SPECIFYING ECONOMETRIC MODELS

The target of an econometric analysis is the data generation
process (DGP) that maps explanatory variables x into a
dependent variable y, with unobserved elements making the
mapping stochastic. Writesuch amappingasy =m’(x,g), where
€ denotes an unobserved effect or state of nature that has a
cumulative distribution function G'(g€). One might equivalently
describethe mapping by the conditional cumulativedistribution
function F (y|x) of y given x. A “*” signifiesthefunctionsarenot
known to the econometrician.

Examples.
y =GDP, x =aggregateresour cesand other macr oeconomic
characteristics
y = food expenditures, x = income, family size, education,
age
y = indicator for college education, x = ability, gender,
parents income and education

Relationships: Starting from m* and G*, define v = G*(¢) and
m**(x,v) = m*(x,G**(v)). Then, v has a uniform distribution
and m* and G* can always be redefined so that G* isuniform.
* F'(yIx) =G ({eIm(x.€) < y}).

e m (X,v) = F (v[x), where F}(v|x) = inf{y|F (y|x) > v}.

* Some normalization on m'(x,€) and G'(€), such as € uniform or
some restrictions on the way € enters m, are necessary for
Identification, and the normalization can be picked to simplify
subsequent analysis, see Matzkin (1999).
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The task of econometrics is to specify models m(x,g) and
G(e), or F(y|x), that approximatethereal mappingsset by nature.
Finding these approximations requires a specification step, in
which one restricts attention to a class of candidate functions
believed to contain thereal mappings, or something close, and an
estimation step that picks out one candidate mapping from the
class that by some criterion seems to be closest to the true
mapping. The choice of the candidate class will be governed by
what is believed to be true about the real mapping from prior
research and from economic and statistical theory, and by
practical considerations. For example, economic theory may
gpecify what x variables influence y, and justify assuming
invariance of f(y[x) under policy interventions. Practical
considerations may justify limiting the class of candidate
functions to a finite-parameter family, or to a linear regression
model, or may only justify limiting the class of candidate
functions to those with some mild smoothness and shape
properties. How the specification and estimation stagesaredone
dependson how theanalysisisto beused, and the approximation
accuracy it requires. Typical tasks range from describing
empirical features of the mapping, such asthe conditional mean
M*(x) = [yF*(dy]x) = [m*(x,e)G*(de) and other moments or
guantiles, to testing economic hypotheses about F*(y[x), to
predicting the conditional distribution of y following policy
inter ventionsthat alter thedistribution of x. Theusefulnessof the
analysis will depend on the quality of the model specification as
an approximation to reality, and the validity of assumptions of
invarianceunder policy interventions. Theconditional mean M*
Isimportant, but not the whole story of the mapping F*.
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DISCRETE RESPONSE MODELS

When economic behavior is expressed as a continuous
variable, alinear regression model is often adequate to describe
theimpact of economicfactorson thisbehavior, or to predict this
behavior in altered circumstances. For example, a study of food
expendituresasafunction of priceindicesfor commodity groups
and income, using households from the Consumer Expenditure
Survey, can start by modeling indirect utility as a translog
function and from thisderivealinear in logsregression equation
for food expenditures that does a reasonable job of describing
behavior. Thissituation remainstrue even when the behavioral
responseislimited in range(e.g., food consumption of households
ISnon-negative) or integer-valued (e.g., number of timesper year
eat outsidehome), provided thesedeparturesfromaunrestricted
continuous variable are not conspicuous in the data (e.g., food
consumption is observed over a range where the non-negativity
restriction is clearly not binding; the count of meals outside the
home is in the hundreds, so that round-off of the dependent
variable to an integer is negligible relative to other random
elementsinthemodel). However, thereareavariety of economic
behavior swherethe continuousapproximation isnot a good one,



Examples:

(1) For individuals. Whether to attend college; whether to
marry; choiceof occupation; number of children; whether to
buy ahouse; what brand of automobileto purchase; whether
to migrate, and if so where; whereto go on vacation.

(2) For firms. Whether to build a plant, and if so, at what
location; what commodities to produce; whether to shut
down, mergeor acquireother firms;, whether to go public or
private; whether to accept union demandsor take a strike.



For sound econometric analysis, one needs probability
modelsthat approximate the true data generation process. To
find thesg, it isnecessary to think carefully about the economic
behavior, and about the placeswhererandom factor senter this
behavior. For simplicity, we initially concentrate on a single
binomial (Yes/No) response. An exampleillustratestheprocess:

Y ellowstone National Park has been overcrowded in recent
years, and large user fees to control demand are under
consideration. TheNational Park Servicewould liketoknow
the elasticity of demand with respect to user fees, and the
impact of a specified fee increase on the total number of
visitorsand on thevisitorsby incomebracket. Theresultsof
a large household survey are available giving household
characteristics (income, number of children, etc.), choice of
vacation site, and timesand costsassociated with vacationsat
alternative sites. Each vacation istreated asan observation.



Start with the assumption that households are utility
maximizers. Then, each household will have an indirect utility
function, conditioned on vacation site, that gives the payoff to
choosing this particular site and then optimizing consumption
in light of thischoice. Thisindirect utility function will depend
on commodity prices and on household income net of
expendituresmandated by the vacation site choice. 1t may also
contain factors such as household tastes and per ceptions, and
unmeasur ed attributes of sites, that are, from the standpoint of
the analyst, random. (Some of what appearsto be random to
the analyst may just be heter ogeneity in tastes and per ceptions
over the population.)



Now consider the difference between the indirect utility of a
Yellowstone vacation and the maximum indirect utilities of
alternative uses of leisure. This is a function y* = f(z,{) of
observed variablesz and unobserved variables(. Weputa" *"
on the utility differencey to indicate that is latent rather than
observed directly. Included in zarevariablessuch ashousehold
income, wage rate, family characteristics, travel time and cost
to Yellowstone, and so forth. The form of thisfunction will be
governed by the nature of indirect utility functions and the
sources of (. In some applications, it makes sense to
parameterize the initial indirect utility functions tightly, and
then takef tobethefunction implied by this. Often, it ismore
convenient to takef to beaform that isflexibly parameterized
and convenient for analysis, subject only to the generic
propertiesthat a difference of indirect utility functions should
have. In particular, it isalmost alwayspossibleto approximate
f closely by a function that is linear in parameters, with an
additivedisturbance: f(z,{) = xP - €, where J isakx1 vector of
unknown parameters, x isa 1xk vector of transfor mations of z,
and € = -f(z,{) + Ef(z,{) is the deviation of f from its expected
value in the population. Such an approximation might come,
for example, from a Taylor's expansion of Ef in powers of
(transformed) observed variables z.



Suppose the gain in utility from vacationing in Y ellowstone
rather than at an alternative siteisindeed given by y" = x[3 - €.
Suppose the disturbance € is known to the household and
unknowntotheeconometrician, but thecumulativedistribution
function (CDF) of € is a function F(g) that is known up to a
finite parameter vector. Theutility-maximizing household will
then choose Yellowstoneif y' >0, or € < xf. The probability
that thisoccurs, given x, is

P(e < xP) = F(xP).

