Application of a Continuous Spatial Choice Logit Model
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8.1 Introduction

Travel demand predictions require aggregation Over nNUMeErous spatial
alternatives and spatially distributed individuals.! It is customarily done by
dividing the area into zones that are taken as the relevant spatial
alternatives and as homogeneous market segments of individuals. How-
ever, in general unbiased aggregate predictions cannot be obtained by
using only average values of the independent variables in an individual

choice model. Therefore an aggregation procedure that employs infor-
mation about the distributions of the variables is required.> An efficient
aggregation procedure is particularly important in sketch-planning models
that are designed for large spatial analysis units and limited input data
requirements.

The methodology developed in this chapter employs continuous math-
ematical functions, expressed in terms of spatial coordinates, for the spatial
choice models and for the distribution of individuals, spatial alternatives,
and spatial attributes. The prediction of aggregate travel demand is
achieved by integrating a continuous spatial choice model over the areas of

the relevant zones.

The work reported in this chapter was partially supported by the Development of an
Aggregate Model of Urbanized Area Travel Behavior project for the Office of the
Secretary and the Federal Highway Administration, U.S. Department of Transportation
and by the Understanding, Prediction, and Evaluation of Transportation-Related
Consumer Behavior project for the Program of University Research, U.S. Department of
Transportation. In conducting this research, we benefited from the advice of Jesse
Jacobson, Frank Koppelman, Steve Lerman, Charles Manski, Dan McFadden, and Paul
Roberts.

1. Travel and spatial choice models are described in many references including
Domencich and McFadden (1975), Richards and Ben-Akiva (1975), Ben-Akiva et al.
(1976), Ben-Akiva and Atherton (1977), and Spear (1977).

2. Procedures for aggregating choice models over individuals were investigated by
Talvitie (1973), Westin (1974), McFadden and Reid (1975), Koppelman (1975) and
Landau (1976). The alternative forms of representing the distributions are reviewed in
Koppelman (1975) for aggregation over individuals and in Watanatada and Ben-Akiva
(1977) for aggregation over alternatives and individuals.
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The logit model has been extensively applied to spatial and nonspatial
choice problems.> It is described here in its conventional discrete form and
is then applied in a continuous form as a spatial choice model expressed in
terms of two-dimensional coordinates to represent the location of the
spatial alternatives. _

The chapter concludes with a brief description of an application of the
methodology to an aggregate prediction model of urbanized area travel
demand using Monte Carlo simulation techniques. This model can be used
in the framework of the multimodal national urban transportation policy-
planning model described in Weiner (1976) and known as TRANS
(transportation resource allocation study); it is referred to as MIT-
TRANS (Watanatada and Ben-Akiva 1977).

8.2 Basic Definitions

Denote the probability of an individual ¢, choosing an elemental alternative
sas P,(s).* The expected number of individuals choosing alternative s, T,, is
the sum of individual’s choice probabilities for alternative s:

T
Ti= ) P,
=1

where T is the number of individuals in the aggregate group.

The foregoing relationship represents an aggregation of individuals for
an elemental alternative. In the case where a group of elemental alter-
natives, rather than the elemental alternatives themselves, is of interest,
aggregation of alternatives is performed for each individual ¢ by sum-
mation of elemental alternatives’ choice probabilities :

Pr(j) = Z P,(S),

sej
where P,(j) denotes the probability that individual ¢ will choose an
elemental alternative in group j.
3, The logit model and its derivation from a theory of utility maximization, properties,
and econometric analysis techniques are given in McFadden (1974).
4. Flemental alternatives in a choice process are defined such that the individual chooses

one and only one of them. That is, elemental alternatives are mutually exclusive in the
same sense as elemental or atomic events in probability.
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The aggregation of individuals for a group of alternatives j expresses the
expected number of individuals choosing an elemental alternative in group

J:

T T
Tj= Zl P()) = z Z P(s).
= r=1 j

=1 sej

8.3 Spatial Aggregation

Spatial aggregation involves elemental alternatives and individuals that are
distributed over space. Choices of residential location, workplace, shop-
ping destination, and so on are characterized by spatially defined
alternatives. The geographic distribution of individuals and spatial alter-
natives and their interrelationships in space in terms of transportation
level-of-service attributes are essential inputs for predicting aggregate

travel demand.
Consider an origin zone as a group of individuals and a destination zone

as a group of elemental spatial alternatives. The elemental spatial
alternatives are housing units (in the choice of residential locations), jobs

(in the choice of workplace), and so on. The expected number of individuals
at an origin i selecting an alternative in destination j is

T,;=1Y Y. Pys)-

tei s€j

To illustrate the relationship between spatial and nonspatial alter-
natives, let P,(m |s) be the probability of individual ¢ choosing mode m
given that he travels to spatial alternative s. The expected number of trips
from origin i to destination j by mode m is given by

Tijm = Z Z Pt(mls)P,(s);

tei se€j
8.4 The Discrete Logit Model

Assume the logit model for the spatial choice probability

Vse

M
Z eVst
s=1

Ps) = (8.1)

k]
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where
V,, = the average utility of elemental spatial alternative s to individual ¢,°
M = the number of available elemental spatial alternatives.

The independent variables of a spatial choice model that enter the utility
functions are transportation level-of-service attributes by different modes,
times of day, and facilities to the elemental spatial alternatives, L;
locational attributes, or attraction variables, of the elemental alternatives,
A ; and socioeconomic characteristics of the individual, S.

To obtain choice probabilities for aggregate alternatives, partition the
space of available alternatives into nonoverlapping subsets of elemental
alternatives, or destinations, and sum the logit choice probabilities as
follows:

Plj) =" (8.2)

J
M, =M,
= 1 . -
J = the number of destination zones,
M ; = the number of elemental spatial alternatives in zone j.

Define

_ 1 M

K =— Vst 8.3
Jt MJ Sgl € ( )

and

le = 11'1 Kjt' (8’4)

Substitute (8.3) and (8.4) in (8.2):

5. In the derivation of logit as a random utility modetl the utility of an alternative is
written as U, = ¥, + ¢, where ¢, is the random unobserved utility.
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e;j'+lnMj
P(j)=F—"" (8.5)

J -~
Z ert+1nM_,‘
=1

This model for aggregate spatial alternatives was investigated by Lerman
(1975) and McFadden (1977) who consider the problem of estimating I7j,.6
Lerman (1975) used a Taylor series expansion around the mean

1 8.6)

to investigate the sensitivity of the model to higher moments of the
distribution of the attributes of elemental alternatives within zones.
McFadden (1977) employed the transformation

_ _ 1 M _
er = Vj, + ln‘A—/[—" Z eVS"_ Vje (87)

“J s=1

to show that under the assumption that for large zones V, are normally
distributed the difference V;, — V;, approaches 1/2 g, 2, where o;,” is the
within zone variance of the utility ¥,,. Thus in all cases

I7jz = I7jt’

and the equality holds for perfectly homogeneous zones. This implies that,
in order to use average zonal values for spatial aggregation, the zones
should be defined to be homogeneous or to have equal within zone

variances.
This also holds for the nested, or sequential, logit model described in

McFadden (1977) and Ben-Akiva and Lerman (1977). The choice prob-
ability for sej is

oVst eu;j,‘*plnM,‘
P(s) = 57 e S , (8.8)
Z eV_n Z eul/',g-f-ulnMj
s=1 j=1

6. An alternative approach described in Lerman (1975) is to define the utility of a zone
as the maximum of the elemental alternatives® utilities. Under the logit assumption the
expected value of the maximum is

V,+InM,
and the model in (8.5) is obtained.
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where 0 < u <1 is an additional parameter, indicating the degree of
similarity among unobserved attributes of elemental alternatives in the
zones, or communities. The model in (8.1) is a special case of (8.8) when u
= 1. The major disadvantage of this generalization for applications to
spatial aggregation is the need to retain the definition of the zones used to

define u.

