact MLE performs well in small samples. 

Example 8. Rank ordered probit 

The rank ordered probit model is a generalization of the multinomial probit model 
described in Example 1. Instead of observing only the most preferred (or highest 
ranked) alternative, each observation records the rank order of the alternatives 
from most preferred to least preferred. The rank ordering yields considerably more 
information about the underlying preference parameters than the simpler, highest- 
ranked-alternative response. Hence, consumer survey designers often prefer to ask 
for complete rankings. 

We can express the observation rule of rank ordered data algebraically as 

Y = zij(Y*) = l {Y& = Yj*}f i,j= 1 ,..., J 

where the {yz,} correspond to the order statistics of y*, 

* < * <...< 
Y(l) ’ Y(2) ’ ’ Y;“J,, 

so that the first row of y contains indicators of the smallest element of y* and so 
on until the last row indicates the largest element of y*. The sample space of y 
consistsoftheJ!=Jx(J-1)x... x 2 different J x J matrices containing zeros 
and ones such that only a single entry equals one in each row and column: 

J]lYijE{o,1}3CYij=CYij= ’ 
I j 

Thus, even moderate numbers of alternatives correspond to discrete sampling 
spaces with many outcomes. 

The c.d.f. of y is not particularly informative; it is simpler to derive the probability 

of each possible outcome directly. The rank ordering y corresponds to values of y* 
in a set satisfying J - 1 inequalities: 

D(y) = {y*d?-‘ly,.y* d y2.y* d ... < y,.y*}, 

where ,vj, is the row vector [yjl,. . . , yjJ]. Such additional inequalities as yr.y* < y3.y* 
are redundant. As in the multinomial choice model, it is convenient to transform 
the latent y* into a vector of .I - 1 differences: 

zy~Ayy*=[yi.y*-y;+l.y*;i= l,..., J- 11, 
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where 

d,- CYij-Yi+l,j; i= l)...) J- I;j= l)..) 51 

is a (J - 1) x J differencing matrix. According to this definition, D(y) = {.Y* Iz, d 0). 
The transformed random vector zy is also multivariate normal and for all YEB, 

f(8; Y) = Pr{ y = Y; p, f2} = @(drp, d&Id;). (29) 

One probability term in this p.d.f. is equivalent in computational complexity to the 

normal orthant integrals of the choice probabilities in Example 1. 

We will use the various simulation and estimation methods to estimate this rank 

ordered probit model in Monte Carlo experiments. Because a natural standard of 
comparison is the MLE, we present first a Monte Carlo experiment for the MLE 

in a workable case. 

Example 9 

When J = 4, the MLE is computable using standard approximation methods. In 
our basic Monte Carlo experiment the population parameters will be 

i 

-1 

I 
1 l/2 0 0 

-l/3 
p= 

l/3 
and Q = 

l/2 1 0 0 

1 : I 

0 0 1 f/2 . 

0 0 l/2 1 

These values yield a reasonable amount of variation in y and they induce significant 
inconsistency in the popular rank ordered logit estimator (Beggs et al. (1981)) when 
it is applied to the data. The block diagonal 0 contains covariances among the 
latent y* that are zero in the latent logit model. The ,u and R parameters are not all 

identifiable and so we normalize by reducing the parameterization to d,~ and 
drf2dk for Y = I,, the 4 x 4 identity matrix. The first variance in d,R,4; is also 
scaled to 1. In order to restrict d,Rd; to be positive semi-definite, this covariance 
matrix is also parameterized in terms of its Cholesky square root. Putting the mean 
parameters first, then stacking the nonzero elements of the Cholesky parameters, 
the identifiable population parameter vector is B0 = [ - 0.6667, - 0.6667, - 0.6667, 
0.5000, 1.3230, 0.0000, - 0.3780, 0.92581. 

The basic Monte Carlo experiment will be a random draw from the distribution 
of each estimator for N = 100 observations on y. There will be 500 replications of 
each estimator. Results of the experiment for the MLE are in Table 1. The MLE 
has a small bias relative to its sampling variance and the sampling variance is small 
enough to make hypothesis tests for equal means or zero covariances quite powerful. 
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Table 1 
Sample statistics for rank ordered probit MLE 

Parameter 
Population 

value Mean 
Standard 
deviation 

Lower 
quartile Median 

Upper 
quartile 

-0.6667 -0.6864 0.1317 
-0.6667 -0.6910 0.2351 
-0.6667 -0.7063 0.2263 
-0.5000 -0.5135 0.2265 

1.3230 1.3536 0.3002 
0.000 -0.0127 0.1797 

-0.3780 ~ 0.408 1 0.1909 
0.9258 0.9385 0.246 I 

-0.7702 -0.6807 -0.5921 
-0.8354 - 0.6629 -0.5231 
- 0.8276 - 0.6648 -0.5374 
- 0.6402 -0.5016 -0.3645 

1.130 1.317 1.519 
-0.1241 -0.008616 0.09545 
-0.5158 -0.3891 -0.2765 

0.7513 0.9140 1.074 

It appears that the bias in the MLE is largely caused by asymmetry in the sampling 
distribution: The medians are closer to the population values than the means. 
Overall, the asymptotic approximation to the distribution of the MLE is good. The 
inverse information matrix predicts the standard deviations in the fourth column 
of Table 1 to be 0.1296, 0.1927, 0.1703, 0.2005, 0.2248, 0.1543, 0.1514, 0.1987. 
Therefore, the actual sampling distribution has more variation than the asymptotic 
approximation. 

For the simulation estimators, we will also conduct Monte Carlo experiments for 
a model with J = 6 alternatives. In that case, the MLE is not easily computed. We 
will use the population values 

--1- - 1 l/2 0 0 0 0’ 

- 315 l/2 1 0 0 0 0 

- l/5 0 
P(= 

0 514 314 I/4 l/4 

115 
and R= 

0 0 314 514 l/4 l/4 

315 0 0 l/4 l/4 514 314 

_ l_ -0 0 l/4 l/4 314 514 

whichcorrespond to0,=[-0.4000, -0.4000, -0.4000, -0.4000, -0.4000, -0.5000, 
1.414, 0.000, -0.3536, 0.9354, 0.000, -0.1768, - 0.6013, 1.052, 0.000, 0.000, O.OOQ, 
-0.4752, 0.87991 when normalizing on Y = I,. 

4.2. Simulation of the log-likelihood function 

One of the earliest applications of simulation to estimation was the general compu- 
tation of multivariate integrals in such likelihoods as that of the multinomial probit 
by Monte Carlo integration. Crude Monte Carlo simulation can approximate the 
probabilities of the multinomial probit to any desired degree of accuracy, so that 



Ch. 40: Classical Estimation Methodsfir LDV Models Using Simulation 2413 

the corresponding maximum simulated likelihood (MSL) estimator can approximate 
the ML estimator. 

De$nition 5. Maximum simulated likelihood 

Let the log-likelihood function for the unknown parameter vector 0 given the 
sample of observations (y,, n = 1,. . , N) be 

and let f”(t); y, o) be an unbiased simulator so that f(O; y) = E,[7(6; y, o)l y] where 
w is a simulated vector of R random variates. The maximum simulated likelihood 

estimator is 

&,, E arg max TN(O), 
8 

where 

for some given simulation sequence {w”}. 