Definey = 1if Yellowstoneischosen, y = -1 otherwise; then, y
isan (observed) indicator for theeventy >0. The
probability law gover ning observed behavior isthen, in
summary,

F(xP) ify=1
P(y|xB) = . -
1-F&xB) ify=-1
Assume that the distribution of € is symmetric about zero, so
that F(e) = 1 - F(-¢); thisisnot essential, but it ssimplifies
notation. The probability law then has an even more compact
form,

P(y [xP) = F(yxP) -



How can you estimate the parameters 3? An obvious
approach is maximum likelihood. The log likelihood of an
observation is

I(B|y.x) =log P(y|xB) = log F(yxB) .

|f you have arandom samplewith observationst = 1,...,T, then
the samplelog likelihood is
I

L+(B)= D log F(yxB) -
t=1
The associated score and hessian of thelog likelihood are
I

Vel-(B)= Y. yx/'F'(yxB)F(yxB)

t=1

T
Vil (B) = D xX{F" xBIF(xB) - [F (o BFx B

t=
A maximum likelihood program will either ask you to provide
these formula, or will calculate them for you analytically or
numerically. If the program converges, then it will then find a
value of  (and other parameters upon which F depends) that
are (at least) alocal maximum of L. It can fail to convergeto
a global maximum if no maximum exists or if there are
numerical problemsin the evaluation of expressions or in the
iterative optimization. The estimates obtained at conver gence
will have the usual large-sample properties of MLE, provided
the usual regularity conditions are met, as discussed later.
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It is sometimes useful to write the score and hessian in a
dightly different way. Let d = (y+1)/2; then d = 1 for
Yelowstone, d = 0 otherwise, and d is an indicator for a
Yellowstonetrip. Then, wecan write

I(y[x,B) = d'log F(xP) + (1-d)-log F(-xP).

Differentiate, and noting that F'(x) = F’'(-xP), to get

Vgl = xF'(xB){d/F(xP) - (1-d)/F(-xP)} = w(xP)-x-[d - F(xP)],
wherew(xB) = F'(xB)/F(XB)F(-xP). The sample scoreisthen

I
Velo(B)= 2 wieB)xdi- FOxB)]

=
The MLE condition that the sample score equal zero can be
interpreted as a weighted orthogonality condition between a
residual [d - F(xP)] and the explanatory variables x. Put
another way, a weighted non-linear least squares (NLLS)
regression d, = F(x,3) + m,, with observation t weighted by
w(x,[3)”, will be equivalent to MLE.
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The hessian can also be rewritten using d rather than vy:
Vgl = -x'x's(xP), where

_ PPy
B = BB

[d-FB)] LEeB) F'(xﬁ)z(l—ZF(xﬁ))}_
|FGBF(-xB)  F(BY2F(-xB)

F'(xB,)’*

The expectation of s(xp) at thetrue, is >0

F(xB )F(-xB,)

so that the sample sum of the hessians of the observations in
sufficiently large samplesis eventually almost surely negative
definite in a neighborhood of 3.

It should beclear from the sample score, or the analogous
NLLS regression, that the distribution function F enters the
likelihood functioninanintrinsicway. Unlikelinear regression,
thereisno simpleestimator of 3 that restsonly on assumptions
about thefirst two moments of the disturbance distribution.
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FUNCTIONAL FORMSAND ESTIMATORS

In principle, the CDF F(g) will have a form deduced from
theapplication. Often, F would naturally be conditioned on the
observed explanatory variables. However, an almost univer sal
practiceistoassumethat F(¢) hasoneof thefollowing standard
distributionsthat are not conditioned on Xx:

(1) Probit: Fisstandard normal.

(2) Logit: F(e) = 1/(1+€e®), the standard logistic CDF.

(3) Linear: F(e) = ¢, for 0 < & < 1, the standard uniform
distribution.

(4) Log-Linear: F(g) =€, for € < O, a standard exponential
CDF.
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There are many canned computer programsto fit models
(1) or (2). Model (3) can be fit by linear regression, although
heter oscedasticity isanissue. Model (4) is not usually acanned
program when oneisdealing with individual observations, but
for repeated observations at each configuration of x it is a
special case of the discrete analysis of variance model that is
widely used in biostatistics and can be fitted ussing ANOVA or
regression methods. Each of the distributions above has the
property that the function s(x3) that appearsin the hessian is
globally positive, so that the log likelihood function is globally
concave. Thisisconvenient in that any local maximum isthe
global maximum, and any stable hill-climbing algorithm will
always get to the global maximum. The linear and log-linear
distributions are limited in range. This is typically not a
problem if the range of x is such that the probabilities are
bounded well away from zero and one, but can be a serious
problem when some probabilities are near or at the extremes,
particularly when the model isused for forecasting.
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ALTERNATIVESTO MLE

Recall that MLE chooses the parameter vector 3 to achieve
orthogonality between the explanatory variables x, and
residualsd - F(x[3), with weightsw(x[3). When the explanatory
variables are grouped, or for other reasonsthere are multiple
responses observed for the same x, thereisanother estimation
procedure that is useful. Let j = 1,...,J index the possible x
configurations, m; denote the number of responses observed at
configuration x;, and s denotethenumber of " successes’ among
these responses (i.e., the number with d = 1). Let p; = F(x;[3,)
denote the true probability of a success at configuration X;.
Invert the CDF to obtain ¢, = F'(p;) = x;8. Notethat p = F(c)
implies dc/op = 1/F’(c) and d%c/dp? = - F"(c)/F'(c)>.
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A Taylor's expansion of F*(s/m;) about p; gives

F-l( i ) — Fl(pj) + SJ/mf - pj - (SJ/mf ~ pf)z. F (F_l(qJ))
m; F'(F™(p)) 2 F'(F "\ (g)y’
=xP+vi+g,

where g, isa point between p;, and s/m,,
v, = (s/m; - p)/F' (F(p)

Is a disturbance that has expectation zero and a variance
proportional to p;(1-p;)/m;, and F,j Is a disturbance that goesto
zeroin probability relativeto v,. Then, whenthem, areall large
(therule-of-thumb iss > 5and m;-s > 5), theregression

Fi(s/m) =xp +v,

gives consistent estimatesof 3. Thisiscalled Berkson's method.
It can be made asymptotically equivalent to MLE if a FGLS
transformation for heteroscedasticity is made. Note however
that in general thistransformation isnot even defined unless s
isbounded away from zeroand m;, soit doesnot wor k well when
some x's ar e continuous and cell counts are small.
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Berkson'stransformation inthecaseof probitis®*(s/m;); inthe
case of logit islog(s/(m;-5)); inthecaseof linear iss; and in the
case of the exponential model islog(s/m;). Itisafairly general
proposition that the asymptotic approximation isimproved by
using the transformation F*((5+0.5)/(m,+1)) rather than
F*(s/m,) as the dependent variable in the regression; for logit,
this minimizes the variance of the second-order error.

