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Lawrence Klein: “If the Devil promised you a theorem in return for
your immortal soul, would you accept the bargain?”
Harold Freeman: “No. But I would for an inequality.”

(Reported in Klein, 1991)

This handout expands on the text by presenting a number of inequalities that
are frequently used in proving theorems in statistics.

Theorem 1 (Markov’s Inequality). LetY be a random variable and g(-) be
a function such that g(y) > 0 for all y € . Assume that E[g(Y)] exists. Then
for any e >0

Proof. We give a proof for Y continuous. The proof for Y discrete is similar!.
Let By ={y:g(y) > €} and By = {y : g(y) < €}. Then

E[g(y)] = /B o) Fy)dy + /B o) F () dy
> /B a(0)f (w)dy
> e[ fly)dy
B,
= PV >

The next theorem will be used in the proof of the law of large numbers:

*The material in this handout is a slightly modified version of Section 2.8 in Poirier (1995)
LOf course Y may be neither discrete nor continuous, and so this proof would not be
acceptable in a probability theory course like Stat 205A.



Corollary 1.1 (Chebyshev’s Inequality). Let Y be a random variable with
finite mean p and variance 0. Then for all § > 0
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Proof. Set g(y) = (y — p)? and € = 6202 and apply Markov’s Inequality. O

Theorem 2 (Cauchy-Schwarz Inequality). Let random variables Y,,,n =
1,2 have finite second moments. Then

E0AYL)P < EOR)E(YD),
with equality if P(Yo = kY1) =1 for some constant k.

Proof. See the solution to Problem 22 from Chapter 3 in McFadden (2001)
(Problem Set 3). O

Note that if 02 = Var[Y,] > 0, n = 1,2 a direct consequence of the Cauchy-
Schwarz Inequality is that

012
\/O102
where 012 = Cov[Y1,Y2]. Also it follows from the same inequality that the

covariance matrix 5
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P12 = S [—1,1],

is positive definite if |p12| < 1 and positive semidefinite if |p12] = 1.

The following inequality is a generalization of the Cauchy-Schwarz Inequal-
ity:
Theorem 3 (Holder’s Inequality). Let ¢,d be real numbers such that ¢ >

1,d>1,ct +d ! =1. Let Y1,Y> be random variables such that E[|Y1|°] < oo
and E[|Y3|? < co. Then

E[[V1Y2]] < [E|Y:|)% [E|Ya] Y.
Proof. See Billingsley (1995, p.80). O

Definition 1. A continuous function g(-) is called convex iff Vx,y € R and
A€ 0,1], g[xz+ (1= Ny] < Agz) + (1 = Ng(y). g(-) is strictly convex if the
inequality is strict. g(-) is concave iff —g(x) is convex and strictly concave iff
—g(x) is strictly conves.

Theorem 4 (Jensen’s Inequality). Let Y be a random variable and g(-) a
convez function. If E[Y] and E[g(Y)] ezist, then

Elg(Y)] = g[E(Y)].

If g(-) is strictly convez, the inequality is strict unless Y is a constant with
probability one.



Proof. See Lehmann & Casella (1998, p. 46). O

Example 1. g(y) = y® is convex, so Jensen’s inequality implies that E[Y?] >
[E(Y)]?. It follows immediately that Var(Y) = E[Y?] — [E(Y)]* > 0.

Example 2. Suppose Y is a nondegenerate positive random variable with finite
mean. Then Jensen’s Inequality implies

(o) E[Y '] > [EY)]7,
(b) E[logY] < log[E(Y)].

Theorem 5. Let Y be a positive random variable such that the required mo-
ments exist:

(a) EY®) <[E(Y)]Y, a €[0,1].
(b) E(Y*) >[E(Y)]*, a <0 ora>1.

a—1
(c) hia) = Elgl(/ya)) s a nonincreasing function of a > 0.
Proof. Exercise. Use Jensen’s inequality. O
The following theorems are stated without proof:

Theorem 6. Let Y and Z be independent random variables such that the re-
quired moments exist:

(a) E[(%)°] > Z5= for all a.

(b)) IfFE(YY)=E(Z) =0 and E(Z~') ewists, then Var(%) > ‘ég:gg

Theorem 7. Suppose Y is a random variable with E(|Y|%) < oo for some
a>0. Then E[|[Y|?] < 0o for 0 < B < a.

Theorem 8 (Minkowski’s Inequality). Let Y, Z be random variables such
that E(|Y'|*) < 0o and E(|Z]*) < oo for some 1 < a < 0o. Then

ayy L ayy L ayg L
[E(Y + 2]%)]= < [E(Y]")]= +[E(Z]")]=.
Theorem 9. Let Y be a random variable such that E[|Y|*] < co. Then
lim y*P(|Y| > y) = 0.
Yy—00

Theorem 10 (Information Inequality). Let ), a; and ), b; be convergent
series of positive numbers such that ) . a; > . b;. Then

z; 7] lOg(a_Z) S 07
i—

where the inequality is strict unless a; = b;, 1 =1,2,3,....



Exercises

1.

Let A and B be arbitrary events. Prove Boole’s inequality: P(ANB) > P(A) —
P(B°) =1— P(A°) — P(B°).

2.

Let A, B, C be events such that ANB C C. Show that P(C¢) < P(A°)+P(B°).

3.

Let Y be a discrete random variable with P(Y = —1) = 1, P(Y = 0) = 2 and
PY=1= %. Show that Chebyshev’s inequality holds exactly for § = 2.

4.

Show that if g(-) is concave, E[g(Y")] < g[E(Y)].

5.
Assume p = E(Y) < oo and g¢(-) is a nondecreasing function. Use Jensen’s
inequality to show that E[g(Y)(Y — u)] > 0.
6.
Suppose y,,n =1,..., N are positive numbers. Define the following:
e Arithmetic mean: § = Egzl Yns
e Geometric mean: yg = [ngl Yn] ™,

N 1 ]71

e Harmonic mean: ym = [+ Y.,_; i

Use Jensen’s inequality to show yr < yg < g.

7.

Let Y,,,n = 1,..., N be jointly distributed with E(Y,) = u, and Var(Y,) =
o2,n=1,....N. Let A, = {Yy, : |Yn — ttn| < VNbp,}, where § > 0. Prove the
multivariate Chebyshev’s inequality: P(A; N AsN---NAxN) > 15§72

8.

Use Jensen’s inequality to prove Liapounov’s inequality: If E[|Y|"] exists and
0<s<r< oo, then [E(|Y]*)]* <[E(Y]")]*.



9.

Let My (t) be the mgf of a random variable Y. Show that P(Y > ¢) <
exp(—ct)My (t) for 0 < t < h < oc.
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