It is important to note that the MSL estimator is conditional on the sequence of 

simulators {w”}. For both computational stability and asymptotic distribution 
theory, it is important that the simulations do not change with the parameter values. 
See McFadden (1989) and Pakes and Pollard (1989) for an explanation of this point. 

Example 10 

Borsch-Supan and Hajivassiliou (1993) proposed MSL estimation of the multi- 
nomial probit model of Example 1 using the GHK simulator for the choice probabi- 
lities. In this example, we make similar calculations for the rank ordered probit 
model of Example 9. Instead of the normal probability function in (29), we used the 
probability simulator in the first element of h,,, in (28) to compute the simulated 
log-likelihood function ~,(O).2o For the simu lations of the probability of each 
observation, we drew a vector of J - 1 = 3 independently distributed uniform 
random variables for each CO,. For each replication of &,,,, we drew a new data set 

“The order of integration affects this simulator, but we do not attempt to describe our particular 
orderings. They were chosen purely on the basis of a convenient algorithm for finding the limits of 
integration. 
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Table 2 
Sample statistics for rank ordered probit MSLE using GHK (J = 4, R = 1). 

Parameter 
Population 

value Mean 
Standard Lower 
deviation quartile Median 

Upper 
quartile 

01 -0.6667 -0.7230 0.1424 -0.8219 -0.7198 - 0.6253 
$2 - 0.6667 - 0.6077 0.2162 - 0.7342 -0.5934 - 0.4640 
0, - 0.6667 -0.9555 0.2520 - 1.087 -0.9256 -0.7860 
0, ~0.5000 -0.6387 0.1430 - 0.7305 -0.6415 -0.5379 
05 1.3230 1.2595 0.1741 1.134 1.237 1.353 
06 0.0000 0.0131 0.1717 - 0.09063 -0.01013 0.1285 
0, -0.3780 -0.6715 0.2088 -0.7883 -0.6639 - 0.5292 
08 0.9258 1.3282 0.2211 1.185 1.301 1.448 

{(Y,>%);n= I,..., N} before maximizing TN(@) over 8. Each 7(&y,, w,) consisted of 
a single simulation of f(0; y,) (R = 1). 

The results of this Monte Carlo experiment for J = 4 are in Table 2. In contrast 
with the MLE, this MSLE exhibits much larger bias. The median is virtually 
identical to the mean. The sampling variances are also larger, particularly for the 
covariance parameters. Nevertheless, this MSLE gives a rough approximation to 
the population parameters. 

The results of this Monte Carlo experiment for J = 6 are in Table 3. For brevity, 
only the mean parameters are listed. Once again, substantial biases appear in the 
sample of estimators. Given our experience with J = 4, it seems likely that these 
biases are largely due to simulation. We will confirm this below as we apply other 
methods to this case. 

Note that unbiased simulation of the likelihood function is neither necessary nor 
sufficient for consistent MSL estimation. Because the estimator is a nonlinear 
function (through optimization) of the simulator, the MSL estimator will generally 
be a biased simulation of the MLE even when the criterion function of estimation 

Table 3 
Sample statistics for rank ordered probit MSLE using GHK (J = 6, R = 1). 

Population 
value 

- 0.4000 
- 0.4000 
~ 0.4ooo 
- 0.4000 
- 0.4000 

Mean 

-0.4585 
- 0.2489 
- 0.5054 
-0.4589 
-0.6108 

Standard Lower 
deviation quartile 

0.1504 -0.5565 
0.2059 -0.3898 
0.1710 - 0.6056 
0.2013 -0.5779 
0.1882 - 0.6934 

Median 

-0.4561 
- 0.2460 
-0.4957 
-0.4551 
-0.6016 

Upper 
quartile 

-0.3664 
- 0.0940 
-0.3891 
-0.3216 
-0.5042 
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is simulated without bias because 

E[T(e)] = l(O) + E Ll 6 arg max q(3) = arg max r(0). 

Note also that while unbiased simulation of the likelihood function is often straight- 
forward, unbiased simulation of the log-likelihood is generally infeasible. The 
logarithmic transformation of the intractable function introduces a nonlinearity 
that cannot be overcome simply. However, to obtain an estimator with the same 
probability limit as the MLE, a sufficient characteristic of a simulator for the 
log-likelihood is that its sample average converge to the same limit as the sample 
average log-likelihood. Only by reducing the error of a simulator for the log- 
likelihood function to zero at a sufficiently rapid rate with sample size can one expect 
to obtain a consistent estimator. Such results rest on a general proposition that 
underlies the consistency of many extremum estimators (see Newey and McFadden 
(1994), Theorem 2.1): 

Lemma 1 

Let 

(1) 0~ 0, a compact subset of RK, 
(2) QJO), QN(0) be continuous in 8, 
(3) f0 = arg max,, eQo(B) be unique, 
(4) 8, = arg max,,,QN(B) and 
(5) Q,(e) + Qe(C3) in probability uniformly in & 0 as N + co. 

Then $N 4 Be in probability. 

We will assume from now on that the log-likelihood function is sufficiently regular 
to exploit this lemma. In particular, we suppose that the y, are i.i.d., that 8 is 
identifiable, that f(0;y) is continuous at each 8 in a compact parameter space 0, 
and that E[sup,,.llnf(8;y)l] < cc. We refer the reader to Newey and McFadden 
(1994, Theorem 2.5) for further discussion of these conditions and their roles. 

For LDV models with censoring, the generic likelihood simulator f(0; y,, w,) is 

the average of R replications of one of the simulation methods described above: 

.7e Y,, wn) - i i .W; Y,, o,,). 
I 1 

If the model includes truncation, then the likelihood simulation typically involves 
a ratio of such averages, because a normalizing probability appears in the deno- 
minator, although unbiased simulation of the ratio is possible (see Section 3.3). In 
any case, the simulation error will generally be O,( l/R). Thus, a common approach 
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to approximating the log-likelihood function with sufficient accuracy is increasing 
the number of replications per observation R with the sample size N. This statistical 
approach is in contrast to a strictly numerical approach of setting R high enough 
to achieve a specified numerical accuracy independent of sample size. 

Example 11 

For illustration, let us increase the replications in the previous examples from R = 1 
simulation per observation to 5. The summary statistics are listed in Tables 4 and 5. 
In both cases, J = 4 and J = 6, the biases are significantly reduced. See BSrsch- 
Supan and Hajivassiliou (1993) for a more extensive Monte Carlo study of the 
relationship between R and bias in the multinomial probit model. 

In the rank ordered probit model and similar discrete LDV models, all that is 
necessary for estimator consistency is that R + CE as N -+ co. No relative rates are 
required provided that the likelihood is sufficiently regular. Nor must the simula- 
tions o satisfy any restrictions on dependence across observations. The following 

proposition, taken from Lee (1992), establishes this situation. 

Proposition 3 

Let f(& y) be uniformly bounded away from zero for all 8~0, a compact set, and 
all WEB, the sample space of y. Assume that the set of regularity conditions in the 

Table 4 
Sample statistics for rank ordered probit MSLE using GHK (J = 4, R = 5). 