Thereisan interesting connection between the logit model
and a technique called normal linear discriminant analysis.
Suppose that the conditional distributions of x, given d =1 or
given d =0, are both multivariate normal with respective mean
vectors |, and [, and a common covariance matrix Q. Note
that these assumptions are not necessarily very plausible,
certainly not if some of the x variables are limited or discrete.
If the assumptions hold, then the means ., and W4, and the
covariance matrix Q can be estimated from sample averages,
and by Bayeslaw the conditional distribution of d given x when
aproportion g, of the population hasstated = 1 hasalogit form

qn(x = ,82)
Gon(x =1, L2) + qn(x -, Q)

P(d=1|x) =

1
1 +exp(-a-xB)

where B = Q7 (,-Ro) and o = Py QM - KoM, + 10g(a4/00).
This approach produces a fairly robust (although perhaps
inconsistent) estimator of the logit parameters, even when the

nor mality assumptions are obviously wrong.
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3. STATISTICAL PROPERTIESOF MLE

The MLE estimator for most binomial response modelsis
aspecial caseof thegeneral setup treated in thestatistical theory
of MLE, so that theincantation " consistent and asymptotically
normal (CAN) under standard regularity conditions' is true.
This is a smple enough application so that it is fairly
straightforwar dtoseewhat these" regularity" conditionsmean,
and verify that they are satisfied. This is a thought exercise
worth going through whenever you are applying the maximum
likelihood method. First, hereisalist of fairly general sufficient
conditions for MLE to be CAN in discrete response models;
these are taken from McFadden " Quantal Response M odels",
Handbook of Econometrics, Vol. 2, p. 1407. Commentarieson
the assumptionsaregiven in italics.
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(1) Thesupport of the explanatory variablesis a closed set X
with a measurable probability p(x). Thisjust means that the
explanatory variables have a well-defined distribution. [t
certainly holdsif p isa continuous density on closed X.

(2) The parameter space is a subset of R¥, and the true
parameter vector isintheinterior of thisspace. Thissaysyou
haveafinite-dimensional parametric problem. Thisassumption
does not require that the parameter space be bounded, in
contrast to many setsof assumptionsused to concludethat MLE
are CAN. The redtriction that the true parameter vector bein
theinterior excludes some caseswhere CAN breaksdown. This
ISnot a restrictive assumption in most applications, but it isfor
some. For example, suppose a parameter in the probit model is
restricted (by economic theory) to be non-negative, and that this
parameter isin truth zero. Then, itsasymptotic distribution will
bethe (non-normal) mixture of a half-normal and a point mass.

(3) Theresponse model ismeasurablein x, and for almost all
X iscontinuousin the parameters. The standard models such
as probit, logit, and the linear probability model are all
continuous in their argument and in x, so that the assumption
holds. Only “pathological” applications in which a parameter
determinesa " trigger level" will violate this assumption.
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(4) Themodel satisfies a global identification condition (that
guarantees that there is at most one global maximum; see
M cFadden, ibid, p. 1407). The concavity of the log likelihood
of an observation for probit, logit, linear, and log linear models
guarantees global identification, requiring only that thex'sare
not linearly dependent.

(5 Themodel isoncedifferentiablein theparametersin some
neighborhood of thetrue values. Thisis satisfied by the four
CDF from Section 2 (provided parameters do not give
observations on the boundary in thelinear or log linear models
where probabilities are zero or one), and by most applications.
This assumption is weaker than most general MLE theorems,
which assume the log likelihood is twice or three times
continuoudly differentiable.

(6) The log likelihood and its derivative have bounds
iIndependent of the parametersin some neighborhood of the
true parameter values. The first derivative has a Lipschitz
property inthisneighborhood. Thispropertyissatisfied by the
four CDF, and any CDF that are continuously differentiable.

(7) The information matrix, equal to the expectation of the
outer product of the scor e of an observation, isnonsingular at
thetrueparameters. Thisissatisfied automatically by thefour
CDF in Section 2, provided the x's are not linearly dependent.
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The result that conditions (1)-(7) guarantee that MLE
estimates of 3 are CAN iscarried out essentially by linearizing
the first-order condition for the estimator using a Taylor's
expansion, and arguing that higher-order termsthan thelinear
term areasymptotically negligible. With lotsof differentiability
and uniform bounds, thisis an easy argument. A few extra
tricks are needed to carry this argument through under the
weaker smoothness conditions contained in (1)-(7).

4. EXTENSIONSOF MAXIMUM LIKELIHOOD PRINCIPLE

The assumptions under which the maximum likelihood
criterion produces CAN estimates include, critically, the
condition (2) that the parametric family of likelihoods that are
being maximized include the true data generation process.
There are several reasons that this assumption can fail. First,
you may have been mistaken in your assumption that the mode
you havewritten down includesthetruth. Thismight happenin
regression analysis because some variable that you think does
not influencethe dependent variableor isuncorrelated with the
included variablesactually doesbelongin theregression. Or,in
modeling abinomial discreteresponse, you may assumethat the
disturbancein themodel y* = xP3 - € isstandard normal when it
isin truth logistic. Second, you may deliberately write down a
model you suspect isincorrect, smply because it is convenient
for computation or reduces data collection problems.
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For example, you might write down a model that assumes
observations ar e independent even though you suspect they are
not. Thismight happen in discreteresponse analysiswhereyou
obser vesever al responsesfrom each economic agent, and suspect
thereareunobserved factor ssuch astastesthat influenceall the
responses of this agent.

What are the statistical consequences of this mode
misspecification? Theanswer isthat thiswill generally causethe
CAN property to fail, but in some cases the failure is less
disastrous than one might think. The most benign situation
ariseswhen you writedown alikelihood function that failstouse
all the available data in the most efficient way, but is otherwise
consistent with thetruelikelihood function. For example, if you
have sever al dependent variables, such asbinomial responseson
different dates, you may write down a model that correctly
characterizesthe marginal likelihood of each response, but fails
to characterize the dependence between the responses. This
setup iscalled quasi-maximum likelihood estimation. What may
happen in this situation is that not all the parameters in the
model will be identified, but those that are identified are
estimated CAN, although not necessarily with maximum
efficiency. Inthe example, it will be parameterscharacterizing
the correlations across responses that are not identified.
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Alsofairly benignisamethod called pseudo-maximum likelihood
estimation, whereyou writedown alikelihood function with the
property that theresultingmaximum likelihood estimatesarein
fact functions only of selected moments of the data. A classic
example is the normal regression model, where the maximum
likelihood estimatesdepend only on fir st and second moments of
thedata. Then theestimatesthat come out of thiscriterion will
be CAN even if thepseudo-likelihood function ismisspecified, so
long as the true likelihood function and the pseudo-likelihood
function coincide for the moments that the estimators actually
use.

Moretricky isthesituation wherethelikelihood you write
down isnot consistent with thetruelikelihood function. In this
case, the parameters in the model you estimate will not
necessar ily match up, even in dimension, with the parameter sof
the true model, and there is no real hope that you will get
reasonable estimates of these true parameters. However, even
here there is an interesting result. Under quite general
conditions, it is possible to talk about the " asymptotically |east
misspecified model”, defined as the model in your misspecified
family that asymptotically hasthehighest log likelihood. To set
notation, supposef(y|x) isthetrue data generation process, and
g(y|x,B) isthe family of misspecified models you consider.
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Define 3, to be the parameter sthat maximize

x,P).

