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INSTRUMENTAL VARIABLES/ EXOGENEITY TESTS

y = Xβ + gggg, 

y is n×1, X is n×k, β is k×1, and gggg is n×1.  

Suppose that contamination of X, where some of the X
variables are correlated with gggg, is suspected.  This can
occur if 
 gggg contains omitted variables that are correlated with

the included variables
 X contains measurement errors
 X contains endogenous variables that are determined

jointly with y.

OLS Revisited: Premultiply the regression equation by
XNNNN to get 

(1)                           XNNNNy = XNNNNXβ + XNNNNgggg. 

One can interpret the OLS estimate bOLS as the solution
obtained from (1) by first approximating XNNNNgggg by zero, and
then solving the resulting k equations in k unknowns,

(2)                           XNNNNy = XNNNNXbOLS. 

Subtracting (1) from (2),
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(3)                        XNNNNX(bOLS - β) = XNNNNgggg, 

The error in estimating β is linear in the error caused by
approximating XNNNNgggg by zero.  

If XNNNNX/n 6666p A positive definite and XNNNNgggg/n 6666p 0, (3) implies
bOLS 6666p β.

If one has instead XNNNNgggg/n 6666p C ………… 0, then bOLS is not
consistent for β, and instead bOLS 6666p β + A-1C.

Instrumental Variables: Suppose there is a n×j array of
variables W, called instruments, that have two properties: 
 (i) These variables are uncorrelated with gggg; we say in

this case that these instruments are clean.  
 (ii) The matrix of correlations between the variables in

X and the variables in W is of maximum possible rank
(= k); we say in this case that these instruments are
fully correlated.  

Call the instruments proper if they satisfy (i) and (ii).  The
W array should include any variables from X that are
themselves clean.  

To be fully correlated, W must include at least as many
variables as are in X, so that j $$$$ k. 
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 The number of instruments in W that are excluded from X
must be at least as large as the number of contaminated
variables that are included in X.

Instead of premultiplying the regression equation by
XNNNN as we did for OLS, premultiply it by RNNNNWNNNN, where R is
a j×k weighting matrix that we get to choose.  This gives

(4)                        RNNNNWNNNNy = RNNNNWNNNNXβ + RNNNNWNNNNgggg. 

The idea of an instrumental variables (IV) estimator of β is
to approximate RNNNNWNNNNgggg by zero, and solve

(5)                         RNNNNWNNNNy = RNNNNWNNNNX bIV

for bIV = [RNNNNWNNNNX]-1RNNNNWNNNNy.  Subtract (4) from (5) to get the
IV analog of the OLS relationship (3),

(6)                   RNNNNWNNNNX(bIV - β) = RNNNNWNNNNgggg. 

If RNNNNWNNNNX/n converges in probability to a nonsingular
matrix and RNNNNWNNNNgggg/n 6666p 0, then bIV 6666p β.  Thus, in problems
where OLS breaks down due to correlation of
right-hand-side variables and the disturbances, you can
use IV to get consistent estimates, provided you can find
proper instruments.  
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The idea behind (5) is that W and gggg are orthogonal in the
population, a generalized moment condition.  Then, (5)
can be interpreted as the solution of a generalized method
of moments problem, based on the sample moments WNNNN(y -
Xβ).  The properties of the IV estimator can be deduced as
a special case of the general theory of GMM estimators. 

If there are exactly as many instruments as there are
explanatory variables, j = k, then the IV estimator is
uniquely determined, bIV = (WNNNNX)-1WNNNNy, and R is
irrelevant.  However, if j > k, each R determines a
different IV estimator.  What is the best R? 
Premultiplying the regression  equation by WNNNN yields a
system of j > k equations in k unknown β's, WNNNNy = WNNNNXβ +
WNNNNgggg.  Since there are more equations than unknowns, we
cannot simply approximate all the WNNNNgggg terms by zero
simultaneously, but will have to accommodate at least j-k
non-zero residuals.  But this is just like a regression
problem, with j observations, k explanatory variables, and
disturbances ν = WNNNNgggg.  Suppose the disturbances gggg have a
covariance matrix σ2I, and hence the disturbances ν = WNNNNgggg
have a non-scalar covariance matrix σ2I.  Then 

(WNNNNW)-1/2WNNNNy = (WNNNNW)-1/2WNNNNXβ + (WNNNNW)-1/2WNNNNgggg 

has a scalar covariance matrix, and when solved after
approximating the last term by zero yields
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(8)           b2SLS = [XNNNNW(WNNNNW)-1WNNNNX]-1XNNNNW(WNNNNW)-1WNNNNy. 