Population 
value 

-0.6667 
- 0.6667 
- 0.6667 
-0.5OQo 

I .3230 
0.0000 

- 0.3780 
0.9258 

Mean 

~ 0.6795 
-0.6528 
-0.8327 
-0.5771 

1.3582 
-0.0121 
- 0.5034 

1.1334 

Standard Lower 
deviation quartile 

0.1366 -0.7726 
0.2267 -0.7913 
0.2299 -0.9686 
0.2159 -0.7076 
0.2459 1.1863 
0.2089 -0.1380 
0.2016 -0.6256 
0.2454 0.9505 

Median 

-0.6774 
- 0.6268 
-0.8085 
-0.5641 

1.3184 
-0.01570 
-0.4875 

1.1142 

Upper 
quartile 

-0.5840 
-0.5029 
-0.6768 
-0.4412 

1.5036 
0.1275 

-0.3753 
1.2814 

Table 5 
Sample statistics for rank ordered probit MSLE using GHK (J = 6, R = 5). 

Population 
value 

- 0.4000 
- 0.4ooo 
-0.4000 
- 0.4OcNI 
-0.4000 

Mean 

- 0.4088 
-0.3059 
-0.4554 
- 0.4288 
-0.5046 

Standard Lower 
deviation quartile 

0.1256 - 0.4893 
0.1776 - 0.4200 
0.1387 -0.5373 
0.1661 -0.5369 
0.1773 -0.6211 

Median 

-0.4053 
- 0.2966 
-0.4553 
-0.4219 
- 0.4976 

Upper 
quartile 

-0.3227 
-0.1846 
-0.3615 
-0.3142 
-0.3872 
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paragraph after Lemma 1 hold. Let {onl} be an i.i.d. sequence over the index r. The 
MSL estimator &s, = arg maxe(l/N)C,N, 1 In j(& yn, 0,) is consistent if R -+ cc as 

N-co. 

Proof 

By a uniform law of large numbers and the lower bound off, 

1 J+o, as R-rco, 

so that 

Since our regularity assumptions in the paragraph after Lemma 1 guarantee that 

s:p $lN(0) - E[lnf(@ y)] LO as N+oo, 

then &,(@/N also converges uniformly to E[ln f(0; y)] and consistency follows by 
Lemma 1. Q.E.D. 

Thus, the property of estimator consistency makes modest demands on the 
simulations of the likelihood function. Strictly speaking, one could employ a common 
sequence of simulations {w,), for all simulated likelihoods, which grows at an 
arbitrarily slow rate with sample size. The differences between simulation designs 
appear only in the limiting normal distributions of the estimators. It is especially 
important to note that consistency does not confine such differences to sampling 
variances. Both the expectations and the variances of the approximate limiting 
distribution can be affected by the simulation design. 

Note that Proposition 3 does not apply to models with elements of y which are 
continuously distributed and unbounded. Additional work is needed in this area. 
See Hajivassiliou and McFadden (1990) for the special conditions needed for an 
example of a multiperiod (panel) autocorrelated tobit model. 

From the standpoint of asymptotic distribution theory, the simplest use of 
simulation makes independent simulations for the contribution of each observation 
to the likelihood function. If elements of the sequence (w,,} are independent across 
the observation index n, as well as the replication index I, then we preserve the 
independence of the f(@ y,, o,,) and its derivatives across n, permitting the applica- 
tion of familiar laws of large numbers and central limit theorems. When f” is 
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differentiable in 0, we can make a familiar linear approximation for t&s,: 

0 = 1 V,l&)) + 
JN [ 1 

; v,zqe, JN(&,, - e,), (30) 

where the elements of 81ie on the line segment between &s, and 8,. The consistency 

of &,,I_ implies the consistency of I? which in turn implies that 

;v:l(s, J+ NV,2 In f(e,; Y)I = W4J, (31) 

using the argument that supports Proposition 3. The leading term is a sum of N i.i.d. 

terms 

to which we would like to apply a central limit theorem. But we are prevented from 

this by the fact that the expectation of these terms is not zero. Consider the simple 
factorization, obtained by adding and subtracting terms, 

Lv&) = L V,1(&)) + A, + B,, 
fl x/N 

(32) 

where 

A, is a sum of i.i.d. terms with zero expectation and can be viewed as the source of 
pure simulation noise in 8,,, . B, is the potential source of simulation bias. The next 

result can be used to show that R/J?? -+ co is a sufficient rate of increase to avoid 
such bias. 

Proposition 4 

Let fi(13; y, o) be an unbiased simulator for ~(8;y) such that V(ji -ply) = O(R-‘). 

Let ~(0; y, p) be a moment function such that E[s(B,; y, p)] = 0. Consider the simula- 
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tor F(O; y) = s(H; y, 8) and let R/fi + GO. If s”is Lipschitz in DES uniformly in 8, then 

the simulation bias 

Proof 

Ifs” is Lipschitz in p uniformly in 6 then 

s” - s = CV,s(B; y, p)l(ii - p) + CV,s(& Y, P*) - V,s(@ Y, P)l(F - PL), 

where p* is on the line segment joining D and p. According to the hypothesis of 
unbiasedness, 

E,(s” - s) = E, { CV,s(B; y, P*) - V,s(R Y, dl (P - P) > 

so that 

II&,,(s”-s)ll <M*@-/L)~=O(R-‘) 

for some finite M* according to the Lipschitz hypothesis. Therefore, B, = 

O,(@/R) and the result follows. Q.E.D. 

In the multinomial and rank ordered probit cases, the Lipschitz requirement is 
generally met by the regularity conditions that bound the discrete probabilities and 
the smoothness of the probability simulator f”: p = (f, V,f), k = (7, VJ), and s = 
(V&/f. We are not aware of any slower rates for R that avoid bias in the limiting 
distribution of &,,. 

Proposition 5 

Let f be-bounded uniformly away from zero and Lipschitz in 0 on a compact space 
0. Let f(@ y,o) be an unbiased differentiable simulator for f(0; y), also bounded 

uniformly away from zero and Lipschitz in 8 on 0 such that V(f - f) = O(R-‘). 

Let RI&? + 00. Then the simulation components 

A+“.$$l (V,lnf”(e;y,,o,)-V,lnf(e;y,)} LO 

and &,,, is asymptotically efficient. 
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Proof 

The difference between simulated and exact scores can be written 

By the Chebychev inequality, 

Pr 
iI 

1 1 [VJ - jToz lnf I 
JNn I I 

>E 6-- ,>F VCV,,7-.7V,,ln fl=O(JNIR) 

for each component of the gradient. The result follows from this order and equations 

(30)-(33). Q.E.D. 

Propositions 4 and 5 demonstrate that bias is the fundamental hurdle that MSL 
must overcome. The logarithmic transformation of the likelihood function forces 
one to increase R with the sample size to obtain a consistent estimator. Given 
enough simulations to overcome bias, there are enough simulations to make the 
asymptotic contribution of simulation to the limiting distribution of &,s, negligible. 

There is a simulation design that uses the same total number (N x R) of simulations 
of w as the independent design, but applies every simulation of o to every observa- 
tion of y. That is, the simulated log-likelihood function is generated according to 
the double sum 

$0) = 5 y In y(0; y,, w,). 
n=l m=l 

The motivation for this approach is to take advantage of all N x R simulations that 
must be drawn when R independent simulations are made for each observation. 
Lee (1992) finds that efficiency requires only that R + co as N + co with this design. 
This approach appears to gain efficiency without any additional computational 
cost. However, one simulates each contribution to the likelihood N x R times rather 
than merely R times, substantially increasing the cost of evaluating the average 
simulated log-likelihood function. The computational savings gained by pooling 
simulations in this manner are generally overcome by the added computational cost 
of calculating O(N’) likelihoods instead of O(N3”), especially when N is large. 

