INSTRUMENTAL VARIABLES EXOGENEITY TESTS

y=Xp+g,
yisnxl, X isnxk, piskxl, and gisnx1.

Suppose that contamination of X, where some of the X
variablesare correlated with g, is suspected. Thiscan
occur if
g contains omitted variablesthat are correlated with
theincluded variables
X contains measurement errors
X contains endogenous variablesthat are deter mined
jointly with y.

OLS Revisited: Premultiply theregression equation by
XN to get

(D XNy = XNXB + XNg.

Onecan interpret the OL S estimate b, s asthe solution
obtained from (1) by first approximating XNg by zero, and
then solving theresulting k equationsin k unknowns,

) XNy = XNXbg, o

Subtracting (1) from (2),



(3) XNX(boLs - B) = XNg,

Theerror in estimating g islinear in theerror caused by
approximating XNg by zero.

If XNX/n 6, A positive definite and XNg/n 6, O, (3) implies
bOLS 6p ﬁ

If one hasinstead XNg/n 6, C ... O, then b, s isnot
consistent for B, and instead b, s 6, p + A™C.

| nstrumental Variables. Supposethereisanxj array of
variables W, called instruments, that have two properties:
(1) Thesevariablesare uncorrelated with g; wesay in
this case that these instruments are clean.
(i) Thematrix of correlations between the variablesin
X and thevariablesin W is of maximum possible rank
(= k); wesay in thiscasethat these instrumentsare
fully correlated.

Call theinstruments proper if they satisfy (i) and (ii). The
W array should include any variablesfrom X that are
themselves clean.

To befully correlated, W must include at least as many
variablesasarein X, sothat j $ k.



The number of instrumentsin W that are excluded from X
must be at least as large as the number of contaminated
variablesthat areincluded in X.

|nstead of premultiplying the regression equation by
XNaswedid for OLS, premultiply it by R\WN, whereR is
a ] xk weighting matrix that we get to choose. Thisgives

(4) RNWNy = RNWNXP + RNWNg.

Theidea of an instrumental variables (1V) estimator of g is
to approximate RN\WNg by zero, and solve

(5) RNWNy = RNWVNX b,

for b,, = [RN\WNX]*RNWNy. Subtract (4) from (5) to get the
|V analog of the OL Srelationship (3),

(6) RNWNX (b, - B) = RNWIg.

| f RN\WNX/n convergesin probability to a nonsingular
matrix and RNWNg/n 6, O, then b,,, 6, B. Thus, in problems
where OL S breaks down dueto correlation of
right-hand-side variables and the disturbances, you can
use IV to get consistent estimates, provided you can find
proper instruments.



Theideabehind (5) isthat W and g are orthogonal in the
population, a generalized moment condition. Then, (5)
can beinterpreted asthe solution of a generalized method
of moments problem, based on the sample moments WN(y -
XPB). Thepropertiesof thelV estimator can be deduced as
a special case of the general theory of GMM estimators.

If there are exactly as many instrumentsasthereare
explanatory variables, ] = k, then the IV estimator is
uniquely determined, b,, = (WNX)*WNy, and R is
irrelevant. However, if | > k, each R determinesa
different IV estimator. What isthe best R?
Premultiplying theregression equation by WN yields a
system of | > k equationsin k unknown #'s, WNy = WNXp +
WNg. Sincethereare more equations than unknowns, we
cannot simply approximate all the WNg terms by zero
simultaneously, but will have to accommodate at |east |-k
non-zero residuals. But thisisjust likearegression
problem, with | observations, k explanatory variables, and
disturbancesv = WNg. Supposethedisturbancesg havea
covariance matrix ¢°l, and hence the distur bances v = WNg
have a non-scalar covariance matrix ¢°l. Then

(WNW)2W Ny = (WNW)Z2WNX B + (WNW)Y2WNg

has a scalar covariance matrix, and when solved after
approximating the last term by zero yields



(8) Dog s = XN (WNW) WX XN (WNW) W Ny .