This corresponds to using the weighting matrix R =
(WNNNNW)-1WNNNNX.  But this formula provides another
interpretation of (8).  If you regress each variable in X on
the instruments, the resulting OLS coefficients are
(WNNNNW)-1WNNNNX, the same as R.  Then, the best linear
combination of instruments WR equals the fitted value X*

= W(WNNNNW)-1WNNNNX of the explanatory variables from a OLS
regression of X on W.  Further, you have
XNNNNW(WNNNNW)-1WNNNNX = XNNNNX* = X*NNNNX* and XNNNNW(WNNNNW)-1WNNNNy =
X*NNNNy, so that the IV estimator (8) can also be written

(9)             b2SLS = (X*NNNNX)-1X*NNNNy = (X*NNNNX*)-1X*NNNNy. 

This provides a two-stage least squares (2SLS)
interpretation of the IV estimator:  First, a OLS regression
of the explanatory variables X on the instruments W is
used to obtain fitted values X*, and second a OLS
regression of y on X* is used to obtain the IV estimator
b2SLS.  Note that in the first stage, any variable in X that is
also in W will achieve a perfect fit, so that this variable is
carried over without modification in the second stage.
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STATISTICAL PROPERTIES OF IV ESTIMATORS

IV estimators can behave badly in finite samples.  In
particular, they may fail to have moments.  Their appeal
relies on their behavior in large samples, although an
important question is when samples are large enough so
that the asymptotic approximation is reliable. 

We show next that IV estimators are asymptotically
normal   Let σ2Ω be the covariance matrix of gggg, given W,
and assume that it is finite and of full rank.  Make the
assumptions:

[1] rank(W) = j $$$$ k
[2a] WNNNNW/n 6666p H, a positive definite matrix
[2b] WNNNNΩW/n 6666p F, a positive definite matrix
[3] XNNNNW/n 6666p G, a matrix of rank k
[4] WNNNNgggg/n 6666p 0
[5] n-1/2WNNNNgggg6666d N(0,σ2F)

Theorem: Assume that [1], [2b], [3] hold, and that an
IV estimator is defined with a weighting matrix Rn

that may depend on the sample n, but which
converges to a matrix R of rank k.  If [4] holds, then
bIV 6666p β.  If both [4] and [5] hold, then

(10)             n1/2(bIV - β) 6666d N(0, σ2(RNNNNGNNNN)-1RNNNNFR(GR)-1). 

Suppose Rn = (WNNNNW)-1WNNNNX and [1]-[5] hold.  Then the
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IV estimator specializes to the 2SLS estimator b2SLS

given by (8) which satisfies b2SLS 6666p β and 

(11) n1/2(b2SLS - β) 6666d N(0, σ2(GH-1GNNNN)-1(GH-1FH-1GNNNN)(GH-1GNNNN)-1). 

If, further, Ω = I,

(12)        n1/2(b2SLS - β) 6666d N(0, σ2(GH-1GNNNN)-1). 

 
In order to use the large-sample properties of bIV for

hypothesis testing, it is necessary to find a consistent
estimator for σ2.  The following estimator works:  Define
IV residuals 

   u = y - XbIV = [I - X(RNNNNWNNNNX)-1RNNNNWNNNN]y 
= [I - X(RNNNNWNNNNX)-1RNNNNWNNNN]gggg,

the Sum of Squared Residuals SSR = uNNNNu, and s2 =
uNNNNu/(n-k).  If ggggNNNNgggg/n 6666p σ2, then s2 is consistent for σ2.  To
show this, simply write out the expression for uNNNNu/n, and
take the probability limit:

