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Problem Set 6 
Suggested Solutions 

 

1. Walras� Law: ( )
1

0
N

i i
i

p z p
=

=∑  

Proof: Assume that each agent chooses optimally to consume a bundle that lies 
on his budget constrain. We have: 

( ) ( )( )
1 1 1

0
N N N

h h h h
i i i i i i i

i i i
p x p p e p x p e

= = =

= ⇔ − =∑ ∑ ∑   { }1,...,h H∀ ∈  

Summing over all the agents: 

( )( ) ( )( )
( ) ( )

1 1 1 1

1 1 1

0 0

0 0

H N N H
h h h h

i i i i i i
h i i h

N H N
h

i i i i
i h i

p x p e p x p e

p z p p z p

= = = =

= = =

− = ⇔ − =

⇔ = ⇔ =

∑∑ ∑∑

∑∑ ∑
 

It is clear from the above proof, that whether or not ( ) 1

N
i i

p p
=

=  and 1,...,
1,...,

h
i Ni
h H

x x =
=

 =    is a 

Walrasian equilibrium is not used in the proof. The only requirement is that every agent�s 
choice lies on the budget frontier (which can be met by assuming strict monotonicity of 
preferences in at least one commodity or local non-satiation). If this is the case, Walras� 
Law will hold even at a non-WE point (see Fig. 1)1. 
 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 For example, ( ) 1
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 =    could be such that the allocation is not feasible i.e. 

( )
1 1

H H
h h
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h h
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>∑ ∑  for some i. 
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2. (TRUE)  This is essentially a restatement of the second welfare theorem.  
The required incomes policy is one of lump sum transfers between agents (that are to take 
place before the beginning of trading) so that the new endowment vector is the original 
WEA. Following the transfer period, trade will be allowed but, of course, no trade will 
actually take place in equilibrium. 
 

3. (FALSE)  If the initial endowment is on the contract curve, then it is a pareto  
efficient allocation. This does not necessarily mean, however, that it can be supported by 
a strictly positive vector of prices as a WEA.  
An example of such a situation is PS#5/Q1(A). In that problem, we showed that, only 
points on the western and northern borders of the Edgeworth box (excluding the SW and 
NE corners) could be on the contract curve because these were the only points where at 
least one agent was optimizing. Yet the unique WE was at the northwest corner of the 
box. Any other point of the western and northern borders, if it were given as the 
endowment point, would clearly be on the contract curve2. Yet it could not be a WEA 
because the two indifference curves are not tangent at that point3.  
 
You might be puzzled here by this answer seeming inconsistent with the one for the 
preceding question. The catch is in the fact that, in question 2, we are assuming that the 
requirements for the second welfare theorem to apply are met. Here we are not told that 
we may do so and, hence, we may not appeal to the theorem. In particular with respect to 
the example in PS#5/Q1(A), the assumption of strict quasi-concavity of the utility 
functions (from the set of assumptions that JR have termed assumption 5.1 (pp.188)) is 
violated. The given utility functions 1 1 1 2 2 2log , logU a b U a b= + = +  are quasi-concave 
but not strictly so4.    
 
4. (TRUE) Notice that only L and F respectively enter the utility functions of Jack 
and his wife. Therefore, given a price vector ( )1 2,p p p= , Jack is facing the budget 
constraint 1 2 1 270 35p F p L p p+ ≤ +  and he will maximize his welfare by trading his 
entire endowment of F for as much L as possible. Hence, he will consume at 

( ) 1 2

2

70 35, 0,J J p pF L
p

 +=  
 

. 

                                                 
2 Since one agent is optimizing and the other (being at his endowment point) is doing at least as well as at 
his endowment point. 
3 Note that, from the perspective of an outside observer, a point on the western border is a corner point for 
the Edgeworth box. However, from the perspective of the agent, it is not. Especially when that point 
becomes an endowment point, it falls right in the middle of his budget constraint. Hence, the only way for 
the agent to be optimizing at that point is for his indifference curve to be tangent to the budget line. But, 
given that the two agents must be facing the same price ratio, the two indifference curves having different 
slopes renders impossible them to be optimizing at the same time as the WEA requires.  
4 In general, this means that we are not guaranteed to find a WEA with strictly positive prices for all 
commodities. In the given example, we cannot find equilibrium prices at all since, in order to be optimizing 
at a western or northern border point, one agent needs the price ratio to be different than 1 whereas the 
other agent needs it to be 1.  
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Similarly, Jack�s wife will be choosing: ( ) 1 2

1

42 70, ,0W W p pF L
p

 +=  
 

 

Clearly, a Pareto Optimal allocation will be at the corner of the Edgeworth box where 
each agent gets allocated the entire endowment of the single good that enters his utility 
function. At any other point of the box, we can find an allocation that pareto-dominates 
the given point by giving all of JF  to the wife and all of WL  to Jack. Neither agent is 
worse off since we are taking away from him/her an amount of a commodity that does 
not enter their utility function anyway.    
 