This correspondsto using the weighting matrix R =
(WNW)TWNX. But thisformula provides another

Inter pretation of (8). If you regresseach variablein X on
theinstruments, theresulting OL S coefficientsare
(WNW)WNX, the sameasR. Then, the best linear
combination of instruments WR equalsthefitted value X’
= W (WNW)*WNX of the explanatory variablesfrom a OLS
regression of X on W. Further, you have

XNW (WANW)TWNX = XNX™ = X'NX™ and XNW (WNW) Wiy =
XNy, so that the |V estimator (8) can also bewritten

9 b,g s = (XNX) XNy = (XNXT) X Ny.

This provides atwo-stage least squares (2SL S)

Inter pretation of thelV estimator: First,a OLSregression
of the explanatory variables X on theinstruments W is
used to obtain fitted values X", and second aOL S
regression of y on X" isused to obtain the |V estimator
b, . Notethat inthefirst stage, any variablein X that is
also in W will achieve a perfect fit, sothat thisvariableis
carried over without modification in the second stage.



STATISTICAL PROPERTIESOF IV ESTIMATORS

|V estimator s can behave badly in finite samples. In
particular, they may fail to have moments. Their appeal
relieson their behavior in large samples, although an
Important question iswhen samples are lar ge enough so
that the asymptotic approximation isreliable.

We show next that |V estimators are asymptotically
normal Let ¢°Q bethe covariance matrix of g, given W,
and assumethat it isfinite and of full rank. Makethe
assumptions:

1] rank(W) =j $k

2a] WNW/n 6, H, a positive definite matrix
2b] WNQW/n 6, F, a positive definite matrix
3] XNW/n 6, G, amatrix of rank k

4] WNg/n 6, 0

5] n"Y2Whg6, N(0,6°F)

Theorem: Assumethat [1], [2b], [3] hold, and that an
|V estimator isdefined with a weighting matrix R,
that may depend on the sample n, but which
convergestoamatrix R of rank k. If [4] holds, then
b,, 6, B. If both [4] and [5] hold, then

(10) n“(b,, - B) 64 N(O, 6*(RNGN)'RNFR(GR)™}).

Suppose R, = (WNW)*WNX and [1]-[5] hold. Then the
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|V estimator specializes to the 2SL S estimator b,g
given by (8) which satisfiesb,g s 6, p and

(11) nY%(b,q < - B) 64 N(0, 6*(GH*GN)Y(GH*FH*GN)(GHGN)™?).
|f, further, Q =1,
(12) n"*(b,g s - B) 64 N(O, 6*(GH'GN)™).

In order to use thelarge-sample properties of b,, for
hypothesistesting, it isnecessary to find a consistent
estimator for ¢°>. Thefollowing estimator works. Define
|V residuals

u=y-Xb, =[l - X(RNWNX)RNWN]y
=1 - X(RNWNX)RNWN]g,

the Sum of Squared Residuals SSR = ulu, and s* =
uNu/(n-k). 1f gNg/n 6, 67, then s° is consistent for ¢°. To
show this, smply write out the expression for uNu/n, and
take the probability limit:

(13) plim uNu/n
= plim gNg/n - 2 plim [gN\W/n]R([XNW/n]R)*[XNg/n]
+ [gNW/N]R([XNW/n]R) [ XNX/n] (RN[WNX/n]) *RN[WNg/n]
= ¢°- 2'0'R"(GR)'C + 0'R"(GR)A(RNGN)'RN"0 = ¢°.



We could haveused n-k instead of n in thedenominator of
this limit, as it makes no difference in large enough
samples. Theconsistency of theestimator s*defined above
holdsfor any IV estimator, and so holdsin particular for
the2SL Sestimators. Notethat thisconsistent estimator of
¢” substitutes the |V estimates of the coefficientsinto the
original equation, and uses the original values of the X
variablesto form theresduals. When working with the
2SL Sestimator, and calculatingit by runningthetwoOL S
regression stages, you might be tempted to estimate ¢?
using aregression program printed values of SSR or the
variance of the second stageregression, which isbased on
the residuals 0 = y - X'b,ys This estimator is not
consistent for ¢~.