(13)  plim uNNNNu/n 
= plim ggggNNNNgggg/n - 2 plim [ggggNNNNW/n]R([XNNNNW/n]R)-1[XNNNNgggg/n]

 + [ggggNNNNW/n]R([XNNNNW/n]R)-1[XNNNNX/n](RNNNN[WNNNNX/n])-1RNNNN[WNNNNgggg/n]
    = σ2 - 2""""0""""R""""(GR)-1C + 0""""R""""(GR)-1A(RNNNNGNNNN)-1RNNNN""""0 = σ2. 
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We could have used n-k instead of n in the denominator of
this limit, as it makes no difference in large enough
samples.  The consistency of the estimator s2 defined above
holds for any IV estimator, and so holds in particular for
the 2SLS estimators.  Note that this consistent estimator of
σ2 substitutes the IV estimates of the coefficients into the
original equation, and uses the original values of the X
variables to form the residuals.  When working with the
2SLS estimator, and calculating it by running the two OLS
regression stages, you might be tempted to estimate σ2

using a regression program printed values of SSR or the
variance of the second stage regression, which is based on
the residuals û = y - X*b2SLS.  This estimator is not
consistent for σ2. 

Suppose EggggggggNNNN = σ2I, so that 2SLS is best among IV
estimators using instruments W.  The sum of squared
residuals SSR = uNNNNu, where u = y - Xb2SLS, can be used in
hypothesis testing in the same way as in OLS estimation.
For example, consider the hypothesis that β2 = 0, where β2

is a r×1 subvector of β.  Let SSR0 be the sum of squared
residuals from the 2SLS regression of y on X with β2 = 0
imposed, and SSR1 be the sum of squared residuals from
the unrestricted 2SLS regression of y on X.  Then,
[(SSR0 - SSR1)/m]/[SSR1/(n-k)] has an approximate
F-distribution under the null with m and n-k degrees of
freedom.  There are several cautions to keep in mind when
considering use of this test statistic.  This is a large sample
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approximation, rather than an exact distribution, because
it is derived from the asymptotic normality of the 2SLS
estimator.  Its actual size in small samples could differ
substantially from its nominal (asymptotic) size.  Also, the
large sample distribution of the statistic assumed that the
disturbances gggg have a scalar covariance matrix. 

What are the finite sample properties of IV
estimators?  Because you do not have the condition E(gggg****X)
= 0 holding in applications where IV is needed, you cannot
get simple expressions for the moments of bIV =
[RNNNNWNNNNX]-1RNNNNWNNNNy = β + [RNNNNWNNNNX]-1RNNNNWNNNNgggg by first taking
expectations of gggg conditioned on X and W.  In particular,
you cannot conclude that bIV is unbiased, or that it has a
covariance matrix given by its asymptotic covariance
matrix.  In fact, bIV can have very bad small-sample
properties.  To illustrate, consider the case where the
number of instruments equals the number of observations,
j = n.  (This can actually arise in dynamic models, where
often all lagged values of the exogenous variables are
legitimate instruments.  It can also arise when the
candidate instruments are not only uncorrelated with gggg,
but satisfy the stronger property that E(gggg****w) = 0.  In this
case, all functions of w are also legitimate instruments.)  In
this case, W is a square matrix, and
 

b2SLS = [XNNNNW(WNNNNW)-1WNNNNX]-1XNNNNW(WNNNNW)-1WNNNNy 
= [XNNNNX]-1XNNNNy = bOLS. 
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We know OLS is inconsistent when E(gggg****X) = 0 fails, so
clearly the 2SLS estimator is also biased if we let the
number of instruments grow linearly with sample size.
This shows that for the IV asymptotic theory to be a good
approximation, n must be much larger than j.  One
rule-of-thumb for IV is that n - j should exceed 40, and
should grow linearly with n in order to have the
large-sample approximations to the IV distribution work
well.