 
5. Notice that, for the first group of agents, the utility function is linear in both 
arguments with 

1 2x xMU MU= . Since, each commodity contributes equally to the level of 
utility, the agent is indifferent between consuming either commodity (i.e. all vectors 
( ) 2

1 2 1 2, :x x R x x c+∈ + =  give the same level of utility c). Hence, the demand of agents in 
the first group will be:  
 

( )

( )

1 2
2

1 2 1 2
1

1 2 1 2 1 2
1

0,

, ,0

, :

I

I
I I

I

w if p p
p

wx x if p p
p

wx x x x if p p
p

 
> 

 
 = < 
 

 + = =


  (1) 

For the second group, the indifference curves are right angles stemming from the origin 
having their vertices on the curve 1 22x x= (see Fig.5).  
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Hence, the optimal bundles will be given by the intersection of this curve with the budget 

line that the representative agent from this group faces: 

1 22x x=  and  1 1 2 2p x p x w+ =   
 
 
Hence, 

( )1 2
1 2 1 2

2, ,
2 2

II II
II II w wx x

p p p p
 

=  + + 
 (2) 

Moreover, to get a WE, we need to make sure that the allocation is feasible: 
I II I II
i i i ix x e e+ = +  for { }1, 2i ∈  (3) 

 
Solving the system (1)-(3), for 1 2

I IIw w p p= = +  we find:  
If 1 2p p> , equation (3) for 1i =  gives: 1 23 0p p+ = . Hence, we cannot have a solution in 
this case. 
If 1 2p p< , equation (3) for 2i =  gives: 2 22p p=  and, thus, we cannot have a solution in 
this case either. 

If 1 2p p= , equation (2) gives: ( )1 2
2 4, ,
3 3

II IIx x  =  
 

 while equation (1) gives 1 2 2I Ix x+ = . 

Hence, ( )1 2
4 2, ,
3 3

I IIx x  =  
 

. 

We conclude that the set of WE is: 

( ) ( ) ( )( ){ } ( )1 2 1 2 1 2
4 2 2 4, , , , , , , , , , : 0
3 3 3 3

I I II IIp p x x x x p p p
     = >          

 

 
 
6. Consider the firm�s optimization problem  

 

 
The Lagrangean:  

( )
( ) ( ) ( )
1 2 1 2 3 1 1 2 2 1 2

1 1 2 2 3

, , ; , , , 2 4

0 0 0

L x x y py w x w x x x y

x x y

λ µ µ µ λ

µ µ µ

 = − − + + − 
+ − + − + −

 

 
 
 

1x  

( )

( )

1 2
1 1 2 2, ,

1 2 1 2

1 2

max

. .

, 2 4
, , 0

y x x
py w x w x

s t

y f x x x x
x x y

π = − −

≤ = +
≥
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The first-order conditions: 
 

Set (I) 
 

( )
3 3

,y x
p

y
π

λ µ λ µ
∂

= − ⇔ − =
∂

                (1.1) 

 
( )

1 1 1
1 1 2 1 2

,
2 4 2 4

y x
w

x x x x x
π λ λµ µ

∂
= + ⇔ + =

∂ + +
  (1.2) 

( )
2 2 2

2 1 2 1 2

, 2 2
2 4 2 4

y x
w

x x x x x
π λ λµ µ

∂
= + ⇔ + =

∂ + +
  (1.3) 

 
Set (II) 
 

1 22 4y x x≤ +       (2.1) 
0λ ≥     (2.2) 

1 22 4 0x x yλ  + − =                (2.3) 

 
 

1 0x ≥    1 0µ ≥   1 1 0xµ =           (3.1) 
 

2 0x ≥    2 0µ ≥   2 2 0xµ =           (3.2) 
 

0y ≥    3 0µ ≥   3 0yµ =             (3.3) 
 
Note, however, that firm would never choose to produce a zero level of output. Hence, it 
must be 0y >  and, from (3.3), 3 0µ = . 
From (1.1), it is now obvious that 0pλ = >  and, consequently, the firm must be 
operating on the production possibility frontier. 
In other words, 1 22 4y x x= +  
 