Suppose EggN = 67, so that 2SL S is best among 1V
estimators using instruments W. The sum of squared
residuals SSR = ulu, whereu =y - Xb,q 5, can be used in
hypothesistesting in the same way asin OL S estimation.
For example, consider the hypothesisthat g, =0, where 8,
Isarxl subvector of . Let SSR, be the sum of squared
residuals from the 2SL Sregression of y on X with g, =0
Imposed, and SSR, be the sum of squared residuals from
theunrestricted 2SL Sregression of y on X. Then,
[(SSR, - SSR,)/m]/[SSR,/(n-k)] has an approximate
F-distribution under the null with m and n-k degrees of
freedom. Thereareseveral cautionstokeep in mind when
considering use of thistest statistic. Thisisalargesample



approximation, rather than an exact distribution, because
It Is derived from the asymptotic normality of the 2SL S
estimator. Its actual size in small samples could differ
substantially from itsnominal (asymptotic) size. Also, the
lar ge sampledistribution of the statistic assumed that the
disturbances g have a scalar covariance matrix.

What are the finite sample properties of 1V
estimator s? Becauseyou do not havethecondition E(g*X)
=0holdingin applicationswherelV isneeded, you cannot
get smple expressions for the moments of b, =
[RNWNX]*RNWNy = B + [RN\WNX]RNWNg by first taking
expectations of g conditioned on X and W. In particular,
you cannot conclude that b,, isunbiased, or that it hasa
covariance matrix given by its asymptotic covariance
matrix. In fact, b,, can have very bad small-sample
properties. To illustrate, consider the case where the
number of instrumentsequalsthenumber of observations,
] =n. (Thiscan actually arise in dynamic models, where
often all lagged values of the exogenous variables are
legitimate instruments. It can also arise when the
candidate instruments are not only uncorrelated with g,
but satisfy the stronger property that E(g*w) = 0. In this
case, all functionsof w arealsolegitimateinstruments.) In
thiscase, W isa square matrix, and

Dog s = [XNW (WNW) WX XNW (WNW) Wy
= [XNX]2XNY = b, s



We know OLS is inconsistent when E(g*X) = O fails, so
clearly the 2SL S estimator is also biased if we let the
number of instruments grow linearly with sample size.
Thisshowsthat for thelV asymptotic theory to be a good
approximation, n must be much larger than j. One
rule-of-thumb for IV isthat n - j should exceed 40, and
should grow linearly with n In order to have the
lar ge-sample approximationsto the IV distribution work
well.

Considerable technical analysis is required to
characterize the finite-sample distributions of |V
estimators analytically. However, smple numerical
examples provide a picture of the situation. Consider a
regresson y = xp + g where there is a single
right-hand-side variable, and a single instrument w, and
assumex, w, and g havethesimplejoint distribution given
In thetable below, where X isthecorrelation of x and w, p
IS the correlation of x and g, and [A|] + |p| < 1. The
Inter pretation of the second row of thetable, for example,
Isthat (x,w,e) = (1,1,-1) and (x,w,e) = (-1,-1,1) each occur
with probability (1-p+4)/8:

X | W| @ Prob
+1 | £1| £1| (1+p+A)/8
+1 | £1| K1| (1-p+A)/8
+1 | K1| £1| (1+p-A)/8
+1 | K1| K1] (1-p-1)/8
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The random variables (x,w,e) have mean zero, variance
one, and Exg = p, Exw = A, and Ewg = 0. Their products
havethejoint distribution

XW| Xg|wg Prob

1] 1| 1|(1+p+r)/4
1| -1] -1 (1-p+0)/4
-1 1| -1| (1+p-0)/4
11 -1] 1| (1-p-M)/4

Thisimplies P(xg=1) = (1+p)/2. Then, in a sample of size
n, n((bg s - B) + 1)/2 has an exact distribution that is
binomial with n draws and probability (1+p)/2. Then
nY*(by. s - B) has mean nY?p and variance (1-p?. Thus,
niM SE = nj(Variance + Bias? = 1 + (n-1)p>.