Considerable technical analysis is required to
characterize the finite-sample distributions of IV
estimators analytically.  However, simple numerical
examples provide a picture of the situation.  Consider a
regression y = xβ + gggg where there is a single
right-hand-side variable, and a single instrument w, and
assume x, w, and gggg have the simple joint distribution given
in the table below, where λ is the correlation of x and w, ρ
is the correlation of x and gggg, and |λ| + |ρ| < 1.  The
interpretation of the second row of the table, for example,
is that (x,w,ε) = (1,1,-1) and (x,w,ε) = (-1,-1,1) each occur
with probability (1-ρ+λ)/8:

x w gggg Prob
±1 ±1 ±1 (1+ρ+λ)/8
±1 ±1 KKKK1 (1-ρ+λ)/8
±1 KKKK1 ±1 (1+ρ-λ)/8
±1 KKKK1 KKKK1 (1-ρ-λ)/8
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The random variables (x,w,ε) have mean zero, variance
one, and Exgggg = ρ, Exw = λ, and Ewgggg = 0.  Their products
have the joint distribution

xw xgggg wgggg Prob
1 1 1 (1+ρ+λ)/4
1 -1 -1 (1-ρ+λ)/4
-1 1 -1 (1+ρ-λ)/4
-1 -1 1 (1-ρ-λ)/4

This implies P(xgggg=1) = (1+ρ)/2.  Then, in a sample of size
n, n((bOLS - β) + 1)/2 has an exact distribution that is
binomial with n draws and probability (1+ρ)/2.  Then
n1/2(bOLS - β) has mean n1/2ρ and variance (1-ρ2).  Thus,
n@@@@MSE = n@@@@(Variance + Bias2) = 1 + (n-1)ρ2.
Exercise: Draw 1000 samples of various sizes from the
distribution above, calculate bIV, calculate selected points
of its CDF, and compare these with corresponding points
of the CDF for bOLS.
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In practice, in problems where sample size minus the
number of instruments exceeds 40, the asymptotic
approximation to the distribution of the IV estimator is
reasonably good, and one can use it to compare the OLS
and IV estimates.  To illustrate, continue the example of a
regression in one variable, y = xβ + gggg.   Suppose as before
that x and gggg have a correlation coefficient ρ ………… 0, so that
OLS is biased, and suppose that there is a single proper
instrument w that is uncorrelated with gggg and has a
correlation λ ………… 0 with x.  Then, the OLS estimator is
asymptotically  normal with mean β + ρσgggg/σx and variance
σgggg

2/nσx
2.  The 2SLS estimator is asymptotically normal

with mean β and variance σgggg
2/nσx

2
 λ2.  The mean squares of

the two estimators are then, approximately,

                      MSEOLS = (ρ2 + 1/n)σgggg
2/σx

2

                      MSE2SLS = σgggg
2/nσx

2
 λ2.

Then, 2SLS has a lower MSE than OLS when

         1 < ρ2λ2n/(1-λ2) .... (b2SLS-bOLS)
2/(V(b2SLS)-V(bOLS)),

or approximately n > (1 - λ2)/ρ2λ2.  When λ = 0.8 and ρ =
0.2, this asymptotic approximation suggests that a sample
size of about 14 is the tip point where bIV should be better
than b in terms of MSE.  However, the asymptotic formula
underestimates the probability of very large deviations
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arising from a denominator in bIV that is near zero, and as
a consequence is too quick to reject bOLS.  The
right-hand-side of this approximation to the ratio of the
MSE is the Hausman test statistic for exogeneity, discussed
below; for this one-variable case, one should reject the null
hypothesis of exogeneity when the statistic exceeds one.
Under the null, the statistic is approximately chi-square
with one degree of freedom, so that this criterion
corresponds to a type I error probability of 0.317.

RELATION OF IV TO OTHER ESTIMATORS 

The 2SLS estimator can be interpreted as a member
of the family of Generalized Method of Moments (GMM)
estimators.  You can verify by differentiating to get the
first-order condition that the 2SLS estimator of the
equation y = Xβ + gggg using the instruments W, where EggggggggNNNN
= σ2I, solves

(14)           Minβ (y-Xβ)NNNNW(WNNNNW)-1WNNNN(y-Xβ). 