We close our discussion of simulated likelihood functions by noting that the 
method of simulated pseudo-maximum likelihood (SPML) of Laroque and Salanie 
(1989) is another early simulation estimation approach for LDV models. This 



method, originally developed for the mixture models of Section 2.4 in the case 
of the analysis of markets in disequilibrium, uses simulation to overcome the high- 

dimensional integration difficulties that arise in calculating the moments of such 
models. 

Definition 6. Simulated pseudo-maximum likelihood 

Let the observation rule I = y yield a mixture model with the first two moments 

g1 (x,, 0) = E(Y I x,,, 0) and g2(xn, (3 = Q(Y - EY)’ I xnr 0). C onsider simulating functions 

gj(x,,, 0, w, R),j = 1,2, based on auxiliary simulation sequences (CO], such that y”j(X,, 8, 

co, R) converge almost surely to _yj(x,, 6I) as R + co, j = 1,2. The simulated pseudo- 

maximum likelihood estimator O,,,, is defined by: 

where $(.I = ~C(Y, - s1(.))2/si(.)1 + lns,(.)l corresponds to the log-likelihood 

contribution assuming y, - N(g,(.),g,(.)). 

Laroque and Salanie (1989) prove t_hat for x,EXER, 8~0 compact, and gj(.) 
sufficiently continuous on X x 0, then Q,,,, A fIpML as R -+ ~0.~~ It should be noted 
that for particular choices of a pseudo-likelihood function $(.), the SPML estimator 
can be shown to be consistent for a finite number of simulations R, because it then 
satisfies the basic linearity property of the MSM approach. Such a choice could be 
$(.) = (y, - gI(.))2, which corresponds to the assumption that y, - N(g,(.), 1). 

4.3. Simulation of moment functions 

The simulation of the log-likelihood is an appealing approach to applying simula- 
tion to estimation, but this approach must overcome the inherent simulation bias 
that forces one to increase R with the sample size. Instead of simulating the 
log-likelihood function, one can simulate moment functions. When they are linear 
in the simulations, moment functions can be simulated easily without bias. The 
direct consequence is that the simulation bias in the limiting distribution of an 
estimator is also zero, making the need to increase the number of simulations per 
observation with sample size unnecessary. This was a key insight of McFadden 
(1989) and Pakes and Pollard (1989). 

‘l Pseudo-maximum likelihood estimation methods, which are special types of the classical minimum 
distance (CMD) approach, are developed in Gourieroux et al. (1984a) and Gourieroux et al. (1984b). 
See Newey and McFadden (1994) for a discussion of CMD and the closely related pweralized method 
cfmommts (GMM). 
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Method of moments (MOM) estimators have a simple structure. Such estimators 
are generally constructed from “residuals” that are differences between observed 
random variables y and their conditional expectations. These expectations are 
known functions of the conditioning variables x and the unknown parameter vector 
0 to be estimated. Let E(ylx, 0) = ~(0; x). Moment equations are built up by multi- 
plying the residuals by various weights or instrumental variable functions and 
specifying the estimator as the parameter values which equate the sample average 
of these products with zero. The MOM estimator &o, is defined by 

; .$, W”(X, &oMKYn - l4i4oh.G x,)1 = 0. (35) 

The consistency of such estimators rests on the uniform convergence of the sample 
averages to their population counterparts for any value of 8 as the sample size 
approaches infinity. When the unique root of the population equations is fI,, the 
population value of 0, the root of the sample equations, converges to 8,. The limiting 
distribution of &,,, is derived from the linear expansion 

where we have denoted the residual by e,(e) = y, - E(y, (x,, 0) and t? lies between 

&Oh4 and Be. Because E[e,(&,)] = 0, the leading term will generally converge to a 
limiting normal random variable with zero expectation, implying no asymptotic 
bias in &,,: 

where 

One of the matrices in the second term converges to zero: 

i $ e,(t?)V,w,(H)-%O. 
n 1 

This fact is often exploited by replacing the weights w in (35) with consistent 
estimates that do not change the limiting distribution of &,,,. Thus under regularity 
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conditions, 

JNam4 - b) %V(O,H-'ZH'-'), 

where 

; 2 w,(@V,e,@) LH. 
n 1 

Simulation has an affinity with the MOM. Substituting an unbiased, finite- 
variance simulator for the conditional expectation p(& x,) does not alter the essential 
convergence properties of these sample moment equations. We therefore consider 
the class of estimators generated by the method of simulated moments (MSM). 

Definition 7. Method of simulated moments 

Let p(6); x, o) = l/RCF= ,,G(0; x, w,) be an unbiased simulator so that ,u(e; x) = 
E[p(e; x, 0)1x] where w is a simulated random variable. The method of simulated 
moments estimator is 

&s, 3 arg min I( F,(O) (1, 

where 

(36) 

for some sequence {on}. 

Defining the MSM estimator as a minimizer rather than the root of the simulated 
moments equation s(0) = 0 is an important part of making the MSM operational. 

Newey and McFadden (1994), Sections 1 and 2.2.3, discuss the general difficulties 
that MOM poses for the construction of consistent estimators. Whereas the structure 
of ML provides a direct link between parameter identification and estimator consis- 
tency, MOM does not. It is often difficult to guarantee that a system of nonlinear 

equations has a unique solution. MSM inherits these difficulties. Also, the addition 
of simulation in MSM may introduce problems that were not present in the 
original MOM formulation. For example, simulated moment equations may not 
exhibit solutions at all in small samples, leading one to question the reliability of 
asymptotic approximations. This property may be the greatest practical drawback 
of this method of estimation using simulations, although it does not greatly affect 
the asymptotic distribution theory extended from the MOM case. 
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Table 6 
Sample statistics for rank ordered probit CMD (J = 4). 

Parameter 
Population 

value Mean 
Standard Lower 
deviation quartile Median 

Upper 
quartile 

1’1 -0.6661 ~ 0.6906 0.1481 
(‘2 -0.6667 -0.7887 0.3714 
Cl.? - 0.6667 -0.6953 0.2223 
04 -0.5000 ~ 0.6683 0.4271 
0, 1.3230 1.4143 0.4384 
0, 0.0000 0.1764 0.5053 
0, -0.3780 -0.3077 0.2765 
0, 0.9258 0.7714 0.3356 

- 0.1192 -0.6918 -0.5948 
-0.9496 -0.7109 -0.5431 
- 0.8347 -0.6594 -0.5366 
- 0.8962 -0.5688 -0.3679 

1.1 18 1.337 1.633 
-0.1957 0.08331 0.5563 
-0.4703 - 0.3207 -0.1747 

0.5955 0.7980 0.9834 

Example 12 

To construct an MSM estimator for the rank ordered probit model, we construct 
a set of moment equations corresponding to the elements of y: 

j, Yijn 
.________- Pr{yij= l;p,8} =O, 

N 
i,j = 1 ,...,J- 1. 

Not all J2 elements of y are needed because these elements have a singular distribu- 
tion. As the sampling space of y makes clear, we can focus our attention on the first 
J - 1 rows and columns of y. 