Exercise: Draw 1000 samples of various sizes from the
distribution above, calculate b,,, calculate selected points
of its CDF, and compar e these with corresponding points
of the CDF for by, s
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In practice, in problemswher e sample size minusthe
number of instruments exceeds 40, the asymptotic
approximation to the distribution of the IV estimator is
reasonably good, and one can use it to comparethe OLS
and IV estimates. Toillustrate, continuethe exampleof a
regression in onevariable, y = xp + g. Suppose as before
that x and g have a correlation coefficient p ... 0, so that
OL S s biased, and suppose that there is a single proper
Instrument w that is uncorrelated with g and has a
correlation A ... O with x. Then, the OLS estimator is
asymptotically normal with mean B + po /o, and variance
6, /N6’ The 2SLS estimator is asymptotically normal
with mean p and variances,%/ne,°2*. Themean squar es of
the two estimators are then, approximately,

MSEq s = (p* + Un)o,/o,°
M SE,q s = 6,7/n6, A%

Then, 2SL S hasa lower M SE than OL Swhen

1< pn/(1-27) - (bog &P 9)/(V (02s19)-V (Dor9)),
or approximately n > (1 - 2%)/p%?% When A =0.8and p =
0.2, thisasymptotic approximation suggeststhat a sample
size of about 14 isthetip point whereb,, should be better

thanbintermsof MSE. However, theasymptoticfor mula
underestimates the probability of very large deviations
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arising from adenominator in b,, that isnear zero, and as
a consequence is too quick to rgect by s The
right-hand-side of this approximation to the ratio of the
M SE istheHausman test statisticfor exogeneity, discussed
below; for thisone-variablecase, oneshould r g ect thenull
hypothesis of exogeneity when the statistic exceeds one.
Under the null, the statistic is approximately chi-square
with one degree of freedom, so that this criterion
correspondsto atypel error probability of 0.317.

RELATIONOF IV TO OTHER ESTIMATORS

The 2SL S estimator can be interpreted asa member
of the family of Generalized Method of Moments (GM M)
estimators. You can verify by differentiating to get the
first-order condition that the 2SLS estimator of the
equation y = Xp + g using the instruments W, wher e EggN
= o?l, solves

(14) Ming (y-X B)NW (WNW) WN(y-X B).

In thisquadratic form objectivefunction, WN(y-Xp) isthe
moment that has expectation zero in the population when
B isthetrue parameter vector, and (WNW)*isa" distance
metric" in the center of the quadratic form. Define P =
W(WNW)*WN, and note that P isidempotent, and thusis
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aprojection matrix. Then, the GMM criterion chooses
to minimize the length of the vector y- Xp projected onto
the subspace spanned by P. The properties of GMM
hypothesis testing procedures follow readily from the
observation that y-Xp has mean zero and a scalar
covariance matrix. In particular, Miny
(y-XBINW (WNW) *'WN(y-XB)/6* is asymptotically
chi-squared distributed with degrees of freedom equal to
therank of P.

Itispossibletogivethe2SL Sestimator apseudo-MLE
Interpretation. Premultiply the regression equation by
WA to obtain WNy = WNXB + WNg. Now treat WNg as if it
were normally distributed with mean zero and X
covariancematrix A*WNW, conditioned on WNX. Then, the
log likelihood of the sample would be

L =-(j/2) log 2n - (j/2) (¥2) log A% - (¥2) log det (WNW)
- (L/252) (WNy-WNX BIN(WNW) (W Ny-WNX B).

The first-order condition for maximization of this

pseudo-likelihood isthe sameasthe condition definingthe
2SL S estimator.
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TESTING EXOGENEITY

Sometimes one is unsure whether some potential
Instruments are clean. If they are, then there is an
asymptotic efficiency gain from including them as
Instruments. However, if they are not, estimates will be
Inconsistent. Because of this tradeoff, it is useful to have
a gpecification test that permits one to judge whether
suspect instrumentsare clean or not. To set the problem,
consider a regression y = Xp + g, an array of proper
Instruments Z, and an array of instruments W that
IncludesZ plusother variablesthat may beeither clean or
contaminated.

Several superficially different problemscan berecast
In thisframeworKk:

(1) The regressson may be one in which some
right-hand-side variables are known to be exogenous
and others are suspect, Z isan array that contains the
known exogenousvariablesand other clean instruments,
and W contains Z and the variables in X that were
excluded from Z because of the possibility that they
might be dirty. In thiscase, 2SL S using W reduces to
OLS, and the problem isto test whether theregression
can be estimated consistently by OL S.
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(2) Theregression may contain known endogenous and
known exogenousvariables, Z isan array that contains
the known exogenous variables and other clean
Instruments, and W is an array that contains Z and
additional suspect instruments from outside the
equation. In this case, one has a consistent 2SL S
estimator using instruments Z, and a 2SL S estimator
using instruments W that is more efficient under the
hypothesis that W is exogenous, but inconsistent
otherwise. The question is whether to use the more
Inclusive array of instruments.