In this quadratic form objective function, WNNNN(y-Xβ) is the
moment that has expectation zero in the population when
β is the true parameter vector, and (WNNNNW)-1 is a "distance
metric" in the center of the quadratic form.  Define P =
W(WNNNNW)-1WNNNN, and note that P is idempotent, and thus is
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a projection matrix.  Then, the GMM criterion chooses β
to minimize the length of the vector y- Xβ projected onto
the subspace spanned by P.  The properties of GMM
hypothesis testing procedures follow readily from the
observation that y-Xβ has mean zero and  a scalar
covariance matrix .   In part icular,  Min β
(y-Xβ)NNNNW(WNNNNW)-1WNNNN(y-Xβ)/σ2 is asymptotically
chi-squared distributed with degrees of freedom equal to
the rank of P.

It is possible to give the 2SLS estimator a pseudo-MLE
interpretation.   Premultiply the regression equation by
WNNNN to obtain WNNNNy = WNNNNXβ + WNNNNgggg.  Now treat WNNNNgggg as if it
were normally distributed with mean zero and j×j
covariance matrix λ2WNNNNW, conditioned on WNNNNX.  Then, the
log likelihood of the sample would be

 L = - (j/2) log 2π - (j/2) (½) log λ2 - (½) log det(WNNNNW) 
- (1/2λ2)(WNNNNy-WNNNNXβ)NNNN(WNNNNW)-1(WNNNNy-WNNNNXβ). 

The first-order condition for maximization of this
pseudo-likelihood is the same as the condition defining the
2SLS estimator.  
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TESTING EXOGENEITY

Sometimes one is unsure whether some potential
instruments are clean.  If they are, then there is an
asymptotic efficiency gain from including them as
instruments.  However, if they are not, estimates will be
inconsistent.  Because of this tradeoff, it is useful to have
a specification test that permits one to judge whether
suspect instruments are clean or not.  To set the problem,
consider a regression y = Xβ + gggg, an array of proper
instruments Z, and an array of instruments W that
includes Z plus other variables that may be either clean or
contaminated.

Several superficially different problems can be recast
in this framework: 
 

(1) The regression may be one in which some
right-hand-side variables are known to be exogenous
and others are suspect, Z is an array that contains the
known exogenous variables and other clean instruments,
and W contains Z and the variables in X that were
excluded from Z because of the possibility that they
might be dirty.  In this case, 2SLS using W reduces to
OLS, and the problem is to test whether the regression
can be estimated consistently by OLS.  
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(2) The regression may contain known endogenous and
known exogenous variables, Z is an array that contains
the known exogenous variables and other clean
instruments, and W is an array that contains Z and
additional suspect instruments from outside the
equation.  In this case, one has a consistent 2SLS
estimator using instruments Z, and a 2SLS estimator
using instruments W that is more efficient under the
hypothesis that W is exogenous, but inconsistent
otherwise.   The question is whether to use the more
inclusive array of instruments.  
(3) The regression may contain known endogenous,
known exogenous, and suspect right-hand-side
variables, Z is an array that contains the known
exogenous variables plus other  instruments from
outside the equation, and W is an array that contains Z
plus the suspect variables from the equation.  The
question is whether it is necessary to instrument for the
suspect variables, or whether they are clean and can
themselves be used as instruments.
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In the regression y = Xβ + gggg, you can play it safe and
use only the Z instruments.  This gives bQ = (XNNNNQX)-1XNNNNQy,
where Q = Z(ZNNNNZ)-1ZNNNN.  Alternately, you use W, including
the suspect instruments, taking a chance with
inconsistency to gain efficiency.  This gives 

     bP = (XNNNNPX)-1XNNNNPy, where P = W(WNNNNW)-1WNNNN.

If the suspect instruments are clean and both estimators
are consistent, then bQ and bP should be close together, as
they are estimates of the same β; further, bP is efficient
relative to bQ, implying that the covariance matrix of (bQ

- bP) equals the covariance matrix of bQ minus the
covariance matrix of bP.  However, if the suspect
instruments are contaminated, bP is inconsistent, and (bQ

- bP) has a nonzero probability limit.  This suggests a test
statistic of the form 

(15)       (bQ - bP)NNNN[V(bQ) - V(bP)]GGGG(bQ - bP), 

where [""""]GGGG denotes a generalized inverse, could be used to
test if W is clean.  This form is the exogeneity test
originally proposed by Hausman.  Under the null
hypothesis that W is clean, this statistic will be
asymptotically chi-square with degrees of freedom equal
to the rank of the covariance matrix in the center of the
quadratic form.
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Another formulation of an exogeneity test is more
convenient to compute, and can be shown (in one
manifestation) to be equivalent to the Hausman test
statistic.  This alternative formulation has the form of an
omitted variable test, with appropriately constructed
auxiliary variables. 

