Econ 240A: Problem Set 6
Solutions to Selected Problems from Chapter 6
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1.

a.

The likelihood is just the joint density of the observations, i.e.,

fla;p) = (2m) 7% exp {—% > (@i - u)z} :

i=1

b.
We have p(ule) o f(z; p)p(u), where p(u) = (274)~ % exp{—*}. So
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which shows that p|z ~ N (25, —7).

C.

The Bayes risk R(T,u) of an estimate T is its expected posterior loss, i.e.,
R(T, p) = B, L(T, p). Here L(T, p) = (T — p)*, so
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R(T,pu) = T?*(z) — 2T(:U)n iy




d.

From part c. it should be fairly clear that the procedure T' that minimizes Bayes

rigk is just the posterior mean of y, i.e., T*(z) = nfk.

2.
a.
Flaip) = X" exp(=A Y i)
i=1

b.

Differentiating log f(x; \) with respect to A and setting the derivative to zero
we find that the maximum likelihood estimator to be A7, = —=2 — = z7L.

i=1""
C.

We have an exponential prior density m(\) = aexp(—al). Let t = Y. | z; and
u = A(t 4+ «). Note that

/Ooow(k)f(a:;k)d)\ - /Oooa)\"exp{—)\(t+a)}d)\

/°° uw \" 1 —ug
[0 . e U
0 t+« t+a
_ (0]
= Graprlmtl

an!

(t+ o)t

Therefore the posterior density of A is given by m(A|z) = LA™ (t+a) e At+a),
The Bayes estimate of A, that is, the estimate that minimizes posterior loss is
the posterior mean of A if we have a quadratic loss function as in Exercise 1
above:
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d.

We have W = 2nAz = 20" | z;, so the characteristic function of W is given
by

cw(s) = E[e™]

= H cx; (2As)
i=1

= H/ Aexp{i2Az;s — Az; }dz;
i=170

n

= JJa-2is)!

i=1
= (1—2is)"
= (1-2is)%,

which is the characteristic function of a x3, random variable.

We have Ay = 222, which is distributed as 2nAx, %, where x,,? refers to
an inverse chi-square distribution with v degrees of freedom.! The pdf of the
MLE of X is therefore given by

N _(2nN)" 1 2nA
p(Amr) = Q"F(n)/\ML exp 2 3 )

The derivation of p(S\ML) is left as an exercise.

4.
We have ki ,. .., ky iid Bernoulli(p), so the likelihood function is given by
f(kla ) kn) = pZ?ﬂ ks (]. — p)nizzﬁzl ki .

Let K = Y | k;. K is clearly sufficient for p by the factorization criterion.
It is also minimal sufficient.? Note that if there exists a function h and a
statistic U such that K = h(U) then K cannot contain more information about
p than U, which (after a moment’s thought) indicates that U is also sufficient
for p. (Alternatively, sufficiency can be shown by substituting h(U) for K in
the likelihood function for the sample.)

a.
We have U = (k1,...,kn). Then K =31, U;, so U is sufficient.

lSuppose X ~ x2. Then X! ~ x5 2.
2See handout on sufficiency. The Bernoulli class of distributions can be shown to be a
member of the exponential family of distributions.



b.
We have U = (k2, (ka2 + -+ + kp)?). Then K = /U, +/Us so U is sufficient.

C.

We have U = % Then K = nU so U is sufficient.

d.
We have U = (£ k3 +-+- + k2). Then K = nU; so U is sufficient.

e.
We have U = ki + --- + k2. Here K = U so U is sufficient.

6.

We have an estimator T'(X) that has finite variance Vr and is unbiased for
f, so its mean squared error is V. Denote a Stein shrinkage estimator by
SA(X) = (1 = NT(X) + A17. Note that in general Sx(X) will be biased for 6.
Denote the mean squared error of Sy(X) by M (\):

M) = (1= X\)?Vr + X2(17 — )%
Its derivative is given by
M'(A) = —=2(1 = \)Vr + 2X(17 — 0)2.

For any value of 8 M'()\) < 0 whenever A < (17_;/% < 1. Since Sp(X) =
T(X), this shows that for A strictly between zero and a small number less than
or equal to 1 the MSE of S (X) will be uniformly smaller than that of T'(X).
Whether Sy (X) or T'(X) is the better estimator naturally depends on the utility

function of the investigator for the particular application at hand.