8.5 Spatial Aggregation Using Continuous Functions

The discrete summation form cannot be used in actual applications when
the numbers of spatial alternatives and individuals are large, because
complete enumeration would require astronomical amounts of data and
computation. There are many possible ways to represent spatial distri-
butions, depending on the level of detail desired. One way to gencralize the
definition of spatial aggregation is to employ mathematical functions
expressed in terms of two-dimensional coordinates to represent the
geographic distributions of the spatial alternatives, individuals, and the
attributes.

Define a spatial choice function, denoted by G(p, ¢lx, y), as the
probability of an individual of type k located at point (x, ) choosing one
spatial alternative located at point (p, g). This is a unique surface for
individual type k located at (x, y) which is a function of’

L(p, q; x, y) = transportation level-of-service attributes between origin
point (x, y) and destination point (p, 9),
A(p, q) = locational attributes of the elemental alternatives at point

(2, 9),
S, = socioeconomic characteristics of individual type k.
Define spatial density functions for spatial alternatives and individuals
as follows:

M (p, q) = density of elemental spatial alternatives at point (p, ¢),
H,x, y) = density of individuals of type k at point (x, y).

The integral of the spatial choice function over all available alternatives M,
must equal one. Thus the spatial choice function is defined such that

7. The derivation in McFadden (1976) implies that a unique spatial choice function
exists if the choice probabilities are absolutely continuous with respect to the number of

elemental spatial alternatives.
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M

If it is only a function of the attributes of alternatives at (p, q), it is the
continuous logit model. In the more general case it can be a function of the
entire distribution of attributes of alternatives with respect to (x, »).

The expected number of individuals from zone i selecting alternatives in
zone j can now be derived as follows:

1. by aggregation over spatial alternatives to obtain the probability that
individual of type k located at (x, y) will choose an alternative in zone j:

zone
J

2. by aggregation over individuals to obtain the expected number of
individuals of type k located in zone i who will select an alternative in zone

Jj:

Ty; = “ P (jlx, y)H, (x, y)dxdy. (8.10)

zone
i

The total number of trips from zone i to zone j is

T:‘j=§; Tkij

=§ jj jj‘ G (P, g1 x, y)M(p, q) Hy(x, y)dpdgdxdy. (8.11)

Zone zone
i J

It is also possible to repeat these steps to derive other quantities. For
example, let D(p, g; x, y) be the distance between points (p, ¢) and (x, y).
Then the expected miles of travel for the origin/destination pair (i, ) is
given by
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=Y f D(p,q:x,¥)G(p,q|x, y)M(p,q)H,(x, y)dpdqdxdy.

zone zone
¢ J

(8.12)

8.6 The Continuous Logit Model

The definition of an aggregate spatial choice probability can be rewritten as

P(j)= G,(p,q)M (p,q)dpdg, (8.13)

zone
J

where the subscript 7 is used to denote an individual type k at location (x,
). The continuous logit model is obtained by assuming the independence
from irrelevant alternatives, IIA , property (McFadden 1976).% It implies
that the spatial choice probabilities for any feasible subset of spatial
alternatives, M', can be written as

HK,(p,q)M(p,q)dpdq

P(jIM)== )
HK,(p,q)M(p,q)dpdq

M!