First do an OLS regression of X on Z and retrieve
fitted values X* = QX, where Q = Z(ZNNNNZ)-1ZNNNN.  (This is
necessary only for variables in X that are not in Z, since
otherwise this step just returns the original variable.)
Second, using W as instruments, do a 2SLS regression of
y on X, and retrieve the sum of squared residuals SSR1.
Third, do a 2SLS regression of y on X and a subset of m
columns of X* that are linearly independent of X, and
retrieve the sum of squared residuals SSR2.  Finally, form
the statistic [(SSR1 - SSR2)/m]/[SSR2/(n-k)].  Under the null
hypothesis that W is clean, this statistic has an
approximate F-distribution with m and n-k degrees of
freedom, and can be interpreted as a test for whether the
m auxiliary variables from X* should be omitted from the
regression.  When a subset of X* of maximum possible
rank is chosen, this statistic turns out to be asymptotically
equivalent to the Hausman test statistic.  Note that if W
contains X, then the 2SLS in the second and third steps
reduces to OLS.

We next show that this test is indeed an exogeneity
test.  Consider the 2SLS regression 
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           y = Xβ + X1
*γ + η, 

where X1
* is a subset of X* = QX such that [X,X1

*] is of full
rank.  The 2SLS estimates of the parameters in this model,
using W as instruments, satisfy

     =  =  . 
bP

cP

XNPX XNQX1

X1NQX X1NQX1

&1 XNPy

X1NQy

β
0

%

XNPX XNQX1

X1NQX X1NQX1

&1 XNPg

X1NQg

But XNNNNQgggg/n 6666p plim(XNNNNZ/n)""""(plim(ZNNNNZ/n))-1""""plim(ZNNNNgggg/n) = 0
by assumptions [1]-[4] when Z is clean.  Similarly, XNNNNPgggg/n
6666p GH-1""""plim(WNNNNgggg/n) = 0 when W is clean, but XNNNNPgggg/n 6666p

GH-1""""plim(WNNNNgggg/n) ………… 0 when W is contaminated.  Define

      = . 
XNPX/n XNQX1/n

X1NQX/n X1NQX1/n

&1 A11 A12

A21 A22

From the formula for a partitioned inverse,

A11 = (XNNNN[P - QX1(X1NNNNQX1)
-1X 1NNNNQ]X/n)-1

A22 = (X 1NNNNQ[I - X(XNNNNPX)-1XNNNN]QX1/n)-1

A21 = -(X 1NNNNQX1)
-1X 1NNNNQX""""A11 

               = -A22(X 1NNNNQX)(XNNNNPX)-1 = A12 NNNN

   Hence,

(16)      cP = A22""""{X1NNNNQgggg/n - (X1NNNNQX)(XNNNNPX)-1""""XNNNNPgggg/n}. 

If W is clean and satisfies assumptions [4] and [5], then cP

6666p 0 and n1/2cP is asymptotically normal.  On the other
hand, if W is contaminated, then cP has a non-zero
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probability limit.  Then, a test for γ = 0 using cP is a test of
exogeneity.  

The test above can be reinterpreted as a Hausman test
involving differences of bP and bQ.  Recall that bQ = β +
(XNNNNQX)-1XNNNNQgggg and bP = β + (XNNNNPX)-1XNNNNPgggg.  Then

(17)  (XNNNNQX)(bQ - bP) = {XNNNNQgggg/n - (XNNNNQX)(XNNNNPX)-1""""XNNNNPgggg/n}.

Then in particular for a linearly independent subvector X1

of X,

   A22(X1NNNNQX)(bQ - bP) 
= A22{X1NNNNQgggg/n - (X1NNNNQX)(XNNNNPX)-1""""XNNNNPgggg/n} = cP.