Because we obtain more moment equations than parameters, we combine the 
moments of y according to the method of classical minimum distance (CMD) using 
the inverse of the sample covariance of the elements of y as the normalizing matrix. 
Note, however, that one could use more moments to increase the efficiency of the 
estimator. For example, the cross-products yijykl (i # k, j # 1) contain additional 
sample information about the population parameters. 

The CMD estimation results are described in Table 6 for J = 4 ranked alter- 
natives. This classical estimator is much less efficient than the MLE. In addition, it 
exhibits large bias and skewness in the sampling distribution. 

The summary statistics for the MSM version of the CMD estimator are listed in 
Table 7. There was R = 1 simulation of the GHK probability simulator for each 
observation and each probability. As expected, the sampling variance is larger for 
the MSM estimator than for the CMD estimator. In addition, the bias and skewness 
in the CMD estimator for the mean parameters seem to be aggravated by the 

simulation in the MSM estimator. 
We do not present analogous results for J = 6 alternatives because the MSM 

estimator is not practical in this case. With 720 elements in the sampling space, the 
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Table I 
Sample statistics for rank ordered probit CMD, MSM version, (J = 4, R = 1). 

Parameter 
Population 

value Mean 
Standard 
deviation 

Lower 
quartile Median 

Upper 
quartile 

- 0.6667 -0.6916 
- 0.6667 -0.9790 
- 0.6667 -0.8561 
-0.5000 - 0.7083 

1.3230 1.4733 
O.OC@O 0.0780 

-0.3780 -0.3828 
0.9258 0.8560 

0.1905 -0.7915 - 0.6809 -0.5798 
0.9576 - 1.099 -0.7619 -0.5654 
0.6394 -1.008 - 0.6900 -0.4813 
0.6392 -0.8918 -0.5559 -0.3327 
0.8402 1.086 1.323 1.662 
0.6268 -0.3091 0.03749 0.4616 
0.5423 -0.5758 -0.3099 -0.1110 
0.6857 0.5023 0.7341 0.9745 

amount of simulation becomes prohibitive. This illustrates another important draw- 
back in this method: the MSM works best for sample spaces with a small number 
of elements. 

The analogies between MSM and MOM are direct and, as a result, the asymptotic 
analysis is generally simpler than for MSL. The first difference with MSL appears 
in the requirements on the simulation design for estimator consistency. Whereas 
MSL requires that R + og regardless of whether simulations are independent across 
observations, MSM yields consistent estimators with fixed R provided that the 
simulations vary enough to make a law of large numbers work. Because the 
simulated moments are linear in the simulations, one has the option of applying the 
law of large numbers to large numbers of observations alone, or in combination 
with large numbers of simulations. 

Proposition 6 

Let k(f9; x, o) be an unbiased, finite-variance simulator for ~(0; x) and let either 

(1) 
(2) 

Then 

(1) 
(2) 

l%i n=l , . . . , N, r = 1,. . . , R} be i.i.d. random variables for fixed R, or 
(q;r= 1,. . . , N} be an i.i.d. sequence for R = N and let o,, = w,, n = 1,. , . , N. 

4lMSh.l L O0 under the regularity conditions 

s,(O) E (l/N)C,N, 1 w,(B)[y, - ~(8; x,)] is continuous in 0, 

s&9 J+ ~(0) = plim(fIN)C,N= 1 w,(@Cp(O o; xn) - p(fl; xJ] uniformly in 8~ 0, 
a compact parameter space, 

(3) s,(O) is continuous in 8 and s,(8) equals zero only at 8,. 

Proof 

The average difference between the classical moment functions and their simulated 
counterparts is 
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(37) 

(38) 

where s,(B) 3 (l/N)C,N, r w,(B)[y, - ~(0; x,)]. Under design 1, the (,& - p,,} are 
an i.n.i.d. sequence so that a uniform law of large numbers applied to (37) 
implies s,(e) - F,,J0) -% 0 as N + co. Under design 2, s,(8) - .FN(0) is written in (38) 
as a U-statistic and a uniform law of large numbers for U-statistics (Lee (1992)) 

implies s,(8) - sN(0) LO as N + co. Therefore, in either case, by continuity, 

I( ~~(0) - sN(0) 1) -% 0 uniformly in 6’ and Lemma 1 implies the result. Q.E.D. 

The opportunity to fix R for all sample sizes offers significant computational 
savings that are a key motivation for interest in the MSM. As we shall see below, 
the benefits of the dependent design are generally modest. Thus, while the theoretical 
applicability of U-statistics to MSM is interesting in itself, we will not consider it 
further in this section.” We continue with the analogy between the MOM and the 
MSM. Note first of all that an analogous linear expansion for &sM exists: 

0 = L f w”(e,)qe,) + 
$v.=l [ 

f $ w,(w$qB) + a,(e,v,w,(iq Jiq&,, - e,), 
n 1 I 

where we have denoted the simulated residual by &n(0) = y,, - D(e; x,) and I? lies 
between 8 MSM and do. Because E[&,(6J,)] = 0, the leading term will generally converge 
to a limiting normal random variable with zero expectation, implying no asymptotic 
bias in &s,: 

where 

h f, w,(b) wc(e,) 1 x,iw,(e,)~ 11, z,,,. 

Also, as before, 

2ZSee Lee (1992). 
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so that under regularity conditions, 

JNCe,SM - 0,) -% N(0, H - ’ &,,H’- ‘), 

where 

The equivalence of the H matrices also rests on the unbiased simulation of p. If 

~(0;x) = E[p(&x,o)[x], then V&&x) = V,E[fi(tI; x,w)IxJ =E[V,ji(tI;x,o)(x] for 
the smooth simulators described in Section 3. 

While the first moment of the MSM estimator does not depend on R, the limiting 
covariance matrix, and hence relative efficiency, does. Simulation noise introduces 
a generic difference between the covariance matrices of I!?~,,, and &s,. Intuition 
suggests, and theory confirms, that the larger R is, the more efficient the MSM 
estimator will be as the simulation noise is diminished. The extra variation in &,sM 
is contained in the object (37). This term is generated conditional on the realizations 
ofy and is, by definition, distributed independently of the classical moment function. 

Inflating the simulation noise by fi and evaluating it at 0,,, we can apply a central 
limit theorem to it to obtain the following result. 

Proposition 7 

‘x - ZMOM + (l/R)Z, where MSM - 

If it were not for the simulation noise, the MSM estimator would be as efficient as 

its MOM counterpart. McFadden (1989) noted that in the special case where fi is 
obtained by averaging simulations of the data generating process itself, Z, = Z,,, 

and ZMsM = (1 + l/R)ZMoM. In this case, the inefficiency of simulation is easy to 
measure and one observes that 10 replications are sufficient to reduce the inefficiency 
to 10% compared to classical MOM. 

The proposition suggests that full efficiency would be obtained if we simply 
increased R without bound as N grows. That intuition is formalized in the next 
proposition, which is analogous to Proposition 5 (see McFadden and Ruud 
(1992)). 