(8.14)

where K,(p, q) is a spatial choice function defined in terms of attributes at
(2, q). The spatial choice probability of an infinitesimal area (dpdgq) is
given by

K, (p,q)M(p,q)dpdgq _ ®.15)
K, (p,qYM(p,q)dpdq

P.(dpdg | M’) = f
M1t

8. Alternatively the spatial choice function could be defined as the product G(p, 9)M(p,

g) and the elemental alternative as the unit area. The continuous logit model can then be

viewed as the infinitesimal limit of the discrete logit model (Ben-Akiva et al. 1976).
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As in equation (8.4) define
V.(p.q)=mK(p,q),

and substitute it in (8.15) to obtain
e'“»9 M (p, q)dpdq

He"‘“” ? M (p, q)dpdyg

M1

P(dpdg | M")

gl at In M (p, q)dpdq

= s
Jj eV g)+1n M (p, q)dpdg

M!

(8.16)

where V(p, q) can be interpreted as the average utility to individual z of a
spatial alternative at (p, g) and M (p, g)dpdgq the number of elemental
spatial alternatives in the infinitesimal area dpdgq.

To derive the discrete logic model, the feasible choice set is partitioned
into groups of elemental alternatives as in (8.2), and the model (8.14) is
rewritten as

HK.(p, g)M (p.q)dpdg

P(jIM)=—" : (8.17)
2 HK,(p,q)M(p,q)dpdq

J

Define

_ 1
K.

= M, ”Kz(p,q)M(p,q)dpdq, (8.18)

J

where

M;= JM(p,q)dpdq
Jj
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Substitution of (8.18) and (8.4) in (8.17) yields the discrete logit model for
aggregate spatial alternatives in (8.5).

8.7 A Parametric Example of Spatial Aggregation

The concept of spatial aggregation and the continuous logit model can be
demonstrated by means of a specific travel demand model. The purpose of
the example is to illustrate (1) the conversion of spatial choice models from
their original discrete form to the continuous form, (2) the linkage between
spatial choices and nonspatial choices in travel demand forecasting, and (3)
the use of parametric distributions over space.

Consider a joint shopping destination-mode logit choice model of the
form

Vema

P(md) = ———,

Y 3 e
m d

where

P(md) = the probability that an individual trip maker ¢ will travel to
shop at destination d by mode m,
V,na = the average utility of mode m and destination 4 for individual z.

V,. is assumed to have a simplified specification, as follows:
Vima = @1Stm + @3 TCppg + @31 Ty + @40T g + asIn(Qy) + 1n (4,)

where

S, = a measure of socioeconomic characteristics of individual 7 for
mode m,

TC,,, = round trip out-of-pocket travel cost,
IT,,, = round trip in-vehicle travel time,
OT,,, = round trip out-of-vehicle travel time,

A, = area of destination d,

Q, = measure of attraction density at destination d—for example,
retail employment per acre (the logarithmic form for Q in the
utility function is used for convenience, although it is not
necessary),

a,, ..., as =unknown parameters.
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In this model the destinations are treated as groups of relatively
homogeneous elemental spatial alternatives. Grouping of spatial alter-
natives is necessary for model estimation because data on spatial alter-
natives are only available for discrete area units (e.g., retail employment by
zone). Because the notion of elemental alternatives for the shopping
destination choice is not well defined, the unit area is taken as the measure
of an elemental alternative. Thus the number of elemental alternatives
contained in destination d is proportional to A, with the attraction
variable Q, representing the locational attributes of these spatial alter-
natives. The coefficient for In (4,) is constrained to unity to ensure that the
model is linearly homogeneous with respect to the size of the aggregate
spatial alternatives. That is, doubling the area of a destination will double
the odds for choosing that destination. The property of linear homogeneity
of a spatial choice model is needed to guarantee that the model will be
applicable to any level of geographic aggregation.”