Then, 3, deter minestheleast misspecified model. While 3, does
not characterize the true data generation process, and the
parameters as such may even be misleading in describing this
process, what istrueisthat 3, characterizesthe model g that in
a " likelihood metric" is as close an approximation as one can
reach tothetruedata generation processwhen onerestrictsthe
analysis to the g family. Now, what is interesting is that the
maximum likelihood estimatesb from themisspecified model are
CAN for 3, under mild regularity conditions. A colloguial way
of putting this is that MLE estimates are usually CAN for
whatever it is they converge to in probability, even if the
likelihood function is misspecified.

All of the estimation procedures just described,
guasi-likelihood maximization, pseudo-likelihood maximization,
and maximization of a misspecified likelihood function, can be
inter preted asspecial casesof ageneral classof estimatorscalled
generalized method of moment estimators. One of the important
features of these estimators is that they have asymptotic
covariance matrices of the form I'"*XIVt, whereI' comes from
the hessian of the criterion function, and X comes from the
expectation of the outer product of the gradient of the criterion
function. For true maximum likelihood estimation, this form
reduces to X, but more generally the full form I*2IV* is
required.

E, . f(y|x)-log g(y
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One important family of quasi-maximum likelihood
estimator s arises when an application has a likelihood function
In two sub-vectorsof parameters, and it is convenient to obtain
preliminary CAN estimates of one sub-vector, perhaps by
maximizing a conditional likelihood function. Then, the
likelihood is maximized in the second sub-vector of parameters
after plugging in the preiminary estimates of the first
sub-vector. This will be a CAN procedure under general
conditions, but it is necessary to use a formula of the form
I XIV* for itsasymptotic covariance matrix, where 2 includes
acontribution from thevariancein thepreliminary estimates of
thefirst sub-vector. The exact formulas and estimatorsfor the
termsin the covariance matrix aregiven in thelecture notes on
gener alized method of moments.
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5. TESTING HYPOTHESES

It is useful to see how the general theory of large sample
hypothesistesting playsout in thediscreteresponse application.
For motivation, return to the example of travel to Yellowstone
Park. Thebasic model might be binomial logit,

P(y|xPB) = F(yxPB) = 1/(1 + exp(-yxP)),

whereXx includestravel timeand travel cost to Y ellowstone, and
family income, all appearing linearly:

XPp =TT, +TCP,+1-B5+ B,

with TT = travel time, TC = travel cost, | = income. The
parameter B, isan intercept term that capturesthe " average"
desirability of Yellowstone relative to alternatives after travel
factors have been taken into account. The Park Service is
particularly concernedthat anincreasein Park entry fees, which
would increase overall travel cost, will have a particularly
adver se effect on low income families, and asks you to test the
hypothesisthat sensitivity totravel cost increasesasincomefalls.
This suggeststhe alter native model

XPp=TT-P,+TCP,+ 1B+ P, + PBsTCH,

with the null hypothesisthat 3 = O.
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This hypothesis can be tested by estimating the model without
the null hypothesisimposed, so that 3 is estimated. The Wald
test statisticisthe quadratic form (b - 0)'V (by)*(bs - 0); it isjust
thesquareof theT-statistic for thisone-dimensional hypothesis,
and it isasymptotically chi-square distributed with one degree
of freedom when the null hypothesis is true. When the null
hypothesis is non-linear or of higher dimension, the Wald
statistic requires retrieving the covariance matrix of the
unrestricted estimators, and formingthematrix of derivativesof
the constraint functions evaluated at b. An alternative that is
computationally easier when boththeunrestricted andrestricted
models are easy to estimate is to form the Likelihood Ratio
statistic 2[L.(b) - L+(b*)], where b and b* are the estimates
obtained without thenull hypothesisand with thenull hypothesis
imposed, respectively, and L ; isthesamplelog likelihood. This
statistic is asymptotically equivalent to the Wald statistic.
Finally, the Lagrange Multiplier statistic is obtained by
estimating the model under the null hypothesis, evaluating the
score of the unrestricted model at therestricted estimates, and
then testing whether thisscoreiszero. In our example, thereis
a dslick way to do this. Regress a normalized residual [d, -
F(xb)]/[F(xb)F(-x b)]¥* from the restricced model on the
weighted explanatory variables xF’(xb)/[F(xb)F(-xb)]*? . that
appear intheunrestricted model. TheF-test for thesignificance
of the explanatory variablesin thisregression isasymptotically
equivalent tothelL agrangeMultiplier test. Thereasonthistrick
works is that the Lagrange Multiplier test is a test of
orthogonality between thenor malized residual and theweighted
variablesin the unrestricted model.
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6. MULTINOMIAL RESPONSE

Conceptually, it isstraightforward to move from modeling
binomial response to modeling multinomial response. When
consumersor firms choose among multiple, mutually exclusive
alter natives, such aschoice of brand of automobile, occupation,
or plant location, it isnatural to introduce the economic agent's
objective function (utility for consumers, profit for firms), and
assume that choice maximizes this objective function. Factors
unobserved by the analyst, particularly heter ogeneity in tastes
or opportunities, can be interpreted as random componentsin
the objective functions, and choice probabilities derived asthe
probabilitiesthat these unobserved factorsare configured so as
to make the respective alter natives optimal.

Supposethere are J alternatives, indexed C ={1,...,J}, and
suppose the economic agent seeks to maximize an objective
function U(z,s,v;), wherez areobserved attributesof alter native
|, sarecharacteristicsof thedecision maker, and v, summarizes
all the unobserved factors that influence the attractiveness of
alternativei.
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Then, the multinomial response probability is

Pc(i

2,5) = Prob({v|U(z,s,v;) > U(z,sv) for j #i}),
where z = (z,,...,z;). For example, if C = {1,...,J} is the set of
automobile brands, with z the attributes of brand i including
price, size, hor sepower, fuel efficiency, etc., then thismodel can
be used to explain brand choice, or to predict the shares of
brands as the result of changing prices or new model
introductions. If one of the alternatives in C is the "no
purchase" alternative, the model can describe the demand for
cars as well as brand choice. If C includes both new and used
alternatives, then it can explain replacement behavior. Ifi € C
identifies a portfolio of two brands, or one brand plusa "no
purchase", it can explain the holdings of two-car families.

Placing U in a parametric family and making v a random
vector with a parametric probability distribution produces a
parametric probability law for the observations. However, it is
difficult todo thisin away that leadsto ssimple algebraic forms
that do not require multivariateintegration. Consequently, the
development of multinomial response models hastended to be
controlled by computational issues, which may not accommodate
some features that might seem sensible given the economic
application, such as correlation of unobservables across
alter native portfolios that have common elements.
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B For notational shorthand, associate with alter nativei in afeasible set
C a" payoff" u, =z + &, which in the case of consumer choice may be
theindirect utility attached to alter nativei and in the case of firm choice
may be profit from alternative i. The z are observed explanatory
variables, and the €, are unobserved disturbances. Observed choiceis
assumed to maximize payoff: y; = 1(u; > u, for j € C).