 

Thus, cP is a linear transformation of (bQ - bP).  Then,
testing whether cP is near zero is equivalent to testing
whether a linear transformation of (bQ - bP) is near zero.
When X1 is of maximum rank, this equivalence establishes
that the Hausman test in its original form is the same as
the test for cP.
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EXOGENICITY TESTS ARE GMM TESTS FOR OVER-
IDENTIFICATION

The Hausman Exogeneity Test.  Consider the
regression model y = Xβ + gggg, and suppose one wants to test
the exogeneity of p variables X1 in X.  Suppose R is an
array of instruments, including X2; then Z = PRX1 are
instruments for X1.  Let W = [Z X] be all the variables that
are orthogonal to gggg in the population under the null
hypothesis that X and gggg are uncorrelated.  As in the
omitted variables problem, consider the test statistic for
over-identifying restrictions, 2nQn = minbuNNNNPWu/σ2, where
u = y - Xb.  Decompose PW = PX + (PW - PX).  Then uNNNN(PW -
PX)u = yNNNN(PW - PX)y and the minimizing b sets uNNNNPXu = 0, so
that 2nQn = yNNNN(PW - PX)y/σ2.  Since PW - PX = , one alsoPQXW

has 2nQn = yNNNN y.  This statistic is the same as the testPQXW

statistic for the hypothesis that the coefficients of Z are
zero in a regression of y on X and Z; thus the test for
over-identifying restrictions is an omitted variables test.
One can also write 2nQn = 2222ííííW - ííííX22222/σ2, so that a
computationally convenient equivalent test is based on the
difference between the fitted values of y from a regression
on X and Z and a regression on X alone.  Finally, we will
show that the statistic can be written

2nQn 
= (b1,2SLS - b1,OLS)[V(b1,2SLS) - V(b1,OLS)]

-1(b1,2SLS - b1,OLS). 
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In this form, the statistic is the Hausman test for
exogenicity in the form developed by Hausman and
Taylor, and the result establishes that the Hausman test
for exogeneity is equivalent to a GMM test for
over-identifying restrictions.

Several steps are needed to demonstrate this
equivalence.  Note that b2SLS = (XNNNNPMX)-1XNNNNPMy, where M
= [Z X2].  Write

b2SLS - bOLS = (XNNNNPMX)-1XNNNNPMy - (XNNNNX)-1XNNNNy 
= (XNNNNPMX)-1[XNNNNPM - XNNNNPMX(XNNNNX)-1XNNNN]y 

= (XNNNNPMX)-1XNNNNPMQXy.   

Since X2 is in M, PMX2 = X2, implying XNNNNPMQX = 
X1NPMQX

X2NPMQX

=  = .   Also, XNNNNPMX =  =
X1NPMQX

X2NQX

X1NPMQX

0

X1NPMX1 X1NPMX2

X2NPMX1 X2NPMX2

.  Then  = (XNNNNPMX)(b2SLS - bOLS) ////
X1NPMX1 X1NX2

X2NX1 X2NX2

X1NPMQXy

0

.   From the second block of
X1NPMX1 X1NX2

X2NX1 X2NX2

b1,2SLS & b1,OLS

b2,2SLS & b2,OLS

equations, one obtains the result that the second
subvector is a linear combination of the first subvector.
This implies that a test statistic that is a function of the
full vector of differences of 2SLS and OLS estimates can
be written equivalently as a function of the first subvector
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of differences.  From the first block of equations,
substituting in the solution for the second subvector of
differences expressed in terms of the first, one obtains

[X1NNNNPMX1 - X1NNNNX2(X2NNNNX2)
-1X2NNNNX1](b1,2SLS - b1,OLS) 

= X1NNNNPMQXy 

The matrix on the left-hand-side can be rewritten as
X1NNNNPM PMX1, so that QX2

b1,2SLS - b1,OLS = (X1NNNNPM PMX1)
-1X1NNNNPMQXy. 