For simplicity rewrite the utility function into three groups of variables:

Vima = %m + Bima + In(Ag7a). -

where
O = al‘sxm;
Btmd =4a, TCrmd + a3I T!md + a40 Ttmd’
74 = Q7"

Substitute this definition of the utility function in the model to get

eﬂzm Ad ‘yd eﬁtmd

z eagm‘ Z Ad’ ’Yd’ eﬂtm’d’
m’ a’

P(md) =

To convert the discrete form model to the continuous form, we use a
system of polar coordinates ( L, 6) for the location of the spatial alternatives
(the unit areas) with respect to individual 7, a trip maker of type & residing
at (x, y). We express the generalized travel cost (B.ms) @and the attraction
measure (y,) in terms of (L, 8): Bymg is replaced by B.(L, 6), and y, is
replaced by y( L, 8). Furthermore, because the unit area is the measure of an

9. To maintain this property when there are two or more size variables, it is necessary to
replace the variable 4, with a linear function of size variables with unknown parameters.
This results in a logit model with utility functions that are not linear in the parameters.
An estimator for this case was developed by Daly (1978).
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elemental alternative, we take the infinitesimal area (LdLd6) as the
measure of the number of elemental alternatives. Then the probability of
the individual traveling to the infinitesimal area (Ld L d6) by mode m is

given by
P(m,LdLd6) = G,[m,(L,0)]LdLd0
e*my(L,0)ef1-® LdLd

= B 2= >

Y e j J (L, 0)efm (-0 LdLdO

0 (¢}

where the summation in the denominator is replaced by an area integral
over # and L with an upper limit on travel distance B which could be set to
infinity if the space of alternatives is not constrained.

The function G[m, (L, §)] is the joint choice function for mode m and
destination at point (L, §). The spatial choice function for the model,
expressed as the probability of the trip maker ¢ choosing one spatial
alternative at (L, ), is derived as the sum of G,[m, (L, 6)] over all modes:

G(L,0)=Y GJIm,(L,0)]

Z oftem y(L, 9) efrml L,8)

2r

7
o J J (L, 8) P -0 LdLdg
" 0 (1]

These functions can be used to derive required predictions. For example, to
predict the probability of choosing mode m, we integrate G,[m, (L, 6)] over
the spatial alternatives space:

2

B
Pm) =J f G,[m,(L,6)] LdLd6.
[}

0

To predict the trip length distribution by specific mode m, we first obtain
the spatial choice function for (L, 6) conditional on mode m:

G,m,(L,0
6L, 0y m) = S



332 M. Ben-Akiva and T. Watanatada

Then the trip length distribution by mode m is given by

2z
ﬁ(L]m)=jG,[(L,9)|m]Ld9, 0<L<B,
o

and the expected trip length by mode m is

B
L, = JLf,(le)dL.
0

Note that the expressions for mode choice probability and trip length
distribution entail integrals in a generally intractable form which requires
numerical integration

8.8 Continuous Logit with Featureless Plane

Under simplifying assumptions on the functional forms of the independent
variables, a solution exists in closed form. Consider the following
continuous spatial choice logit model without mode choice:

B(L, 6)+1n y{(L, 0) d
P(LALAO) = 5 LdLds

f JeB(L,9)+1n7(L,0)Lde9
0o 0

0<L <B and 0 <6 < 2z, and assume that the attraction measure is
constant across all destinations,

'})(L’O) =Y,

and the transportation level of service is a linear function of distance,

B(L,O)= —bL.
Under these assumptions the following results are derived:

1. Consumer surplus, or the expected utility from the choice, equals the
natural logarithm of the denominator of the model (Ben-Akiva and
Lerman 1977):
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2r B
CS=1In e by 1 d1.d60 = lngﬂ[l ~ e %8 (bB + 1)),
bz
o} 0
2
lim CS=In2o.
B b

If the term CSis divided by the cost coefficient in the utility function (e.g.,
coefficient a, in the parametric example), the consumer surplus will become
expressable in monetary units.
2. Spatial choice function
e~ bL+Iny ple—tL
G(L,0) = = ,
(L.6) =73 2n(l — e P8 (6B + 1)]

J je*’”‘“”LdeH
0o o

2

: b
l}l_glo G(L,B)—Ze .