B Oneform of thismodel isarandom coefficients formulation u; = z,
Ea = B, € = z(a - B), implying cov(e;€) = z*Cov(a):z' . ® For C =
{1,...,J}, defineu, z, €, and y to be Jx1 vector swith componentsu,, z, §;,
y;, respectively. Define a (J-1)xJ matrix A, by starting from the JxJ
identity matrix, deleting row i, and then replacing column i with the
vector (-1,...,-1). For exampleif J =4,

(-1 10 0]
A=|-1010
-100 1]

Then alternativei ischosen if Aiu < 0. The probability of thisevent is

P(z,0) =Pr(Au < 0|z0) = f f(u

Al.usO

z,0)du,

wheref(u|z,0) isthe conditional density of u given z. The parameters
0 include the slope parameters 3 and any additional parameters
characterizing the distribution of the disturbancese.
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MULTINOMIAL LOGIT

A special casewhere P,(z,0) hasa simpleclosed form isthe multinomial
logit (MNL) model

Pi(z,B) = exp(v))/Yjec eXp(V;)

with v, = zf. Thisisderived from u; = z3 + € with the disturbances,
being independently, identically distributed with a distribution called
Extreme Value Type 1, which has Prob(g, < ¢) = F(c) = exp(-e©) and
density f(c) = e“exp(-€°). Thisdistribution isbell-shaped and skewed to
theright; the density isplotted in the figure below.

Extreme Value 1 Density

0.4 |

"~ Norma

0.3
0.2

0.1 ~

EV1
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Derivation:

Pi(z,3) = Prob(v;+€; > v;+g, for j € C)
- f f(,) ... f(€,)de,...de,
Ag<-Ay

= [ eIl Fletvv)hde,

.= —o00
i

= f e {[]; exp(-exp(-c-v,v))}dc

= — 00

= f " e%exp(-Y, exp(-cv,v))dc

= —00

=A |7 Ale%exp(-e9A)dc

c=—o0

= A[F(c0/A) - F(-</A)] = A
with A=} exp(-vi.v)), or A = exp(V)/Ycc exp(V)).
Thereason that the somewhat unusual EV1 distributionislinked tothe
closed MNL formulaisthat theEV1familyisclosed under theoperation

of maximization. (Compare with the normal family, which is closed
under the operation of addition.)
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The MNL discrete response probabilities with suitably articulated v;'s
ar e often reasonable approximationsto trueresponse probabilities, for
essentially the same reason that linear regression models are often
reasonable approximations a true data generating process — the
coefficients can compensate to some degree for failures of the
specification. However, when v; is specified to be a function solely of
attributes z of alternative i, the MNL model satisfies a very powerful
and very restrictive property called Independence from Irrelevant
Alternatives (11 A). This property says that the relative probabilities
of responses I and j depend only on v; and v;, and not on the
attractiveness, or even the presence or absence, of additional
alternatives. From the MNL formula,

Pi(z,)/P,(z,B) = exp((zi-2)P) = exp(vy)/exp(vy).

When the true responses | satisfy Il A, this is extremely useful. One
can predict multinomial response by studying binomial responses,
predict responses when new alternatives are added, and analyze
responses as if the set of feasible alternatives were a proper subset
of the true choice set (next lecture). However, when the true
responses do not satisfy IlIA, predictions from a MNL
approximation can be very misleading.
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Red Bus / Blue Bus Problem

Two alternatives originally, car and blue bus, withv, =z =z, =
V,, - Then the MNL choice probabilities are P, = P, = 1/2.

Suppose a third alternative is added, a red bus that is identical or
nearly identical to the blue bus except for color (which does not
matter to the consumer), so that z,, = z,,. What one expects Iin
reality is that if v, = v,,,, then those who preferred car to bb will
prefer car to both rb and bb, whereas those who preferred bb to car
will continue to choose bus, and divide their patronage evenly
between rb and bb, leading to P, = 1/2, P,, = P,,, = 1/4. Further, ifv,
>V, and the two buses are nearly identical in terms of unobserved
characteristics, one expects in reality that P, = 1/2, P,, = 1/2, and P,
= 0.

The MNL model estimated using data on choices between c and bb
will have the 1A property, and will predict that P,./P, = 1when the
rb is added, just as when it was absent. Thus, when v, =v,, = v,,
the MNL model predicts P, =P,, =P,, = 1/3. This contradicts reality,
where rb gets its patronage solely from previous bb users.



Comparing the sensitivity of P, /P,,, and P /P, to service attributes,
the former ratio is much more sensitive because differences In
unobserved attributes are unimportant, while the latter ratio is
much less sensitive because differences in unobserved attributes
(€’s) are important and will induce many decision-makers to stay
with their initial choice even when there Is some variation in
observed attributes. The validity of IIA in an application is an
empirical question. The elevated sensitivity to observed attributes
between alternatives that are similar in unobserved attributes,
compared to alternatives with independent unobserved attributes,
can be used as a basis for a test of the validity of the I1A property.
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Tests of 1A

1. Hausman-McFadden Test
Intuition: If I1A holds, then one should get approximately the
same parameter estimates using the full choice set or using the
observations that fall in a subset.

2.  McFadden omitted variables tests

Intuition: Failures of I1A are usually associated with sharper
discrimination within a subset of alternatives than otherwise.
This can be detected by the coefficients on added variables that
are zero for alternatives outside the subset. Chosen
appropriately, these additional variables give tests that are
equivalent to the Hausman-McFadden test, or to a test against
the nested MNL model.
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1. Hausman-McFadden Test on a subset of alternatives.

e Estimate logit model twice:
a. on full set of alternatives
b. on a specified subset of alternatives (and the
subsample with choices from this subset)

e If IIA holds, the two sets of estimates should not be
statistically different: Let 3, denote the estimates obtained
from setup b. above, and , denote their estimated
covariance matrix. Let 3, denote the estimates of the same
parameters obtained from setup a. above, and Q, denote
their estimated covariance matrix. (Some parameters that
can be estimated in setup a. may not be identified in setup
b, in which case [, refers to estimates under setup a. of
the subvector of parameters that are identified in both
setups.) Then, the quadratic form

(Ba - Bb),(gb - Qa)_l(ﬁa - Bb)

has a chi-square distribution when 1A is true. In
calculating this test, one must be careful to restrict the
comparison of parameters, dropping components as
necessary, to get €, - Q. non-singular. When this is
done, the degrees of freedom of the chi-square test
equals the rank of Q, - Q..

Reference: Hausman-McFadden, Econometrica, 1984.
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2.

McFadden omitted variables test.

Estimate a MNL model, using all the observations.

Suppose A is a specified subset of alternatives. Create
new variables in one of the following two forms:

a.

