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1.

a.
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f(x;�) = (2�)�
n

2 exp

(
�1

2

nX
i=1

(xi � �)2

)
:

b.

We have p(�jx) / f(x;�)p(�), where p(�) = (2� 1
k
)�

1

2 expf�k�2

2 g. So

p(�jx) / exp

�
�n

2
(�� �x)2 � k

2
�2
�

= exp

�
�1

2

�
(n+ k)�2 � 2n�x�+

n2�x2

n+ k
� n2�x2

n+ k
+ n�x2

��

/ exp

(
�1

2

�p
n+ k�� �xnp

n+ k

�2
)

= exp

(
�n+ k

2

�
�� n�x

n+ k

�2
)
;

which shows that �jx � N( n�x
n+k ;

1
n+k ).

c.

The Bayes risk R(T; �) of an estimate T is its expected posterior loss, i.e.,
R(T; �) = E�jxL(T; �). Here L(T; �) = (T � �)2, so
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d.

From part c. it should be fairly clear that the procedure T that minimizes Bayes
risk is just the posterior mean of �, i.e., T �(x) = n�x

n+k .

2.

a.

f(x;�) = �n exp(��
nX
i=1

xi)

b.

Di�erentiating log f(x;�) with respect to � and setting the derivative to zero

we �nd that the maximum likelihood estimator to be �̂ML = nP
n

i=1
xi

= �x�1.

c.

We have an exponential prior density �(�) = � exp(���). Let t =Pn
i=1 xi and
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Therefore the posterior density of � is given by �(�jx) = 1
n!�

n(t+�)n+1e��(t+�).
The Bayes estimate of �, that is, the estimate that minimizes posterior loss is
the posterior mean of � if we have a quadratic loss function as in Exercise 1
above:
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d.

We have W = 2n��x = 2�
Pn

i=1 xi, so the characteristic function of W is given
by
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which is the characteristic function of a �22n random variable.

We have �̂ML = 2n�
W

, which is distributed as 2n���2
� , where ��2

� refers to
an inverse chi-square distribution with � degrees of freedom.1 The pdf of the
MLE of � is therefore given by
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The derivation of p(�̂ML) is left as an exercise.

4.

We have k1; : : : ; kn iid Bernoulli(p), so the likelihood function is given by

f(k1; : : : ; kn) = p
P

n

i=1
ki(1� p)n�

P
n

i=1
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Let K =
Pn

i=1 ki. K is clearly suÆcient for p by the factorization criterion.
It is also minimal suÆcient.2 Note that if there exists a function h and a
statistic U such that K = h(U) then K cannot contain more information about
p than U , which (after a moment's thought) indicates that U is also suÆcient
for p. (Alternatively, suÆciency can be shown by substituting h(U) for K in
the likelihood function for the sample.)

a.

We have U = (k1; : : : ; kn). Then K =
Pn

i=1 Ui; so U is suÆcient.

1Suppose X � �2
�
. Then X�1 � ��2

�
.

2See handout on suÆciency. The Bernoulli class of distributions can be shown to be a

member of the exponential family of distributions.
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b.

We have U = (k21 ; (k2 + � � �+ kn)
2). Then K =

p
U1 +

p
U2 so U is suÆcient.

c.

We have U = K
n
. Then K = nU so U is suÆcient.

d.

We have U = (K
n
; k22 + � � �+ k2n). Then K = nU1 so U is suÆcient.

e.

We have U = k21 + � � �+ k2n. Here K = U so U is suÆcient.

6.

We have an estimator T (X) that has �nite variance VT and is unbiased for
�, so its mean squared error is VT . Denote a Stein shrinkage estimator by
S�(X) = (1 � �)T (X) + �17. Note that in general S�(X) will be biased for �.
Denote the mean squared error of S�(X) by M(�):

M(�) = (1� �)2VT + �2(17� �)2:

Its derivative is given by

M 0(�) = �2(1� �)VT + 2�(17� �)2:

For any value of � M 0(�) < 0 whenever � < VT
(17��)2+VT

� 1. Since S0(X) =

T (X), this shows that for � strictly between zero and a small number less than
or equal to 1 the MSE of S�(X) will be uniformly smaller than that of T (X).
Whether S�(X) or T (X) is the better estimator naturally depends on the utility
function of the investigator for the particular application at hand.
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