For an interior solution, we can now simplify the original problem greatly by ignoring the 
non-negativity constraints on 1 2, ,y x x  and substituting 1 22 4y x x= +  into the objective. 
The simplified problem becomes: 

( )1 2
1 2 1 1 2 2,

max 2 4
x x

p x x w x w xπ = + − −  

 
The first order conditions, for an interior solution, are given: 

( )
1

1 1 2

0
2 4

x p w
x x x

π∂
= ⇔ =

∂ +
 (1.2.i) 
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( )
2

2 1 2

20
2 4

x p w
x x x

π∂
= ⇔ =

∂ +
 (1.3.i) 

 

We have: ( )
( ) 1 2

1.2.
2

1.3.
i

w w
i

→ =  and 1 2
1

2 4 px x
w

+ =  

 

The combinations of inputs are ( )
2

1 1
1 2 1 2 1 2

1, : 2 4 2
2

w wx x x x x x
p p

   + = ⇔ = −  
   

 

 
Let us now check the corner solutions: 

Consider 1 20, 0x x= >  
From (3.2): 2 0µ =  

From (1.3): 
2

2
2

px
w

 
=  
 

  

From (1.2) 2
1 1 1

2 22
wpw w

x
µ = − = −   Hence, for 1 0µ > , we require 1 22w w>  

Consider 1 20, 0x x> =  
From (3.1): 1 0µ =  

From (1.2): 
2

1
1

1
2

px
w

 
=  

 
  

From (1.3) 2 2 2 1
1

2 2
2
pw w w
x

µ = − = − . Hence, for 2 0µ > , we require 1 22w w<  

 
A much easier way to see what is going on in this problem is to attempt a graphical 
representation (see Fig. 6). 
 
 

 
 
 

    
 
 
 
 
 
 
 
 

Slope of Isoquant 1/ 2−  

Isocost with 1 22w w>  

Isocost with 1 22w w<  

x1 

x2 
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The isoquants of the given firm are linear:  

( )
2

1
1 2 1 2 2, 2 4

4 2
xcf x x c x x c x= ⇔ + = ⇔ = −  

Putting them together with an isocost line  1
2 1

2 2

wCx x
w w

= −   

we get the following: 
• If 1 22w w< , the isocost is flatter than the isoquant. In order to produce any given 

level of output y , the least cost way is to operate on the lower right corner, 
employing only input 1.   

• If 1 22w w> , the isocost is steeper than the isoquant. In order to produce any given 
level of output y , the least cost way is to operate on the upper left corner, 
employing only input 2.   

• If 1 22w w= , the isocost is parallel to the isoquant. In order to produce any given 
level of output y , any combination of the two inputs that lies on the given 
isoquant is optimal.  

 
Finally, the demand for inputs is given5: 

( )

2

1
1 2

2

1 2 1 2
2

2

1 2
1

1 2 , 2
2

, 0, 2

1 ,0 2
2

w x x if w w
p

px x if w w
w

p if w w
w

   − =     
   = >     

   
  <     

 

 
Recall that 1 22 4y x x= + . Substituting the optimal combination of inputs into the 
objective, we get the profit function: 

( )

3
1

1 1 22

2

1 2 1 2
2
2

1 2
1

2
2

, , 2

2
2

ww if w w
p

pp w w if w w
w

p if w w
w

π


− =


= >


 <


 

 
 
                                                 
5 Note the indeterminacy of the input demand when 1 22w w= . This arises from the very fact that the 
isoquants are straight lines in this problem (i.e. the two inputs are perfect substitutes in the production of 
output). 
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7. (FALSE) Consider Darlene�s optimization problem  
 

( )
( )

1 2 3

4 7
1 2 3 1 2 3, ,

1 1 2 2 3 3 1 2 3

max , ,

. .