3. Trip length probability density function'®

2n

f(L)= f G(L,G)La7t9=1

o}

bZLe—bL
—e B(pB ¥ 1)

lim f(L)=b*Le bt
B—

4. Trip length cumulative distribution function

1 —e "M(bL + 1)
1—e (B + 1Y

F(L)=
ggl;xo F(L)=1-—e "(bL +1).
5. Average trip length

L=,12- B/(B),

10. This result for B — o was also obtained by Goodwin (1975) in a similar derivation.
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. 2
Iim L=-.
ng b

6. The effect of B on CS and L, or the effect of time/distance budget B on
consumer surplus, is given by

aCs

=5 =f(B)=0,

and

0*CS B

_5BT=[%2[1 ~ 6B~ f(B)] <0,

where the second inequality is derived from the condition that L <B.Thus
as B increases, the CS increases monotonically at a diminishing rate. The
effect on average trip length is given by

oL _ _f(B)
—=-1I12-bB-f(B)]=0,
B B [ f(B)]
where the term in brackets can be shown to be nonpositive from the
condition that L < B.

For the parametric example with mode choice consider the following
transportation level of service

r"l’)tm( L. 0) = —0qy, — btmL’

where a,, is the generalized fixed travel cost and b, is the generalized
marginal travel cost per unit distance for mode m. These generalized travel
costs include both out-of-pocket costs and travel times weighted by model
parameters.

The (marginal) probability for mode m becomes

bt em e[l — e~ (b,,B + 1)]

Pr(m) = .
Y boret o (1~ e (b B+ 1)]

The trip length distribution by mode m is
fALIm)=Lbl e > 1 — e > (b, B+ 1)]7",

and the expected trip length is
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L, =2b; [1 - gf,(B l m)].

In other words, the average trip length by mode is inversely proportional to
the mode’s generalized marginal travel cost per unit trip length. (The
generalized travel costs not only vary with mode but also with trip purpose
and socioeconomic characteristics.) For B approaching infinity, the
elasticity of average modal trip length with respect to the unit generalized
travel cost for the mode is equal to minus one. It should be noted, however,
that in this rudimentary analysis we have ignored the elasticities of trip
frequency and mode shares.

The resulting trip length distribution by mode for B equal to infinity is a
gamma two distribution of familiar shape, as shown in figure 8.1 (for
B < o the gamma distribution becomes truncated), that was observed for
a number of urban areas (A. M. Voorhees and Associates 1968, 1970). This
indicates that even highly simplifying assumptions for the distributions
may still result in qualitatively meaningful predictions. The behavioral
implications of the conditional trip length distribution can be seen by
plotting it for modes with significantly different level-of-service characteris-
tics, for example, walk and auto, as shown in figure 8.2.
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Figure 8.1
Trip length distribution
n(L(m)r /f,(Llwalk)
f; (L | auto)
L

Figure 8.2
Trip length distribution for different modes
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This example is intended for illustrative purposes only, since the assumed
attractiveness and level-of-service distributions for the spatial alternatives
are clearly unlikely to be even approximate in real urban situations. To
achieve more accurate predictions, more realistic mathematical functions
should be used to describe these distributions. However, because solutions
to the integrals rarely exist in closed form, the general approach to perform
spatial aggregation must be based on numerical integration techniques.

8.9 Basic Operations of the MIT-TRANS Model'!

The MIT-TRANS model represents an extreme form of test for the
feasibility and validity of the spatial aggregation methodology, because it
treats an entire urban area as a single zone. The model is based on the
application of Monte Carlo simulation, as the main numerical integration
technique, to forecast trip generation, trip distribution, and modal split,
with a system of disaggregate travel demand models. There are seven
disaggregate models for both work and nonwork trips linked together
(outputs from one model become inputs to lower-hierarchy models).
Examples of predictions are the number of trips made, mode shares,
person-miles of travel, vehicle-miles, and average vehicle occupancy rates
for both work and nonwork trips, number of automobiles per family, and
so on. These predictions are policy-sensitive, as reflected by the fact that
they embody elastic travel demand models for the choices of workplace,
auto ownership, mode to work, nonwork travel frequency, destination,
and mode.