Proposition 8 

If R = O(N”), LX> 0, then @(e^,o, - e^,,,) -% 0. 
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For any given residual and instrumental variables, there generally exist optimal 
weights among MOM estimators, and the same holds for MSM as well. In what is 
essentially an asymptotic counterpart to the GaussMarkov theorem, if H = ZMSM 
then the MSM estimator is optimal (Hansen (1982)). To construct an MSM estimator 
that satisfies this restriction, one normalizes the simulated residual by its variance 
and makes the instrumental variables the partial derivatives of the conditional 
expectation of the simulated moment with respect to the unknown parameters: 

One can approximate these functions using simulations that are independent of the 
moment simulations with R fixed, but efficiency will require increasing R with 
sample size. If /? is differentiable in t3, then independent simulations of the V,,ii are 
unbiased simulators of the instruments. Otherwise, discrete numerical derivatives 
can be employed. The covariance matrix can be estimated using the sample variance 
of p and the simulated variance of y. Inefficiency in simulated instruments constructed 
in this way has two sources: the simulation noise and the bias in the inverse of an 
estimated variance. Both sources disappear asymptotically if R approaches infinity 
with N. While it is critical that the simulations of w be independent of the simula- 
tions of b, there is no obvious advantage to simulating the individual components 
of w independently. In some cases, for example simulating a ratio, it appears that 
independent simulation may be inferior.23 

4.4. Simulation of the score function 

Interest in the efficiency of estimators naturally leads to attempts to construct an 
efficient MSM estimator. The obvious way to do this is to simulate the score 
function as a set of simulated moment equations. Within the LDV framework, 
however, unbiased simulation of the score with a finite number of operations is not 
possible with simple censored simulators. The efficient weights are nonlinear func- 
tions of the objects that require simulation. Nevertheless, it may be possible with 
the aid of simulation to construct good approximations that offer improvements in 
efficiency over simpler MSM estimators. 

There is an alternative approach based on truncated simulation. We showed in 
Section 2 that every score function can be expressed as the expectation of the score 
of a latent data generating process taken conditional on the observed data. In the 
particular case of normal LDV models, this conditional expectation is taken over 
a truncated multivariate normal distribution and the latent score is the score of an 
untruncated multivariate normal distribution. Simulations from the truncated nor- 

23A Taylor series expansion suggests that positive correlation between the numerator and denominator 
of a ratio can yield a smaller variance than independent simulation. 
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ma1 distribution can replace the expectation operator to obtain unbiased simulators 
of the score function. 

In order to include both the censored and truncated approaches to simulating 
the score function, we define the method of simulated scores as follows.24 

Dejinition 8. Method of simulated scores 

Let the log-likelihood function for the unknown parameter vector (3 given the 
sample of observations (y,, n = 1,. . . , N) be I,(0) = C,“= 1 In f(& y,). Let fi(Q; y,, w,) = 

(l/R)Cr=, ~(&y,,,lo,J be an asymptotically (in R) unbiased simulator of the 
score function ~(0;y) = Vlnf(B; y) where o is a simulated random variable. The 
method of simulated scores estimator is &,s, E arg min,, J/ 5,(e) (1 where .YN(0) 3 

(l/N)Cr= ,b(@, y,, 0,) for some sequence {on}. 

Our definition includes all MSL estimators as MSS estimators, because they 
implicitly simulate the score with a bias that disappears asymptotically with the 
number of replications R. But there are also MSS estimators without simulation 
bias for fixed R. These estimators rely on simulation from the truncated conditional 
distribution of the latent y* given y. We turn to such estimators first. 

4.4.1. Truncated simulation of the score 

The truncated simulation methods described in Section 3.3 provide unbiased simu- 
lators of the LDV score (17), which is composed of elements of the form (24). Such 
simulation would be ideal, because R can be held fixed, thus leading to fast estima- 
tion procedures. The problem is that these truncated simulation methods pose new 
problems for the MSS estimators that use them. 

The first truncated simulation scheme, discussed in Section 3.3.1 above, is the 
A/R method. This provides simulations that are discontinuous in the parameters, 
a property shared with the CMC. A/R simulation delivers the first element in a 
simulated sequence that falls into a region which depends on the parameters under 
estimation. As a result, changes in the parameter values cause discrete changes in 
which element in the sequence is accepted. An example of this phenomenon is to 
suppose that one is drawing a sequence of normal random variables {ql} IV N(0, I,) 
in order to obtain truncated multivariate normal random variables for rank ordered 
probit estimation. Given the observation y, one seeks a simulation from D(y), as 
defined in Example 8. Let the simulation of y* be jjl(pl, r,) 3 ,~i + T1qr at the 
parameter values (pi, r,). At neighboring parameter values where two elements of 
the vector j,(p, r) are equal, the A/R simulation is at the point of jumping from the 
value j& r) to another point in the sequence {J,(p, r)}. See Hajivassiliou and 
McFadden (1990) and McFadden and Ruud (1992) for treatments of the special 

24The term was coined by Hajivassiliou and McFadden (1990) 
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asymptotic distribution theory for such simulation estimators. Briefly described, 
this distribution theory requires a degree of smoothness in the estimator with respect 
to the parameters that permits such discontinuities but allows familiar linear ap- 
proximations in the limit. See Ruud (1991) for an illustrative application. 

The second truncated simulation scheme we discussed above was the Gibbs 
resampling simulation method; see Section 3.3.2. This method is continuous in 
the parameters provided that one uses a continuous univariate truncated normal 
simulation scheme. But this simulation method also has a drawback: Strictly 
applied, each simulation requires an infinite number of resampling rounds. In 
practice, Gibbs resampling is truncated and applied as an approximation. The 
limited Monte Carlo evidence that we have seen suggests that such approximation 
is reliable. 

Simulation of the efficient score fits naturally with the EM algorithm for computing 
the MLE derived by Dempster et al. (1977). The EM algorithm includes a step in 
which one computes an expectation with respect to the truncated distribution of y* 
conditional on y. Ruud (1991) suggested that a simulated EM (SEM) algorithm 
could be based on simulation of the required expectation.25 This substitution 
provides a computational algorithm for solving the simulated score of MSS esti- 
mators. 

Dejinition 9. EM algorithm 

The EM algorithm is an iterative process for computing the MLE of a censored 
data model. On the ith iteration, the EM algorithm solves 

0 i+ ’ = arg max Q(0, 0'; y), (39) 

where the function Q is 

Q(O1,OO;~)~E,oClnf(O1;~*)l~l, (40) 

where EOo [. I y] indicates an expectation measured with respect to ~(0”; y* 1 y). 

If Q is continuous in both 0 arguments, then (39) is a contraction mapping that 
converges to a root of the normal equations; as Ruud (1991) points out, 

0 = 0’ = 0’ *V,, Q(O’, 0’; y) = VB In F(0; y), (41) 

so that the first-order conditions for an iteration of (39) and the normal equations 
for ML are intimately related. 

Unlike the log-likelihood function, this Q can be simulated without bias for LDV 
models because the latent likelihood f(0; y*) is tractable and Q is linear in In f(0; y*) 

25van Pragg et al. (1989) and van Praag et al. (1991) also investigated this approach and applied it in 
a study of the Dutch labor market. 
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(see equation (40)). According to (41). unbiased simulation of Q implies a means for 
unbiased simulation of the score. Although it is not guaranteed, an unbiased 
simulator of Q usually yields a contraction mapping to a stationary point. 

For LDV models based on a latent multivariate normal distribution, the itera- 
tion in (39) is quite simple to compute, given Q or a simulation of Q. Iff(e;y*) = 

4(y* - P; W, then 

and IR’ = k $ &o[(y: - P’)(Y,* - P’),\Y~], (42) 
n 1 

which are analogous to the equations for the MLE using the latent data. This 
algorithm is often quite slow, however, in a neighborhood of the stationary point 
of (39). Any normalizations necessary for identification of 0 can be imposed at 
convergence. See Ruud (1991) for a discussion of these points. 