, , 0

x x x
U x x x x x x

s t

p x p x p x w x x x

=

+ + ≤ ≥

 

 
The Lagrangean:  

( ) [ ]
( ) ( ) ( )

4 7
1 2 3 1 2 3 1 2 3 1 1 2 2 3 3

1 1 2 2 3 3

, , ; , , ,

0 0 0

L x x x x x x w p x p x p x

x x x

λ µ µ µ λ
µ µ µ

= + − − −

+ − + − + −
 

 
The first-order conditions: 
 
Set (I) 
 

( ) 3 7
1 1 1 1 1 2 3

1

4
U x

p p x x x
x

λ µ λ µ
∂

= − ⇔ − =
∂

             (1.1) 

 
( ) 4 6

2 2 2 2 1 2 3
2

7
U x

p p x x x
x

λ µ λ µ
∂

= − ⇔ − =
∂

 (1.2) 

( ) 4 7
3 3 3 3 1 2

3

U x
p p x x

x
λ µ λ µ

∂
= − ⇔ − =

∂
  (1.3) 

 
Set (II) 
 

1 1 2 2 3 3p x p x p x w+ + ≤       (2.1) 
0λ ≥      (2.2) 

1 1 2 2 3 3 0w p x p x p xλ  − − − =                (2.3) 
 
 

1 0x ≥    1 0µ ≥   1 1 0xµ =           (3.1) 
 

2 0x ≥    2 0µ ≥   2 2 0xµ =           (3.2) 
 

3 0x ≥    3 0µ ≥   3 3 0xµ =           (3.3) 
 
First, notice that none of 1 2 3, ,x x x  could be zero at an optimal point since, then, we would 
get zero overall utility (and, definitely, we could do better than that). 
Hence, 1 2 3 1 2 3, , 0 0x x x µ µ µ> ⇒ = = =  
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Clearly, then, by any of the equations (1.1)-(1.3), 0λ > . 
( )
( )

2 1

1 2

1.1 4
1.2 7

x p
x p

→ =  and ( )
( )

3 1

1 3

1.1 4
1.3

x p
x p

→ =  and 1 1 2 2 3 3p x p x p x w+ + =  

The demand for good 2 will, therefore, be: 2
2

7
12

wx
p

=  

Clearly, if income doubles, the demand for good 2 exactly doubles. 
 
 
8. (TRUE) For the given preferences, the optimal bundles will be given by the 
intersection of the curve 2

1 22x x=  with the budget line. We solve: 
2
1 22x x=  and  1 1 2 2p x p x w+ =   

If 1 20, 0p p= >  the slope of the budget line in a ( )1 2,x x -space will be 2 1

1 2

0dx p
dx p

= − =  

(see Fig.8). Hence, 

( )1 2 1 1
2 2

2, , :w wx x x x
p p

 
= ≥ 
 

  

 
 
 
 

 

 

 

 

 

 

 
 
 
 
9. (TRUE) Consider Angela�s optimization problem  

( )
( )

1 2
1 2 1 2,

1 1 2 2 1 2

max ,

. .

, 0

x x
U x x x x

s t

p x p x w x x

= +

+ ≤ ≥

 

2x  

Fig. 8

IC 

1
0a  

1x

2
2 1 / 2x x=
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The Lagrangean: 
( ) [ ] ( ) ( )1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 2, , , ; , , 0 0L x x p p x x w p x p x x xλ µ µ λ µ µ= + + − − + − + −  

 
 
The first-order conditions: 
 
Set (I) 
 

( )
1 1 1 1

1

1
U x

p p
x

λ µ λ µ
∂

= − ⇔ − =
∂

             (1.1) 

 
( )

2 2 2 2
2 2

1
2

U x
p p

x x
λ µ λ µ

∂
= − ⇔ − =

∂
  (1.2) 

 
Set (II) 
 

1 1 2 2p x p x w+ ≤        (2.1) 
0λ ≥      (2.2) 

1 1 2 2 0w p x p xλ  − − =                 (2.3) 
 
 

1 0x ≥    1 0µ ≥   1 1 0xµ =           (3.1) 
 

2 0x ≥    2 0µ ≥   2 2 0xµ =           (3.2) 
 
 
Consider first interior solutions i.e. 1 2, 0x x > : 
We have: 1 2 0µ µ= =  

From (1.1): 
1

1 0
p

λ = >  

Hence, the solution will be given by: 
( )
( )

1
2

2

1.1
1.2 2

px
p

→ =  and 1 1 2 2p x p x w+ =  

i.e. 

( )
2

1 1
1 2

1 2 2

, ,
4 2
p pwx x

p p p

  
 = −     
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Let now 1 20, 0x x> =  
We have: 1 0µ =  

From (1.1): 
1

1 0
p

λ = >  

But, then, (1.2) cannot be satisfied with 2 0x =  for finite, non-negative values of 2µ . 
Hence, we cannot have a solution in this case. 
 