(3) The regressson may contain known endogenous,
known exogenous, and suspect right-hand-side
variables, Z is an array that contains the known
exogenous variables plus other instruments from
outsidethe equation, and W isan array that contains Z
plus the suspect variables from the equation. The
guestion iswhether it isnecessary to instrument for the
suspect variables, or whether they are clean and can
themselves be used asinstruments.
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In theregression y = Xp + g, you can play it safe and
useonly theZ instruments. Thisgivesbg, = (XNQX)*XNQy,
where Q = Z(ZNZ)™*ZN. Alternately, you use W, including
the suspect instruments, taking a chance with
Inconsistency to gain efficiency. Thisgives

b, = (XNPX)2XNPy, wher e P = W (WNW)WN.

If the suspect instruments are clean and both estimators
are consistent, then b, and by, should be close together, as
they are estimates of the same B; further, b is efficient
relative to by, iImplying that the covariance matrix of (b,
- bp) equals the covariance matrix of b, minus the
covariance matrix of b.. However, if the suspect
Instruments are contaminated, b, isinconsistent, and (b,
- bp) has a nonzer o probability limit. Thissuggests a test
statistic of theform

(15)  (bg - bNV(bo) - V(be)IG(bg - by),

where["]G denotes a generalized inver se, could be used to
test if W is clean. This form is the exogeneity test
originally proposed by Hausman. Under the null
hypothesis that W is clean, this statistic will be
asymptotically chi-square with degrees of freedom equal
to therank of the covariance matrix in the center of the
guadratic form.
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Another formulation of an exogeneity test is more
convenient to compute, and can be shown (in one
manifestation) to be equivalent to the Hausman test
statistic. Thisalternative formulation hastheform of an
omitted variable test, with appropriately constructed
auxiliary variables.

First do an OLS regression of X on Z and retrieve
fitted values X” = QX, where Q = Z(ZNZ)*ZN. (Thisis
necessary only for variablesin X that arenot in Z, since
otherwise this step just returns the original variable.)
Second, using W asinstruments, do a 2SL Sregression of
y on X, and retrieve the sum of squared residuals SSR;.
Third, doa 2SLSregression of y on X and a subset of m
columns of X that are linearly independent of X, and
retrievethe sum of squared residuals SSR,. Finally, form
thestatistic[(SSR; - SSR,)/m]/[SSR./(n-k)]. Under thenull
hypothesis that W is clean, this statistic has an
approximate F-distribution with m and n-k degrees of
freedom, and can beinterpreted asatest for whether the
m auxiliary variablesfrom X" should be omitted from the
regression. When a subset of X* of maximum possible
rank ischosen, thisstatistic turnsout to beasymptotically
equivalent to the Hausman test statistic. Note that if W
contains X, then the 2SL S in the second and third steps
reducesto OLS.

We next show that thistest is indeed an exogeneity
test. Consider the 2SL Sregression
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y=Xp+ Xy +n,

where X, isasubset of X" = QX such that [X,X,] isof full
rank. The2SL Sestimatesof theparametersinthismodel,
using W asinstruments, satisfy

b XIPX  XIQX, F* [ xwpy XIPX  XIQX, Y xiPg
., XMQX XNQX,|  |XQy XHNQX X NQX, | [XQgl

But XNQg/n 6, plim(XNZ/n)"(plim(ZNzZ/n))*"plim(ZNg/n) =0
by assumptions[1]-[4] when Z isclean. Similarly, XNPg/n
6, GH™"plim(WNg/n) = 0 when W is clean, but XNPg/n 6,
GH™plim(WNg/n) ... 0 when W is contaminated. Define

XIPXin XIQX/nfE (A, A,
XMQXn XpQX/m| A, Al

From the formulafor a partitioned inverse,
A = (XN[P - QX (X NQX )X NQ]X/n)*?
A, = (X NQII - X(XNPX) XN QX,/n)*?
A, =-(X NOQX)*X NOX"A,,
= -A,(X NOX)(XNPX)*=AN

B
0

P

%
C

Hence,
(16)  Co = A" {XNQg/n - (XNQX)(XNPX)"XNPg/n}.