If X, are the variables in the basic logit model, define
new auxiliary variables

xi—ZPj|ij ifie A
JEA

0 ifig A

Zi =

where P, = P//Y ;4 P; is the conditional probability of
choice of j given choice from A, calculated from the
basic estimated model. The variables z,can be written
in abbreviated form as z, = 0,,(X; - X,) , where 0., =1
iff i€ Aandx, =) caPjaX

If V,=x, isthe representative utility from the basic
model, calculated at the basic model estimated
parameters, define the new variable

V.- PV, ificA
JEA

Z. =
1

0 if i¢ A

or more compactly, z. = 0,,(V, - V,.) .
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The auxiliary variable in b. equals the vector of auxiliary variables
in a., multiplied by the MNL parameter vector . The auxiliary
variable in b. can also be written as

-log(P) + ) P, log(®) if ic A

7. = jEA
0 ifi ¢ A
where P; is calculated using basic model estimates.

e To carry out an IlIA test, estimate an expanded model that
contains the basic model variables plus the new variables z;,
and carry out a LR test that the coefficients of z, are zero:

LR = 2[(Log likelihood with z's) - (Log likelihood without z's)]
If 1A holds, then this statistic has a chi-square distribution

with degrees of freedom equal to the number of non-
redundant auxiliary variables added.
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Properties:

e The test using variables of type a. is equivalent to the
Hausman-McFadden test for the subset of alternatives A.

e The test using variables of type b. is equivalent to a
one-degree-of-freedom Hausman-McFadden test focused in the
direction determined by the parameters (. Itis likely to have
greater power than the previous test if there is substantial
variation in the V's across A. This test is also equivalent to a
Lagrange Multiplier test of the basic MNL model against a
nested MNL model in which subjects discriminate more sharply
between alternatives within A than they do between alternatives
that are not both in A. One plus the coefficient of the variable
can be interpreted as a preliminary estimate of a nested logit
model inclusive value coefficient for the nest A.

* The tests described above are for a single specified subset A
(which can vary by observation, although the power of the test is
generally highest when A is fixed across observations). It is
trivial to testthe MNL model against several nests at once, simply
by introducing an auxiliary variable for each suspected nest, and
testing jointly that the coefficients of these omitted variables are
zero. Alternative nests in these tests can be nested or
overlapping. The coefficients on the auxiliary variables provide
some guide to choice of nesting structure if the 1A hypothesis
fails.



¢ If there are subset-A-specific dummy variables, appearing alone
and in interaction with some generic variables in the basic model,
then some of the auxiliary type a. variables duplicate these
variables, and cannot be used in the testing procedure. In the
extreme case thatall the original model variables appear inaform
equivalent to allowing all interactions of generic variables and a
subset-A-specific dummy, it is impossible to distinguish 1A
failure from the effect of these variables on choice, and the 1A
test has zero power.

¢ One may get a rejection of the null hypothesis either if 1A is
false, or if there is some other problem with the model
specification, such as omitted variables or a failure of the logit
form due, say, to asymmetry or to fat tails in the disturbances.

e Rejection of the I1A test will often occur when 1A is false, even
If the nest A does not correctly represent the pattern of nesting.
However, the test will typically have greatest power when A is
a nest for which an I1A failure occurs.

Reference: D. McFadden, "Regression based specification tests for
the multinomial logit model” Journal of Econometrics, 1987.
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EXTENSIONSOF MNL: NESTED LOGIT

Example: Choice of Heating Type and Central Cooling

Central Cooling?

/\ AN

1 2 3 4 5 6

Alternatives:

Central cooling and gas central heating
Central cooling and electric central heating
Central cooling and electric room heating
Heat pump (central cooling and heating)
No central cooling, gas central heating

No central cooling, electric central heating
No central cooling, electric room heating

NookrwpE
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Model U,=V;+¢g , i=1,..7 & ~ Generalized Extreme Value

with: correlation amonge,, €,,€;,and g, ;
correlation among €., €,, and €-;
no correlation between g;,1=1,23,4and g, ] =5,6,7;
and 1 - A isameasure of correlation.

Then:

43



1 A holdswithin nests but not acr oss nests:

(4 \A-1
\ Z V, /A
P < ¢ V,/A
1 T ) e
2 V, /A V. /A
€ e !
j=1 /

- dependson V, and V, only.

4 \A-1
Vv, /A V. /A
p € e
il =1 /
P (7 \A-l
5 Vi /A V. /A
e e

—
1l
W
N—

- dependson all v, ,..., V..

e An improvement in the attributes of one alternative draws
proportionately from other alternativesin the nest, but lessthan
proportionately from alter natives outside the nest.



THE ISSUESIN SPECIFIYING ALTERNATIVESTO MNL

B The multivariateintegral defining P,(z,0),

P.(z,0)=Pr(Au<0

20) = fA f(u[z@)du

i

can be calculated analytically in special cases, notably multinomial
logit and itsgeneralizations. However, for most densitiestheintegr al
Isanalytically intractable, and for dimensions much larger than J =
5 Is also intractable to evaluate with adequate precision using
standard numerical integration methods. (Numerical integration
works by forming a weighted average of values of the integrand at
judicioudly selected points. A typical procedure called Gaussian
guaditurecan get acceptable precision for most problemswith about
10 evaluation points per dimension, so that the total number of
function evaluations required is about 10°*. This count rises too
rapidly with J to be feasible for J much above 5.) Then, the four
practical methodsof workingwith random utility modelsfor complex
applications are (1) use of nested multinomial logit and related
specializations of Generalized Extreme Value (GEV) models, (2) use
of multinomial probit with special factor-analyticstructuretoprovide
feasible numerical integration; (3) use of multinomial probit with
simulation estimators that handle high dimensions; and (4) use of
mixed (random coefficients) multinomial logit, with simulation
proceduresfor the coefficients.
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GEV Models

W etC={1..J}. Let]1 denotetheunit vectorsfor j € C, and for A
c C, let 1, denote a vector with components that are one for the
elementsof A, zerootherwise. Assumethat theindirect utility of i can
be written

u =xp +e¢,

where x; is a vector of attributes of alternativei, (} is a parameter
vector, and €, isapart that variesrandomly acrossconsumers. Let v,
= x, index the desir ability of alter nativei.

Define a GEV generating function H(wy,...,w;) on w = (W,...,w;) >
Otohavethepropertiesthat it isnon-negative, homogeneousof degree
one, and differentiable, with itsmixed partial derivativesfor j =1,...,J
satisfying (-1)0'H/ow;...0w; < 0. A GEV generating function H is
proper with respect toasubset A of Cif H(1;) >0for j € A and H(1c\)
= 0. Let 3¢ denote the family of GEV generating functions, and let
J((A) denote the subfamily that is proper with respect toA. Let 'y =
0.5772156649 denote Euler's constant.
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Theorem. If a random vector U = (U,,...,U;) has a GEV
distribution F(u) = Prob(U < u), then thisdistribution hasthe form

[1] F(u) = exp(-H(exp(-u; + v4),....exp(-U; + Vv,))),

where (v,,...,v;) are location parameters and H(wg,...,w;) iS a non-
negative function of w > 0 which is homogeneous of degree one and
satisfiesH(1;) > 0for j € C. Conversely, asufficient condition for the
function [1] to be a GEV distribution is that H € 3(C). GEV
distributions have the properties:

A f(U) = F(U)/oW,...aw, > 0, F(u) = [ ... [f(u)du,and 0 < F(u) < 1

B. The U, for j = 1,..,.J are EV1 with common variance T%/6p”,
means v, + p* log H(1) + y/K, and moment generating functions
exp(tv)H (1) I'(1-t/p).

(logH (exp(Vy),...,exp(Vv;))) + Y)/K, and moment generating function
H(exp(Vy),....exp(v,)) M (1-t/p).