Let now 1 20, 0x x= >  
We have: 2 0µ =  
Hence, the solution will be given by: 

1 0x =   and 1 1 2 2p x p x w+ =  

i.e. ( )1 2
2

, 0, wx x
p

 
=  
 

 

 

From (1.2): 2 0
4
p
w

λ = >  

From (1.1): 
2
1 2

1 0
4

p p
w

µ = >  

 
Hence, this is acceptable as a corner solution. 
 
 
In order now to decide which solution to keep, we need to compare the respective utility 
levels. 

For the corner solution ( )1 2
2

, 0, wx x
p

 
=  
 

 we get:  

( )1 2
2

,C wU x x
p

=   

For the interior solution ( )
2

1 1
1 2

1 2 2

, ,
4 2
p pwx x

p p p

  
 = −     

 we get: 

( )
2

1 1 1 2 1
1 2

1 2 2 1 2 1 2

4,
4 2 4 4

I p p p wp pw wU x x
p p p p p p p

+= − + = + =   
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Consider 

( ) ( )

( ) ( )

22 2
2 1 2 1

1 2 1 2
1 2 2 1 2 2

2 22 2 2
2 1 1 2 2 1

4 4, ,
4 4

4 16 4 0

I C wp p wp pw wU x x U x x
p p p p p p

wp p p p w wp p

 + +> ⇔ > ⇔ > 
 

⇔ + > ⇔ − >

 

 
Hence, we have verified that the interior solution is the dominant one. 
 

Finally, the demand is: ( )
2

1 1
1 2

1 2 2

, ,
4 2
p pwx x

p p p

  
 = −     

 

Clearly, changes in income have no effect on the amount of good 2 chosen.  
 
 

10. Suppose a person has indeed a demand curve for some commodity, let us 
denote it by j, which slopes up at all prices. Let other being equal and consider increases 
in the price of the given commodity. 
From that person�s budget constraint: 

{ }1,...,
i i j j

i N j

p x p x w
∈ −

+ =∑  

Clearly, since jx  rises following an increase in jp , in order not to violate this constraint, 

the agent must be decreasing his expenditure on all other goods 
{ }1,...,

i i
i N j

p x
∈ −
∑ . He will 

have to be doing so until he gets this term to reach zero. From this point onwards, 
however, further increases in jp  cannot be followed by increases in jx  unless the budget 
constraint is violated. 
Hence, it cannot be true that the demand slopes up at all level of prices6. 
 
 

11.  (TRUE) Consider the general utility maximization problem, where X is the 
general consumption set: 

( )

{ },

max

. .

:

x

p w

U x

s t

x B x X px w∈ = ∈ ≤

 

                                                 
6 Mathematically, we clam that the demand function ( ),jx p w  cannot be upwards slopping for levels of 

j jp p>  (where ( )( ): , ,j j j j
j

wp x p p w
p− =   for any given jp− ). 
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Let x X∈%  the solution to the above problem. We are given that, following a price 
change, say to p′ , the new optimal bundle is some x X′∈  such that ( ) ( )U x U x′ > % . 
Clearly, ,p wx B′∉  otherwise x X∈%  could not have been maximizing utility under the 

constraint ,p wB . But the very fact that x′  was not feasible under the constraint ,p wB , 
means exactly that the new bundle x′  costs more, at the old prices p  than the old bundle 
x% . 
 
 

12.  By Roy�s identity: 

( ) 1 2
1 1 2

1 2

1

, , 1

V
p p ypx p p y V p p

y y

∂ −
+∂= − = − =∂ +

∂

 

( )2 1 2
1 2

, , yx p p y
p p

=
+

 

 
For an endowment of ( ) ( )1 2, 1,0e e =  we get 1y p=  
 

The offer curve: ( ) 1 1
1 2

1 2 1 2

, ,p px p p
p p p p

 
=  + + 

 

 
 
Income Elasticity of Demand for good 1: 

( )
1

1

1 1
1, 1 2

1 1 2 1 2

1 1, , 1y

x
x x yp p y y y x p p p p
y

ε
−

∂
  ∂= = = =  ∂ ∂ + +  

 

 
Own-Price Elasticity of Demand for good 1: 

( )
( ) ( )1

1
1

1 1 1 1
1, 1 2 12

1 1 1 1 2 1 21 2

1

, ,p

x
x x p py yp p y pp p x p p p pp p
p

ε
−

∂
 ∂= = = − = − ∂ ∂ + ++  

 

 
 
 
13.   (a) Let 1p  the price of all other goods. 
Plan A: 1 1 22 100 20 80p x x+ ≤ − =  
Plan B: 1 1 2 100 40 60p x x+ ≤ − =  
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(b) Consider the general problem  

( )
( )

1 2
1 2 1 2,

1 1 2 2 1 2

max ,

. .