If W isclean and satisfies assumptions[4] and [5], then ¢
6, 0 and n'“c, is asymptotically normal. On the other
hand, if W is contaminated, then ¢, has a non-zero
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probability limit. Then, atest for y =0using ¢, isatest of
exogeneity.

Thetest abovecan berenterpreted asaHausman test
involving differences of b, and b,. Recall that by = +
(XNQX)™XNQg and b, = B + (XNPX)™*XNPg. Then

(17) (XNQX)(bg, - bp) = {XNQa/n - (XNQX)(XNPX) " XNPg/n}.

Thenin particular for alinearly independent subvector X,
of X,

A (X NQX)(bg - bp)
= AL{XNQg/n - (X NQX)(XNPX)™"XNPg/n} = C,.

Thus, ¢, is a linear transformation of (b, - bp). Then,
testing whether c, is near zero is equivalent to testing
whether a linear transformation of (b, - bp) isnear zero.
When X, isof maximum rank, thisequivalenceestablishes
that the Hausman test in itsoriginal form isthe same as
thetest for c..
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EXOGENICITY TESTSAREGMM TESTSFOR OVER-
IDENTIFICATION

The Hausman Exogeneity Test. Consider the
regression moddl y = X + g, and suppose onewantsto test
the exogeneity of p variables X, in X. Suppose R is an
array of instruments, including X,; then Z = PyX, are
Instrumentsfor X,. Let W =[Z X] beall thevariablesthat
are orthogonal to g in the population under the null
hypothesis that X and g are uncorrelated. As in the
omitted variables problem, consider the test statistic for
over-identifyingrestrictions, 2nQ,, = min,uNP,,u/e?, where
u=y-Xb. Decompose P, =Py + (P,, - Py). Then u\N(P,, -
P, )u =yN(P,, - Py)y and theminimizing b setsuNP,u =0, so
that 2nQ, = yN(P,, - Py)y/6®. SinceP,, - P, = p_,, ,0nealso

QW 9

has2nQ, =yN r,, y. Thisstatisticisthe same asthe test

statistic for the hypothesis that the coefficients of Z are
zero in aregression of y on X and Z; thus the test for
over-identifying restrictions is an omitted variables test.
One can also write 2nQ, = 2i,, - 1,2%/¢% 0 that a
computationally convenient equivalent test isbased onthe
difference between thefitted valuesof y from aregression
on X and Z and aregression on X alone. Finally, we will
show that the statistic can bewritten

2nQ,,
- (bl,ZSLS - bl,OLS)[V(bl,ZSLS) - V(bl,OLS)]-l(bl,ZSLS - lC)l,OLS)'
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In this form, the statistic is the Hausman test for
exogenicity in the form developed by Hausman and
Taylor, and the result establishes that the Hausman test
for exogeneity Is equivalent to a GMM test for
over-identifying restrictions.

Several steps are needed to demonstrate this
equivalence. Notethat b,g s = (XNP,,X)*XN\NP,,y, where M
=[Z X,]. Write

D,g s - Bors = (XNPy X) *XNPy,y - (XNX) XNy
= (XNP, X)) [XNP,, - XNP, X (XNX)*XN]y

= (XNP, X)*XNP,, QY.

: . : : X NP, Qy
Since X, isin M, P, X, = X,, implying X\P,,Qy = YIP.0
— XlNPMQX — XlNPMQx - AlSO, XNPMX — XlNPMXl XlNPMX2 —

XZNQX 0 )gNPMX1 XZNPM&

X NP, X, XX XMP,Qy| _

g, x| Then = (XNPyX)(byg s - bors) 7/

[ 1 b b

P %P PioasfBrals From the second block of

_XZle X2NX2 bZ,ZSLS&bZ,OLS

equations, one obtains the result that the second
subvector isa linear combination of the first subvector.
Thisimpliesthat a test statistic that is a function of the
full vector of differencesof 2SL. Sand OL Sestimates can
bewritten equivalently asafunction of thefir st subvector

22



of differences. From the first block of equations,
substituting in the solution for the second subvector of
differences expressed in terms of thefirst, one obtains

[XlNPMxl - XlNXZ(XZNXZ)-1X2NX]_-|(bl,ZSLS - bl,OLS)
= X NPy, Qyxy
The matrix on the left-hand-side can be rewritten as
XNPy o, PyXy, sothat

D159 5- 0100 s= (XNPy @ PuXy) X NP, QyY.