Example 13. SEM estimation 

In this example, we apply the SEM procedure to the rank ordered probit model 
of our previous examples. We simulated an (approximately) unbiased 0 of Q by 
drawing simulations of y: from its truncated normal distribution conditional on y, 
using the Gibbs resampling method truncated to 10 rounds. The support of this 
truncated distribution is specified as D(y) in Example 8. The simulated estimators 
were computed according to (42), after replacing the expectations with the averages 
of independent simulations. 

The usual Monte Carlo results for 500 experiments with J = 6 ranked alternatives 
are reported in Table 8 for data sets containing 100 observations and R = 5 simula- 
tions per observation. These statistics are comparable to those in Table 5 for the 
MSL estimator of the same model with the same number of simulation replications. 
The biases for the true parameter values appear to be appreciably smaller in the 
SEM estimator, while the sampling variances are larger. We cannot judge either 
estimator as an approximation to the MLE, because the latter is prohibitively 
difficult to compute. 

Table 8 
Sample statistics for rank ordered probit SEM using Gibbs simulation (J = 6, R = 5). 

Parameter 
Population 

value Mean 
Standard 
deviation 

Lower 
quartile Median 

Upper 
quartile 

01 - 0.4000 - 0.3827 0.1558 - 0.4907 - 0.3848 -0.2757 
0, -0.4000 -0.4570 0.3271 -0.5992 -0.4089 -0.2455 
0, - 0.4ooo -0.4237 0.2262 -0.5351 -0.3756 - 0.2766 
0, - 0.4000 - 0.4268 0.2710 -0.5319 -0.3891 -0.2580 
0, - 0.4000 -0.4300 0.2622 -0.5535 - 0.3794 -0.2521 
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Although truncated simulation is generally more costly, the SEM estimator 
remains a promising general approach to combining simulation with relatively 
efficient estimation. It is the only method that combines unbiased simulation of the 
score with optimization of an objective function and the latter property appears to 
offer substantial computational advantages. 

4.4.2. Censored simulation of ratios 

The censored simulation methods in Section 3.2 can also be applied to approxima- 
ting the efficient score. These simulation methods tend to be much faster computa- 
tionally than the truncated simulation methods, but censored simulations introduce 
simulation bias in much the same way as in the MSL. Censored simulation can be 
applied to discrete LDV models by noting that the score function of an LDV model 
with observation rule y = z(y*) can generally be written in the ratio form: 

VtJf (0; Y) s V, dF(e; Y*) 
(Y'IHY') 'Yl 

.0&Y) = ____ s WA Y*) 
(Y*lr(Y*) = Y) 

= W,WRY*)I$Y*) = Y) 
%y*lT(y*) = Y> ’ 

where F(0; y* 1 y) is the conditional c.d.f. of y given r(y*) = y. See Section 2.6 for 
more details. Van Praag and Hop (1987), McFadden (1989) and Hajivassiliou and 
McFadden (1990) note that this form of the score function offers the potential of 
estimation by simulation. 26 An MSS estimator can be constructed by simulating 
separately the numerator and denominator of the score expressions: 

1 N @;y,,q,) 
s,(e)=- 1 

N n = I P(e; Y,,, ~2n)’ 
(43) 

where 2(&y,, win) = (l/R,)CF: 1&e; y ,,,winr) is an unbiased simulator of the deri- 
vative function V,f(0, y) and p(0; y,, oz.) = (l/R,)CFZ 1 d(& y,, mznr) is an unbiased 
function of the probability expression f(0; y,). Hajivassiliou and McFadden (1990) 
prove that when the approximation of the scores in ratio form is carried out using 
the GHK simulator, the resulting MSS estimator is consistent and asymptotically 

normal when N -+ 00 and R,/,,h-t co. The number of simulations for the nume- 
rator expression, R,, affects the efficiency of the resulting MSS estimator. Because 
the unbiased simulator p(&y, 02) of f(e; y) does not yield an unbiased simulator of 

26See Hajivassiliou (1993~) for a survey of the development of simulation estimarion methods for LDV 
models. 
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the reciprocal l/f(& y) in the simulator l/p(0; y, w,), R2 must increase with sample 
size to obtain a consistent estimator. This is analogous to simulation in MSL. In 
fact, this simulation scheme is equivalent to MSL when ur = o2 and d’= V,p. 

McFadden and Ruud (1992) note that MSM techniques can also be used generally 
to remove the simulation bias in such MSS estimators. In discrete LDV models, 
where y has a sampling space B that is countable and finite, we can always write y 
as a vector of dummy variables for each of the possible outcomes so that 

E,(y,) = Pr{yi = 1; 6} = f(Q; Y) if Yi = 1, Yj = 0, j # i. 

Thus, 

E v,f(e;Y) 

[ 1 

VfLf(~; Y) 
8 f@Y) 

=o= 1 f@; Y).- --~ 

YEB f (0; Y) 

and the score can be written 

(44) 

Provided that the “residual” l{y = Y} - f(0; Y) and the “instrumental variables” 
V,f(e; Y)/f(0; Y) are simulated independently, equation (44) provides a moment 
function for the MSM. In this form, the instrumental variables ratio can be simulated 
with bias as in (43) because the residual term is independently distributed and 
possesses a marginal expectation equal to zero at the population parameter value. 
For example, we can alter (43) to 

ue)=X $ &@ Y,%“) c CRY,= ~1 -iw; Y,O,A-, 
” 1 YEB iv; y, %“I 

(45) 

where wr and o2 are independent pseudo-random variables. While such bias does 
not introduce inconsistency into the MSM estimator, the simulation bias does 

introduce inefficiency because the moment function is not an unbiased simulator of 
the score function. This general approach underlies the estimation method for 
multinomial probit originally proposed by McFadden (1989). 

4.4.3. MSM versus MSS 

MSM and MSS are natural competitors in estimation with simulation because each 
has a comparative advantage. MSM uses censored simulations that are cheap to 
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compute, but it cannot simulate the score without bias within a finite number of 
calculations. MSS uses truncated simulations that are expensive to compute (and 
introduce jumps in the objective function with A/R simulations), but simulates the 
score (virtually) without bias. McFadden and Ruud (1992) make a general com- 
parison of the asymptotic covariance matrices that suggests when one method is 
preferable to the other. 

Consider the special MSS case in which the simulations P*(e; Y,w) are drawn 
from the latent conditional distribution and the exact latent score V,l* is available 
so that 

&(O)= R,’ 2 V,I*[8; ?*(Q; Y,w)]. 
r=l 

Then Z,, the contribution of simulation to the covariance matrix of the estimator, 
has a useful interpretation: 

where Z, = E,{V,I*(@; Y*)[VBI*(O; Y*)]‘} is th e information matrix of the latent 
log-likelihood. The simulation noise is proportional to the information loss due to 
partial observability. 