, 0

x x
U x x x x

s t

p x p x w x x

=

+ ≤ ≥

 

The Lagrangean: 
( ) [ ] ( ) ( )1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 2, , , ; , , 0 0L x x p p x x w p x p x x xλ µ µ λ µ µ= + − − + − + −  

 
The first-order conditions: 
 
Set (I) 
 

( )
1 1 1 1 2

1

U x
p p x

x
λ µ λ µ

∂
= − ⇔ − =

∂
             (1.1) 

 
( )

2 2 2 2 1
2

U x
p p x

x
λ µ λ µ

∂
= − ⇔ − =

∂
  (1.2) 

 
Set (II) 
 

1 1 2 2p x p x w+ ≤        (2.1) 
0λ ≥      (2.2) 

1 1 2 2 0w p x p xλ  − − =                 (2.3) 
 
 

1 0x ≥    1 0µ ≥   1 1 0xµ =           (3.1) 
 

2 0x ≥    2 0µ ≥   2 2 0xµ =           (3.2) 
 
 
Note, however, that 1 2, 0x x ≠  at the optimal point, otherwise the agent gets zero utility. 
Hence, we can only get interior solutions i.e. 1 2, 0x x >  and, by equations (3.1), (3.2):  

1 2 0µ µ= = . 
Moreover, since we are considering interior solutions, 0

ix jMU x= >  for at least one 
commodity i. Consequently, by its corresponding equation (1.i), we get 

0 0i jp xλ λ= > ⇒ > . 
Thus, we are also on the budget line equation at the optimum. 
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The solution will be given by: 
( )
( )

1 2

2 1

1.1
1.2

x p
x p

→ =  and 1 1 2 2p x p x w+ =  

 
 

Finally: ( )1 2
1 2

, ,
2 2
w wx x
p p

 
=  
 

 

 

Plan A: 280, 2w p= = . Hence:  

1
1

40x
p

= , 2 20x =  ( )1 2
1 1

40 800, , 20U x x U
p p

 
= = 

 
 

Plan B: 260, 1w p= = . Hence: 

 1
1

30x
p

= , 2 30x =        ( )1 2
1 1

30 900, ,30U x x U
p p

 
= = 

 
 

 
 
(c) Clearly, we will opt for plan B. 
 
 
 
14. The output is given: 

1

1 2 3

2 py
p p p
π∂= =

∂ +
 

 
Similarly, the inputs are given: 
 

22
1

2
2 2 3

px
p p p
π  ∂= = − ∂ + 

 and 
22

1
3

3 2 3

px
p p p
π  ∂= = − ∂ + 

 

 
Own-Price Elasticity of Output: 

 ( ) ( )1

1

1
, 1 2 3

1 2 3 2 3

2 2, , 1y p
pyp p p

p y p p p p
ε

−
 ∂= = = ∂ + + 
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15.  By Roy�s identity: 
 

( )

( ) ( )( ) ( )
( )

( )
( ) ( )( ) ( ), 1

b p y b p a pV
a ppx p y b p y b p a pV

y a p

′ ′− − −∂
∂ ′ ′= − = − = + −∂
∂

 

 
The Engel curves are given by the above Marshallian demand function by fixing the price 
and allowing only income to be variable (obviously, different values for the fixed 
parameter p will correspond to different curves). 
Hence, they will be the form: ( ) ( ) ( )( ) ( ),x p y b p y b p a p′ ′= + −   
They are linear in the single variable y. 
 
 
 
 
16.  Let us assume that apples is the jth commodity out of a total of N commodities in 
the economy. The Apple problem: 

( )

( )

1 ,..., 1

1

1

min

. .
,...,

N

N

i ix x i

N

N

i i j j
i

p x

s t
U x x u

p x p a

=

=

≥

=

∑

∑

 

  
This is, of course, the expenditure minimization problem with the additional constraint 
that the money spent on a consumption bundle must be equal to the value of one�s 
endowment in apples ja . 
Consider again the expenditure minimization problem alone 

( )

( )

1 ,..., 1

1

min

. .
,...,

N

N

i ix x i

N

p x

s t
U x x u

=

≥

∑
 

 
Let us denote by ( )*

1,..., ,Nx p p u  the solution to this problem. The value function is our 

familiar expenditure function: ( ) ( )*
1 1

1
,..., , ,..., ,

N

N i i N
i

e p p u p x p p u
=

=∑   
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The additional constraint that the Apple problem examines will give for the required level 
of apples-endowment the following: 
  