Next, we calculate the covariance matrix of b,g s -
b, s, and show that it isequal to the differenceof V (b, <)
= GZ(XNP X)*and V(bg, g = 6“(XNX)™. From theformula
bg s - BoLs = (XNPy X)*XNPy, Qyy, onehasV(b,g s - by, s) =
6*(XNP,, X)*XNP,,Q, P\, X (X\NP,, X)™.

On the other hand,

V(Dys 6) - V(boLs) = 6*(XNP, X){XNP, X -
XNP,, X (XNX)XNP,, X} (XNP,, X)
= 6“(XNP, X) Y XNP,, [l - X(XNX)*XN]P,, X} (XNP,,X)™?
= 6*(XNP,, X)) *XNP,, QP X (XNP,, X)™.

Thus, V(bygs - bos) = V(b o) - V(bos). Thisis a
consequenceof thefact that under thenull hypothesisOL S
Is efficient among the class of linear estimatorsincluding
2SL S. Expanding the center of thisexpression, and using
theresults P, X, = X, and hence Q,P,,X, = 0, one has
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XNP, QP X, O

0 o
Hence, V(b,g <) - V(b o) Isof rank p; thisalso follows by
noting that b,,q 5 - b,o 5 Ccould be written as a linear

transformation of b, ,q 5- b, s.
Next, usetheformulafor partitioned inver sesto show

for N =M or N =1 that the northwest corner of

XIP X, X
o 1&}& IS )P Q P . Then,
XIX, XX, :

V(Dy255- D10 =
62(X1NPM Qx, PMxl)-lxlNPMQXPMxl(XlNPM Qx, PMX1)_1-

Using the expressions above, the quadratic form can be
written

XNP,, QxPyuX =

(b1250s~ D10t V(D15 s~ D10 (Bross - Diocs)
= YNQ, Py X (X NPy, QP X ) X NPy, Qy /62,

Finally, one has, from the test for over-identifying

restrictions,
2nQ, = YN(Py, - Py)y/e® = yr,,y /6°

/ YNQxPy X 1(X NPy QxPyX 1) "X NPy Qxy/e”,

s0 that the two statistics coincide.
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A Generalized Exogenicity Test: Consider the
regression y = X, + X,p, + X;p; + ¢, and the null
hypothesisthat X, is exogenous, where X, isknown to be
exogenous, and X;isknown to beendogenous. SupposeN
Isan array of instruments, including X,, that aresufficient
toidentify thecoefficientswhen thehypothesisisfalse. L et
W =[N X,] bethefull set of instruments available when
the null hypothesisistrue. Then the best instruments
under thenull hypothesisare X =P, X /Z [X; X, X;*],and
thebest instrumentsunder thealternativeare X, =P X 7/
[X* X, XJ*]. The test statistic for over-identifying
restrictionsis2nQ, = yN( », - », )y/6®, asin the previous

cases. Thiscan bewritten 2nQ, = ( sk, - sr_)/6°, with

the numerator the difference in sum of squared residuals
fromaOLSregression of y on X, and a OL Sregression of
y on X,. Also, 2nQ, =2 5 - £ 2%¢? the difference

between thefitted valuesof y from aregression on X, and
aregression on X,. Finally,

ZnQn = (bgg = DPagg MNMbogs, ) = Vlbygs )]G (bgg = DPagsg )1

an extension of the Hausman-Taylor exogeneity test tothe
problem where some variables ar e suspect and othersare
known to be exogenous. One can show that the quadratic
forminthecenter of thisquadraticform hasrank equal to
the rank of X,, and that the test statistic can be written
equivalently as a quadratic form in the subvector of
differences of the 2SL S estimates for the X, coefficients,
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with theordinary inver se of the corresponding submatrix
of differences of variancesin the center of the quadratic
form.
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