C. U, = max; ; U; is EV1 with variance m*6l* mean

satisfies

[2] P, = exp(v;)"H;(exp(Vy),....exp(vy))/WH(exp(Vy),....exp(V;)).
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Thelinear function H(w) =w, + ... + w;isa GEV generating function;
the vector U with the distribution function [1] for this H has
independent extreme value distributed components. The choice
probabilities [2] for this case have a multinomial logit (MNL) form,

[3] P, = exp(v;)/ Eiecexp(vi)-

Thenext result givesoper ationson GEV generatingfunctionsthat can
be applied recursively to generate additional GEV generating
functions.

Lemma 2. The family 3C of GEV generating functionsis closed
under the following operations:

A. IfH(wy,...,w;) € 3((A), then H(o,wy,...,00;w ;) € F3((A) for oy,...,00;> 0.
B. If H(wy,...,w;) € 3(A) and s > 1, then H(W5,...,w,%)Y € 3((A).
C. If HA(wy,...,w;) € 3¢(A) and H®(wy,...,w;) € H(B), whereA and B are
subsets of C, not necessarily digoint, then
HAW,,...,.W;) + H3(w,,...,.w;) € J(AUB).
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A three-level nested MNL model is generated by a function H of the
form

1

1
VO el B
5 ' SmSk St I°m
v wz ’

zeAmk

M (K

=2 [

m=1 k=1

wheretheA,, partition{1,...,J} and s.,s,, > 1. Thisform corresponds
to a tree. m indexes major branches, k indexes limbs from each
branch, and i indexesthefinal twigs. Thelarger s, or s,’, themore
substitutablethealternativesin A,.. If s.=s,’ =1, thismodel reduces
tothe MNL model.

If theutility index v; islinear in income, with a coefficient ¢, then the
expected change in utility in moving from one environment to
another, measured in income units, is

WTP = é ° {logH(evﬂl,...,ev”’) - logH(evll,...,ev")}

Thisisthe"log sum" formula first developed by Ben-Akiva (1972),
McFadden (1973), and Domencich and McFadden (1975) for the
multinomial logit model, and by M cFadden (1978, 1981) for thenested
logit model. This formula is valid only when the indirect utility
function islinear in income.
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The MNP M odd

B A density that isrelatively natural for capturing unobser ved effects,
and the patterns of correlation of these effects across alter natives, is
themultivariatenor mal distribution with aflexiblecovariancematrix.
Thisistermed the multinomial probit moddl.

W |fe=2, where isinterpreted as a random variation in " taste"
weights across observations with €& ~ N(0,Q), then the transformed
variablew = A.u is multivariate normal of dimension J-1 with mean
A.zf3 and covariance AzZQz'A,’. UnlessJ < 5or dimensionality can be
reduced because £ has a factorial covariance structure, the resulting
MNP response probabilitiesareimpractical to calculate by numerical
integration. Themethod of smulated momentswasinitially developed
to handle thismodel; see M cFadden (1989).
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B Thelog likelihood of an observation is

1(0) = XC: di-log P(z,0) ,

whered, isan indicator for the event that i ischosen. The score of an
observation isthen

S0)= ¥ dVelogP(z0) = X [d;-P(z0)]Velog P(z,0)

with the second form holding because 0 = Y. V, P(z2,0).

This score can be adapted to Generalized Method of Simulated
Moments (GMSM) or Method of Simulated Scores (M SS) estimation
when P,(z,0) isintractable by conventional analysis. Simulatorsare
required for P,(z,0) and Vglog P.(z,0).
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B Consider the problem of approximating the multinomial probit
(MNP)

(1) P =P(B;uQ)=n(v-p.Q)dv = E,1(VeB),
where V is a m-dimension normal random vector with mean W\,
covariance matrix Q, with density denoted by n(v - 1), and 1(VEB)

isan indicator for B ={V|a<V <b}.

B Thederivatives of (1) with respect to and Q are

(2) V,P(B;pQ)=Q f: 1(VEB)(v-p)n(v-p,Q)dv

= Q'E, L(VeB)(V-p),

-1
VoP(B:1.Q) = QT [ AEB) ) (v-p) - QIn(v-p Qv

(o]

= (U2)Q'E, LVEB)[(V-p)(V-p)'-Q-Q.
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B For statistical inference, it is often unnecessary to achieve high
numerical accuracy in evaluation of (1) and (2). For example,
simulating P by the frequency of the event 1(veB) in a number of
Monte Carlo draws compar able to sample size will tend to produce
statistics in which the variance introduced by ssmulation is at wor st
of the same magnitude as the variance due to the observed data.
Further, when probabilitiesappear linear |y acr ossobservationsin an
estimation criterion, independent unbiased simulation errors are
averaged out. Then, a small, fixed number of draws per probability
tobeevaluated will besufficient with increasing samplesizetoreduce
simulation noise at the samerate as noise from the observed data.
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MONTE CARLO METHODS

B Crude Frequency Sampling. Therandom vector V can bewritten
V =u +I'n, where n is an independent standard normal vector of
dimension m and I''isan lower triangular Cholesky factor of Q, so Q
=I'T". Make repeated Monte Carlo draws of mn, and fix these
throughout theiteration. CalculateV =W +I'n for trial parameters
(k,I") and form empirical analogs of the expectations (1) and (2).
Advantage: very fast, unbiased. Disadvantages. Discontinuous
simulator, relative error large for small probabilities.

B |mportance Sampling. Consider the generic integral
H= [~ 1(veB)-h(v; 1, Q)-n(v-u,Q)dv, where h is an array of

polynomials in v; integrals (1)-(2) have this form. Let g(v) be a
density with support B chosen by the analyst. Then,

H=" [~ {h(v;p.Q)n(v-p.Q)/g(v)}-g(v)dv

and a smooth unbiased smulator of H isobtained by drawing from
g, fixing these draws, and then for (u,Q) averaging
{h(v; 1, Q) n(v-l.,L2)/g(v)} over these draws.

B Advantages. Smoothness, unbiased, and positivenessfor smulated
P, aid iteration to estimates. Fast if g(v) isan easy density to draw
from. Disadvantages. can be inaccurate unless mass of g is
concentrated near mass of normal, ssmulator can exceed one.



B Geweke-Hajivassiliou-K eane Smulator (GHK) Thisisan
importance sampling simulator that has performed well in
comparison with many other ssmulators. It isbased on sampling
from recursive truncated nor mals after a Cholesky transfor mation.
The approach was suggested by Geweke (1986), and has been
developed by Hajivassiliou, who proposed the weighting used here.
K eene (1988) independently developed a weighting scheme of
essentially the same form for a problem of estimating transition
probabilities.

Let v=p + I'n, where I' is the Cholesky factor of Q. The
indicator 1(veB) is then transformed to 1(u+I'neB), which can be
written recursively asthe product of indicators of the events B;(n.)
defined by (g-p;-I' ;M) < n, <(o-p-1 M)/ for j=1,...m; ng

denotesthe subvector of 1 containing the components below thejth.

Define ¢(n;|B;(n4) = d(n;)1(M;,€B;(n))/P(B;(n)), the conditional
distribution of 1, given the event B;(1n,). Define a weight w(n) =
IL®(B;(n,)), with j ranging from 1to M. Then

H= [ h(u+I'n)w(n) IL(M;B;(n<))dn.
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The GHK simulator isobtained by drawing and fixing uniform
[0,1] variates {, then for (1,Q) calculating variates

N = (I)_l(Cj(I)((aj'p’j'I‘j,<jn<j)/Fjj) + (1'Cj)(I)((bj'p‘j'Fj,<jn<j)/ij)),
and then averaging h(n+I'n)w(n) over these variates.