( )

( ) ( )

( )

*
1

*
1 1

* * *
1

,..., ,

1,..., , ,..., ,

,..., ,

N j j

j N N
j

i
j N i j

i j j

e p p u p a

a p p u e p p u
p

pa p p u x x
p≠

=

⇔ =

⇔ = +∑

 

 
Hence, the apple function is of the form * *

ja px= %  

where 1 11 1,..., ,1, ,...,j j N

j j j j j

p p ppp p
p p p p p

+ + 
= =  
 

% . 

 
Concave in Prices 
Reproduce the proof of concavity in prices for the expenditure function (JR pp.37-38) for 
the apple function * *

ja px= % . 
 
Homogeneity of Degree Zero in Prices:  
This is obvious. If we scale up all prices by a factor 0λ > , the problem becomes: 

( )

( )

1 ,..., 1

1

1

min

. .
,...,

N

N

i ix x i

N

N

i i j j
i

p x

s t
U x x u

p x p e

λ

λ λ

=

=

≥

=

∑

∑

 

The constraints remain the same while we are now considering an increasing 
transformation of the objective. The optimal solution *x to the problem will remain the 
same as before. Of course, the new expenditure level required to purchase the bundle *x  
will be scaled up now to *pxλ , yet so will be the amount of income provided by the 

endowment *
j jp eλ . Hence, the required amount of apples-endowment will remain the 

same as before.  
 
Non-decreasing in the Price of Every Good except Apples 
Again, this is identical to the proof of the corresponding property for the expenditure 
function (JR pp.38). Consider the Lagrangean of the Apple problem: 

( ) ( ) ( ); , j jL x px U x u px p aλ µ λ µ= + − + −    
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By the Envelope theorem: 

 
( ) ( ) ( )

*
*

, ,
1 0i

i i

e p u L x u
x

p p
µ

∂ ∂
= = + ≥

∂ ∂
 for any i j≠  

But here 
( ) ( ) ( )* * *, j j j

j
i i i i

e p u px p a a
p

p p p p

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
 

i.e. 

( )
* *

1 0j i

i j

a x
p p

µ
∂

= + ≥
∂

  for any i j≠  

 
Decreasing in the Price of Apples 
By the Envelope theorem: 

 
( ) ( ) ( )

*
* *

, ,
1 j j

j j

e p u L x u
x a

p p
µ

∂ ∂
= = + −

∂ ∂
 for any i j≠  

But now 
( ) ( )* *

*
, j j j

j
j j j

e p u p a a
a

p p p

∂ ∂ ∂
= = +

∂ ∂ ∂
 

 
 
Hence 

( )

( ) ( )

*
* *

*
* * * * *

1 2

1 2 1 2

j
j j

j

j i i
j i j j i

i j i jj j j

a
x a

p

a p px x x x x
p p p

µ

µ µ
≠ ≠

∂
= + − ⇔

∂

 ∂
= + − + = − − −  ∂  

∑ ∑
 

 
But by the Lagrangean first order conditions, we get7: 

( ) ( ) ( ) ( ) ( )* * *
* *

, ; ,
1 0 1 0j j

j j j

L x u U x U x
x x

x x x
λ µ

µ λ µ λ
∂ ∂ ∂

= + + = ⇔ + = − <
∂ ∂ ∂

 

Therefore, we conclude that 
*

0j

j

a
p

∂
<

∂
. 

 
 
 
 
                                                 
7 I am assuming that the marginal utility with respect to apples is strictly positive at *x . Note that this 

assumption suffices to guarantee that 0λ >  (i.e. utility is driven down to ( )*U x u= at the optimum). 
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17.  In matrix notation, the problem can be written as follows: 

( )

( )

( )

1 2

1
1 2,

2

1
11 12 1

2

1
21 22 2

2

1 2

max

. .

0 0

x x

x
b b

x
s t

x
a a c

x

x
a a c

x

x x

 
 
 

 
≤ 

 
 

≤ 
 

≥ ≥

 

or equivalently 
 

( )
1 2

1
1 2,

2

11 12 1 1

21 22 2 2

1 2

max

. .