It should be noted that the MIT-TRANS model in its present form
represents only the demand component of an overall policy evaluation
package which must also include a supply component and evaluation
procedures. Future extensions of the MIT-TRANS model include the
development of network abstract transportation supply and traffic assign-
ment models and the integration of these models and the aggregation
procedure into an equilibrium framework. (In lieu of a complete supply-
demand equilibrium framework, a set of level-of-service relationships
describing a spatial distribution of the equilibrium conditions of an existing
transportation system with externally specified parameters is being used in
the current MIT-TRANS model.)

11. A detailed description of this model is given in Watanatada and Ben-Akiva (1977).
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The operations of the MIT-TRANS model are summarized schemati-
cally in figure 8.3. It accepts three sets of inputs: (1) the aggregate city
geometry and land use distribution parameters, (2) the urbanized area’s
socioeconomic characteristics, and (3) the specifications of a transpor-
tation policy alternative. These policy specifications are used to modify the
level-of-service relationships which have been calibrated for the base
conditions. The Monte Carlo aggregation procedure—a numerical in-
tegration procedure—operates on these inputs, the disaggregate choice
models, and the (modified) level-of-service relationships to produce
aggregate travel demand forecasts for the urbanized area. The forecasts can
be disaggregated by market segments such as by income group.

. City geometry .
Tra_nsportatlon and land use Dls.trlbutlon gf
policy distributi socioeconomic
specifications istribution characteristics

parameters
Modified R
level-of-service Ic)}:f;igr;g:ézls
relationships
Y
Aggregation procedure
(Monte Carlo simulation)
Y

Aggregate travel demand forecasts

at urbanized area level (by

market segment if required)

Figure 8.3

Basic operations of MIT-TRANS model

The urbanized area is modeled as a quasi-circular shape with the origins
(home ends of trips) and destinations (nonhome ends) defined by sets of
coordinates (R, 1) and (r, ¢), or (L, 8| R, 2), respectively, as depicted in
figure 8.4. For each of three income classes the household density function
such as negative exponential is assumed (figure 8.5). The spatial
alternatives—jobs, shopping destinations, and social recreational
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facilities—are also represented by employment density functions (negative
exponential) and other functions describing locational attributes. The
parameters of these density functions can be easily estimated from total
counts of population and employment for a central city and its entire
metropolitan area.

Destination
(r,¢)or(L,8|R,N)

City boundary

Figure 8.4
City geometry and system of coordinates

Household density per square mile (by income class)

a Density = ge~oF

5a, b = constants

R
RTT Distance from
city center (miles)

Figure 8.5
Negative exponential distribution of households
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The transportation level-of-service functions by mode and time of day
are expressed in terms of trip geometry variables, which are in turn
functions of the coordinates of the trip ends.

MIT-TRANS also includes a procedure, similar to the one used by
Duguay et al. (1976), to obtain the distribution of socioeconomic
characteristics of the urban area population by generating a sample of
households from available data. The procedure can operate on samples of
disaggregate observations from the census public use sample, or any other
household survey, and available aggregate data from surveys or published
sources for the past years, from forecasts, or from explicit future scenarios.

The operations of the Monte Carlo aggregation procedure, summarized
in figure 8.6, include the following basic steps:

Land use distribution Socioceconomic
parameters data

Generation of a
household sample

Generation of destination
locations by trip purpose

Modified Computation of LOS variables for
LOS models each destination by time of day

. Compute travel demand forecasts
Dm§ggreg:;e ) for each household in sample and
choice models aggregate over spatial alternatives

Aggregate and expand individual
household’s forecasts

Figure 8.6
Monte Carlo aggregation procedure
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1. Determine household sample size.

2. Generate sample of households for forecast year, characterizing each
household by ( R, A) location and a set of socioeconomic attributes.