In the simplest applications of censored simulation to the MSM, the simulations 
are independent of sample outcomes and their contribution to the moment function 
is additively separable from the contribution of the data. Thus we can write &,(0) = 

g(& Y,o&g(O; wi,~J(see(45)). In that case, &simplifies to V{,/%[~“(~,;O,,O,)]}. 
In general, the simulation process makes R independent replications of the simula- 
tions {ml; r = 1,. , R}, so that 

and & = R- ’ V,&j(d,; ml, oJ]. In an important special case of censored simulation, 
the simulation process makes R independent replications of the modeled data 

generating process, { F(L); w,,); r = 1,. . . , R}, so that 

ae; al, 4 = R; 1 de; t(e; ml,), w2] 

and Z, = R ’ V[g(B,; Y, co’)] = Z,/R. Then the MSM covariance matrix equals (1 + 
l/R) times the classical MOM covariance matrix without simulation G-‘Z,(G’))‘. 
Now let us specialize to simulation of the score. For simplicity, suppose that the 
simulated moment functions are unbiased simulations of the score: E[S,,,(B)I Y] = 
V,1(8; Y). Of course in most cases, the MSM estimator will have a simulation bias 
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for the score. The asymptotic variance of the MSM estimator is 

Z, = lim,,, I/(&,(0,) - V,1(8,; Y)] 

= lim,, m ~chmlw4J)l + &l 

= z, + E,, 

where 22, = Z’,/R and Z, holds additional variation attributable to the simulation 
of the score. If the MSS and MSM estimators use the same number of simulation 
replications, we can make a simple comparison of the relative efficiency of the two 
methods. The difference between the asymptotic covariance matrices is 

R-‘Z,‘[& + (R + l)Z, - (Z, - &)]Z,‘. 

This expression gives guidance about the conditions under which censored simula- 
tion is likely to dominate truncated. It is already obvious that if Z, is high, so that 
censored simulation is inefficient due to a poor approximation of the score, then 
truncated simulation is likely to dominate. On the other hand, if Z:, is low, because 

partial observability causes a large loss in information, then estimation with censored 
simulation is likely to dominate truncated. 

Thus, we might expect that the censored simulation method will dominate the 

truncated one for the multinomial probit model, particularly if Z, = 0. That, 
however, is a special case in which a more efficient truncated simulation estimator 
can be constructed from the censored simulation estimator. Because E[E(Q)I Y] = 

VfJ(R Y), 

ma y, 02) - m 01, w2)l = VfJ(R VI 

-E[g(e;ol,o,)] = E{g[e; ~(e;o),d]} =o t/e. 

The bias correction is obviously unnecessary and only increases the variance of the 
MSM estimator. But an MSM estimator based on g(& Y, o) is a truncated simulation 
MSM estimator; only simulation for the particular Y observed is required. We 
conclude that the censored method can outperform the truncated method only by 
choosing E,[e(B)] # V,1(8; Y) in such a way that the loss in efficiency in Z, is offset 
by low Zc, and low Z,.27 

4.5. Bias corrections 

In this section, we interpret estimation with simulation as a general method for re- 
moving bias from approximate parametric moment functions, following McFadden 

“The actual difference in asymptotic covariance matrices is more complicated than the formula above 
however, because G # EM # &. 
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and Ruud (1992). The approximation of the efficient score is the leading problem in 
estimation with simulation. In a comparison of the MSM and MSS approximations, 
we have just described a simple trade-off. On the one hand, the simulated term in 
the residual of (45) that replaces the expectation in (44) is clearly redundant when 
the instrumental variables are V,f(Q; Y)/f(& Y). The expectation of the simulated 
terms multiplied by the instruments is identically zero for all parameter values so 
that the simulation merely adds noise to the score and the resulting estimator. On 
the other hand, the simulated residual is clearly necessary when the instruments are 
not ideal. Without the simulation, the moment equation is invalid and the resultant 
estimators are inconsistent. 

This trade-off motivates a general structure of simulated moments estimators. 
We can interpret the extra simulation term as a bias correction to an approxima- 
tion of the score. For example, one can view the substitution of non-ideal weights 
into the original score function as an approximation to the score, chosen for its 
computational feasibility. Because the approximation introduces bias, the bias is 
removed by simulating the (generally) unknown expectation of the approximate 
score. Suppose the moment restrictions have a general form 

Hs(&; y, Xl I x 1 = 0. 

When the moment function s is computationally burdensome, an approximation 
g(fl; y, X, o) becomes a feasible alternative. The additional argument o represents 
an ancillary statistic containing the “coefficients” of the approximation. In general, 
such approximation will introduce inefficiency and bias into MOM estimators 
constructed from g. Simulation of g over the distribution of y produces an approxi- 
mate bias correction Q(8; X, w’, o), where o’ represents the simulated component. 
Thus, we consider estimators 6 that satisfy 

g(& y, x, w) - lj(8; x, co’, w) = 0. (47) 

MSM estimators have this general form; and feasible MSS estimators generally do, 
too. 

4.5.1. A score test for estimator bias 

The appeal of simulation estimators without bias correction is substantial. Although 
the simulation of moments or scores overcomes a substantial computational diffi- 
culty in the estimation of LDV models, there may remain practical difficulties in 
solving the simulated moment functions for the estimators. Whereas maximum 
likelihood possesses a powerful relationship between the normal equations and the 
likelihood function, moment equations generally do not satisfy such “integrability” 
conditions. As a result, there is not even a guarantee that a root of the estimating 
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equations exists. Bias correction can introduce a significant amount of simulation 
noise to estimators. For these reasons, the approximation of the log-likelihood 
function itself through simulation still offers an important opportunity to construct 
feasible and relatively efficient estimators. 

MSS, and particularly MSL, estimators can be used without bias correction if 
the bias is negligible relative to the sampling error of the estimator and the magni- 
tude of the true parameter. A simple score test for significant bias can be developed 
and implemented easily. 

Conditional on the MSS estimator, the expectation of the simulated bias in the 
approximate score should be zero. The conditional distribution of the elements of 
the bias correction are i.n.i.d. random variables to which a central limit theorem 
can be applied. In addition, the White-Eicker estimator of the covariance matrix 
of the bias elements is consistent so that the usual Wald statistic, measuring the 
statistical significance of the bias term, can be computed (see Engle (1984)). As an 
alternative to testing the significance of this statistic, the bias correction term can 
be used to compute a local approximate confidence region for the biases in the 
moment function or the estimated parameters. This has the advantage of providing 
a way to assess whether the biases are important for the purposes of inference. 

5. Conclusion 

In this chapter, we have described the use of simulation methods to overcome the 
difficulties in computing the likelihood and moment functions of LDV models. 
These functions contain multivariate ‘integrals that cannot be easily approximated 
by series expansions. However, unbiased simulators of these integrals can be com- 

puted easily. 
We began by reviewing the ways in which LDV models arise, describing the 

differences and similarities in censored and truncated data generating processes. 
Censoring and truncation give rise to the troublesome multivariate integrals. Fol- 
lowing the LDV models, we described various simulation methods for evaluating 
such integrals. Naturally, censoring and truncation play roles in simulation as well. 
Finally, estimation methods that rely on simulation were described in the final 
section of this chapter. We organized these methods into three broad groups: MSL, 
MSM, and MSS. These are not mutually exclusive groups. But each group has a 
different motivation: MSL focuses on the log-likelihood function, the MSM on 
moment functions, and the MSS on the score function. The MSS is a combination 
of ideas from MSL and MSM, treating the efficient score of the log-likelihood 
function as a moment function. 

Software for implementing these methods is not yet widely available. But as such 
tools spread, and as improvements in the simulators themselves are developed, 
simulation methods will surely become a familiar tool in the applied econometri- 
cian’s workshop. 
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