0 0

x x

x
b b

x
s t

a a x c
a a x c

x x

 
 
 

    
≤    

    

≥ ≥

 

 
 
The Lagrangean: 

( )
( ) ( ) ( ) ( )
11 21 12 22 1 2 1 2 1 1 2 2

1 1 11 1 12 2 2 2 21 1 22 2 1 1 2 2

, , , ; , , ,

0 0

L x x x x b x b x

c a x a x c a x a x x x

λ λ µ µ
λ λ µ µ

= +

+ − − + − − + − + −
 

 
The dual problem 
 

( )
1 2

1
1 2,

2

11 12 1 1

21 22 2 2

1 2

min

. .

0 0

x x

x
c c

x
s t

a a x b
a a x b

x x

 
 
 

    
≥    

    

≥ ≥
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18.  

( )
( )

( ) ( )

11 21

1
11 21,

2 2
12 22 12 22

11 12 11 12

21 22 21 22

max ,

. .
, ,

x x
U x x

s t
U x x U
x x
x x

ω ω
ω ω
ω ω

≥
+ = +
+ = +

 

 
The Lagrangean: 

( ) ( ) ( ) ( )
( ) ( )

1 2 2
11 21 12 22 1 2 11 21 12 22 12 22

1 11 12 11 12 2 21 22 21 22

, , , ; , , , , ,L x x x x U x x U x x U

x x x x

λ µ µ λ ω ω

µ ω ω µ ω ω

 = + − 
+ + − − + + − −

 

 
Interpreting the Lagrangean multiplier:  
 
The value of the Lagrangean multiplier, at the optimal point, is equal to the marginal 
utility of player 1 with respect to the parameter of the corresponding constraint.  

For example, at the solution, 
( )
( )( )

( )
( )

1 * * 1 * *
11 12 11 12*

22
21 2221 22

, ,

,,

U x x U x x

UU
λ

ω ωω ω

∂ ∂
= = −

∂∂ −
 gives the rate of 

change of the objective function (here the utility of the first agent) with respect to 
infinitesimal decreases in the required level of utility that we specify as the lower 
permissible bound for player 2. 

Similarly, 
( )

( )
1 * *

11 12*
1

11 21

,U x x
µ

ω ω
∂

=
∂ +

  and  
( )

( )
1 * *

11 12*
2

12 22

,U x x
µ

ω ω
∂

=
∂ +

 

 
 
 
19.  Let the production of apples be modeled by the production function: ( )1ay f L=  

Similarly, let the production of breadfruit denoted by: ( )2 ,b ay F L x=  
In equilibrium, all markets must clear. For the market for apples, this means that the 
breadfruit producer must be employing the entire output of the apple producer. Similarly, 
for the market for labor services, it means that, between them, the two producers must be 
employing the entire amount of labor sL  supplied by consumers. 
We can, thus, re-write the equilibrium-level production function of breadfruits as: 

( ) ( )( ) ( )( )2 2 1 2 2, , ,b a sy F L y F L f L F L f L L= = = −  
 
In this format, the problem seems very much like the Robinson Crusoe one. Consider the 
analysis of the Robinson-Crusoe problem in JR (pp.215). A shift in preferences away 
from leisure and towards breadfruits means that the new equilibrium allocation for the 
consumers would be a shift towards the northwest direction in Fig.5.8(b). Hence, the 
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breadfruits producer ought to be also moving his tangency point in a north-west direction 
in Fig.5.8(a) i.e. his new is-profit line should be flatter. We should expect, therefore, the 
relative price of labor to breadfruits (the slope of the iso-profit and budget lines in 
Fig.5.8.) to fall. 
 
As for the price of apples, this would be determined by the profit-maximizing condition 
for the production of apples: 

( ) ( )1 1a
a

wp f L w f L
p

′ ′= ⇔ =  

Since the apples producer will be absorbing some of the increase in labor supply and the 
production function for apples is increasing, we should expect the relative price of labor 
to apples to be larger in the equilibrium. 
 
Hence, in the new equilibrium, apples become cheaper than before relatively to both 
other commodities and labor becomes cheaper relatively to breadfruits.   
 
 
 
 
20. The given function 

( )1 2
1 1 2 2

, ,
2

yV p p y
p p p p

=
+ +

 

cannot be an indirect utility function because it is not homogenous of degree zero in 
prices. 
For any 0λ > , 

( ) ( ) ( )1 2
1 2 1 22

1 1 2 2

, ,
, , , ,

2

V p p yyV p p y V p p y
p p p p

λ λ
λλ λ λ

= = ≠
+ +

 

 
 
 
 
 
 
 
 
 
 