3. Determine sample size of spatial alternatives by purpose.

4. Generate sample of spatial alternatives by purpose for each household in
the sample, defining each destination by (L, §) coordinates.

5. Modify appropriate attributes of the alternatives for policy analysis.
6. Apply linked demand models for each househoid in the sample.
7. Expand sample forecasts to population market segments.

8. Compare forecasts against base case for policy analysis.

The Monte Carlo approach was selected to circumvent the extreme
complexity of setting the bounds of the integrals for L and 8 and to allow
the use of alternative parametric distributions. The flexibility of the
technique is demonstrated for an integral taken from a continuous logit
model for an individual at (R, 1), which for simplicity is written as

I= j jK(L, §)M (L,6)LdLdo,

where the origin of the coordinates (L, 6) is at (R, A).
The most simple technique is to draw points (L, 8), uniformly over the
area j and obtain the following unbiased estimator:

. oA N
IJ-=NL Z K(L,6),M(L,8),,

j n=1
where 4; is the area of zone j and N, the number of points drawn in zone j.
Alternatively, since the input distribution of spatial alternatives is given
in terms of (r, ¢), it is possible, for example, to draw directly from the
negative exponential distributions shown in fig. 8.5. (It involves drawing
from a gamma distribution.) In this case

Nj
=223 K(L,90),.

j n=1

However, with regard to shopping trips most destinations are expected
to be 4 to 5 miles from the trip maker’s home. Uniform sampling or
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sampling from an urbanized area employment distribution generate many
locations outside the potential destination area with a very low value of
K(L, 6). Therefore a more efficient sampling technique based on the
knowledge of the entire integrand is also employed. The basic principle of
importance sampling is to find a probability density function f( L, ), such
that

K(L,6)M(L,0)L
fi(L,9)

varys as little as possible (Hammersley and Handscomb 1965). Drawing
from fj(L, ) results in

1 M K(L,6),M(L,6),L
B ngl f(L 0)

It is necessary, however, to find f;(L, 6) that is simple enough to allow
locations (L, 6), to be drawn conveniently. The featureless plane example
presented earlier suggests for the entire urbanized area the gamma
distribution with a parameter

2
b=I
which can be calculated from generally available information on average
trip lengths. In the implementation of this procedure some efficiency was
lost because locations were sampled from a gamma distribution over an
infinite space and therefore some feil outside the urbanized area.

The MIT-TRANS model was programmed in Fortran for an IBM
370/168 computer. It required about 0.6 CPU minutes per policy run with a
standard error of about 1 percent of predicted average passenger miles of
travel.

The model was calibrated for the 1968 metropolitan Washington, D.C.,
area and then used to forecast 1975 conditions as a validation test. Between
1968 and 1975 there were substantial changes in the metropolitan
Washington area. The major changes in travel behavior include increased
auto ownership, increased vehicle miles of travel per household, and
decreased transit patronage. Alil the forecasted changes agree with these
trends.

Apart from Washington, D.C., the model was also calibrated for the
Minneapolis-St. Paul area, which has two central business districts. The
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elasticities produced by the model for both the Washington, D.C., and the
Twin Cities are comparable to before-and-after empirical evidence and
forecasts obtained from other more detailed studies.

Several Monte Carlo sampling experiments were conducted to in-
vestigate the statistical properties of the model. It was found empirically
that a small number of sampled destinations would result in minimal bias
and optimal efficiency.

The empirical results have led to the basic conclusion with respect to the
applicability of disaggregate travel demand models and Monte Carlo
techniques for aggregate sketch-planning predictions. The travel demand-
forecasting methodology proposed operates with readily available ag-
gregate input data, while still maintaining the full degree of policy
sensitivity available in recently developed systems of disaggregate models.
The most important future extensions of the methodology are the
incorporation of supply and traffic assignment models and the develop-
ment of a version of MIT-TRANS for multiple zones of varying sizes.
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