QX2

Next, we calculate the covariance matrix of b2SLS -
bOLS, and show that it is equal to the difference of V(b2SLS)
= σ2(XNNNNPMX)-1 and V(bOLS) = σ2(XNNNNX)-1.  From the formula
b2SLS - bOLS = (XNNNNPMX)-1XNNNNPMQXy, one has V(b2SLS - bOLS) =
σ2(XNNNNPMX)-1XNNNNPMQXPMX(XNNNNPMX)-1.
On the other hand,

V(b2SLS) - V(bOLS) = σ2(XNNNNPMX)-1{XNNNNPMX -
XNNNNPMX(XNNNNX)-1XNNNNPMX}(XNNNNPMX)-1

= σ2(XNNNNPMX)-1{XNNNNPM[I - X(XNNNNX)-1XNNNN]PMX}(XNNNNPMX)-1 
= σ2(XNNNNPMX)-1XNNNNPMQXPMX(XNNNNPMX)-1. 

Thus, V(b2SLS - bOLS) = V(b2SLS) - V(bOLS).  This is a
consequence of the fact that under the null hypothesis OLS
is efficient among the class of linear estimators including
2SLS.  Expanding the center of this expression, and using
the results PMX2 = X2 and hence QXPMX2 = 0, one has
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XNNNNPMQXPMX = . 
X1NPMQXPMX1 0

0 0

Hence, V(b2SLS) - V(bOLS) is of rank p; this also follows by
noting that b2,2SLS - b2,OLS could be written as a linear
transformation of b1,2SLS - b1,OLS.

Next, use the formula for partitioned inverses to show
for N = M or N = I that the northwest corner of

is .  Then, 
X1NPNX1 X1NX2

X2NX1 X2NX2

&1

(X1NPNQX2
PNX1)

&1

V(b1,2SLS - b1,OLS) =
σ2(X1NNNNPM PMX1)

-1X1NNNNPMQXPMX1(X1NNNNPM PMX1)
-1. 

QX2
QX2

Using the expressions above, the quadratic form can be
written

(b1,2SLS - b1,OLS)V(b1,2SLS - b1,OLS)
-1(b1,2SLS - b1,OLS)

= yNNNNQXPMX1(X1NNNNPMQXPMX1)
-1X1NNNNPMQXy/σ2. 

Finally, one has, from the test for over-identifying
restrictions,

2nQn = yNNNN(PW - PX)y/σ2 = /σ2
yNPQXWy

//// yNNNNQXPMX1(X1NNNNPMQXPMX1)
-1X1NNNNPMQXy/σ2, 

so that the two statistics coincide.
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A Generalized Exogenicity Test: Consider the
regression y = X1β1 + X2β2 + X3β3 + gggg, and the null
hypothesis that X1 is exogenous, where X2 is known to be
exogenous, and X3 is known to be endogenous.  Suppose N
is an array of instruments, including X2, that are sufficient
to identify the coefficients when the hypothesis is false.  Let
W = [N X1] be the full set of instruments available when
the null hypothesis is true.   Then the best instruments
under the null hypothesis are Xo = PWX //// [X1  X2  X3*], and
the best instruments under the alternative are Xu = PNX ////
[X1*  X2  X3*].  The test statistic for over-identifying
restrictions is 2nQn = yNNNN( - )y/σ2, as in the previousPXo

PXu

cases.  This can be written 2nQn = (  - )/σ2, withSSRXo
SSRXu

the numerator the difference in sum of squared residuals
from a OLS regression of y on Xu and a OLS regression of
y on Xo.  Also, 2nQn = 2222  - 22222/σ2, the differenceíXo

íXu

between the fitted values of y from a regression on Xu and
a regression on Xo.  Finally,

2nQn = - ) - )]GGGG - ), (b2SLSo
b2SLSu

)N[V(b2SLSu
V(b2SLSo

(b2SLSo
b2SLSu

an extension of the Hausman-Taylor exogeneity test to the
problem where some variables are suspect and others are
known to be exogenous.  One can show that the quadratic
form in the center of this quadratic form has rank equal to
the rank of X1, and that the test statistic can be written
equivalently as a quadratic form in the subvector of
differences of the 2SLS estimates for the X1 coefficients,
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with the ordinary inverse of the corresponding submatrix
of differences of variances in the center of the quadratic
form.  