B Advantages. For a broad spectrum of applications, this
importance sampling density is concentrated near the ideal
truncated multivariate normal density, giving low variance
simulators for both probabilities and derivatives that have small
relativeerror even when Pissmall. Disadvantages. Therecursive
loops with multiple evaluations of standard normal CDFs and
inverse CDFs are computationally costly and may introduce
additional approximation errors.
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Applications
B A number of applications of MNP using ssmulation have
appeared in theliterature; some examples.

Berkovec and Stern (1991) " Job Exit Behavior of Older Men",
Econometrica, 59, 189-210.
Bolduc, D. (1992) "Generalized autoregressive errors in the
multinomial probit model" , Transportation Research B, 26, 155-170.
Borsch-Supan, A., V. Hajivassiliou, L. Kotlikoff, J. Morris (1992)
"Health, Children,and Elderly LivingArrangements', Topicsinthe
Economics of Aging (D. Wise, ed.), Univ. of Chicago Press.
B MNP simulation by MSLE usingtheGHK simulator isavailable
in GAUSS. Codefrom Hajivassiliou- M cFadden-Ruud for GHK
and other ssimulatorsfor probabilitiesand derivatives, in GAUSS
and FORTRAN, is available from Berkeley's Econometrics
L aboratory Software Archive (EL SA) on the World Wide Web.
These programs are practical for up to 25 alternatives without
covariance matrix restrictions, but memory and speed are likely
to be problemsfor larger applications.
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B For dynamic applications (e.g., multiperiod binomial probit
with autocorrelation), and other applications with large
dimension, alternatives to A GHK setup with an unrestricted
covariance matrix may perform better. McFadden (1984, 1989)
suggestsa " factor analytic® MNP with a components of variance
structure, starting from

u =z + kﬁ: A + OV,

whereg,,....Ex,V,,...,v; areindependent standar d normal, with the
€. interpreted as levels of unobserved factors and the A, asthe
loading of factor k on alternativei. The A's are identified by
nor malization and exclusion restrictions.

B The choice probabilitiesfor this specification:

Pz0)= [ &) IT E)

x [ ® (Z-2)B + LAy Ayl € + 0V, -dv,dg, - d&

58



Mixed MNL (MMNL)

Mixed MNL isa generalization of standard MNL that shares
many of the advantages of MNP, allowing a broad range of
substitution patterns. Train and McFadden (1999) show that any
regular random utility model can be approximated as closely as
one wants by a MMNL model. Assume u; = z + g, with the g,
independently identically Extreme Value | distributed, and o
random with density f(ct;0), where O is a vector of parameters.
Conditioned on «,

L (2| o) = exp(x;0) /Y ;e c €XP(X;L).
Unconditioning on o,
Pi(Z‘ e) = faLi(Z‘ oc)f(oc,@)doc .

Thismodel can be estimated by sampling randomly from f(c; 0),
approximating P,(z| 0) by an averagein thisMonte Carlo sample,
and varying O to maximize the likelihood of the observations.
Care must be taken to avoid chatter in the drawswhen 0 varies.

Example: o= +I'v, where 0= (B,I') arethe parametersand v
Isastandard normal vector that isdrawnin aM onteCarlosample
and then fixed during iteration to estimate the parameters.

The MMNL model has proved computationally practical and
flexiblein applications. It can approximateM NP modelswell, and
provides one convenient route to specification of models with
flexibility comparable to that provided by MNP.
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A LM Test for MNL Against the Mixed MNL Modé€

The mixed MNL family isvery flexible and can approximate
any well-behaved discrete response data generation process that
Is consistent with utility maximization. However, because the
MMNL model requires the use of simulation methods for
estimation, it is very useful to have a specification test that can
indicate whether mixing is needed. The next result describes a
L agrangeMultiplier test for thispurpose. Thistest hasthepivotal
property that itsasymptoticdistribution under thenull hypothesis
that the correct specification is MNL does not depend on the
parameterization of themixingdistribution under thealter native.

Theorem. Consider choicefromaset C ={1,....J}. Letx bea
1xK vector of attributes of alternativei. From a random sample n
= 1,..,N, estimate the parameter o« in the smple MNL model

Lc(ix,) = &™) e, usng maximum likelihood; construct

artificial variables
Zi = YAX; - Xtc)2 with Xc= )

ijeC th.LC(j;X’&)

for selected componentst of x;, and usea Wald or Likelihood Ratio
test for the hypothesis that the artificial variables z; should be
omitted from the MNL model. Thistest isasymptotically equivalent
to a Lagrange multiplier test of the hypothesis of no mixing against
the alternative of a MMNL model P.(i|x,0) = [Lc(i;x,0)G(do; 0)
with mixing in the selected components t of o«. The degrees of
freedom equalsthe number of artificial variablesz, that arelinearly

independent of x.
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To examinethe operating characteristics of thetest, consider two
simple Monte Carlo experiments for choice among three
alternatives, with random utility functions u;, = o, x;; + 0., X, + €.
Thedisturbances e, werei.i.d. ExtremeValue Typel. Inthefirst
experiment, the covariate were distributed as described below:

Variable | Alternativel| Alternative2| Alternative 3
X4 tow.p. 2 0 o)
X, tow.p. 2| Howp. Y 0

Theparameter o, =1 under both thenull and thealternative. The
parameter o, = 0.5 under the null hypothesis, and under the
alternative ¢, = 0.5+ 1 w.p. /2. We-carried out 1000 repetitions
of the test procedure for a sample of size N = 1000 and choices
generated alternately under the null hypothesis and under the
alternative just described, using likelihood ratio tests for the
omitted variable z;,.

Nominal Actual Power Against the
Significance Significance Alternative
L evel L evel
10% 8.2% 15.6%
5% 5.0% 8.2%

The nominal and actual significance levels of the test agree well.
Thepower of thetest islow, and an examination of the estimated
coefficients reveals that the degree of heterogeneity in tastes
present in this experiment gives estimated coefficients close to
their expected values. Put another way, this pattern of
heter ogeneity isdifficult to distinguish from added extreme value
noise.
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In the second experiment, the covariates are distributed:

Variable Alternativel | Alternative2| Alternative 3
X4 tow.p. ¥ tow.p. ¥ 0
X, tow.p. ¥ tow.p. 2 0

The utility function isagain u, = o,X;; + 00X, + €. Under the null
hypothesis, &, = &, = 1, whileunder the alternative (o,,0,) = (2,0)
w.p. ¥2and (0,2) w.p. ¥2. Again, 1000 repetitions of the tests are
made for N = 1000 under the null and the alter native:

Nominal Actual Power Against the
Significance Level| Significance Alternative
L evel
10% 9.7% 52.4%
5% 3.9% 39.8%

In this case where mixing is across utility functions of different
variables, the test is moderately powerful. It remainsthecasein
this example that the estimated coefficients in the MNL model
without mixing are closeto their expected values.

62



